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ABSTRACT  
We propose a self-adjusting pipeline structure to enhance chip 
performance and robustness considering the effects of process 
variations. We achieve this by introducing delay sensors to 
monitor internal timing violations within a pipeline stage and 
variable clock skew buffers to adjust the timing of the pipeline 
stage based on the feedback from the delay sensors. Furthermore, 
we formulate the delay sensor insertion and variable clock skew 
configuration problem as a stochastic mixed-integer programming 
problem and propose a simulated-annealing based algorithm to 
solve it. A comparison between the designs with and without the 
self-adjusting enhancement reveals that, we are able to improve 
the average performance of a batch of chips by 9.5%.      

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Fault Tolerance 

General Terms 
Design, Performance, Reliability. 

Keywords 
Self-Adjusting, Delay Monitoring, Variable Clock Skews. 

1. INTRODUCTION 
New technologies and the complexity growth of the designs place 
a large burden on synthesis, simulation, and verification tools. It 
is becoming increasingly complicated to verify the correctness of 
execution of a design. As a result, circuits are designed 
conservatively, i.e., the designers assume the worst-case scenario 
and optimize the circuits for them. In addition to the complexity 
of guaranteeing correctness, this approach results in designs with 
sub-optimal performance. Besides the sheer complexity, another 
important problem faced by the designers is the intricacies of 
using smaller manufacturing technologies. As manufacturing 
technologies are scaled down, it becomes exponentially harder to 
verify and guarantee the correctness. Each component in the 
system can possibly affect the timing and operation of another 
component. Therefore, complete correctness cannot be verified by 
local simulations only. In addition, simulating components at 
newer technologies is becoming further challenging due to the 
emergence of various physical phenomena. Therefore, there is a 
need for novel methods to satisfy the performance requirements 
of next-generation high performance circuits.  

In this paper, we present the self-adjusting pipeline architecture 
and the supporting design automation framework as a mean to 
overcome this important hurdle. Our approach is to shift the 
complexity of the simulation and verification to the higher levels 
by designing self-adjusting hardware, i.e. hardware that adapts to 
unexpected events and hence, to variation in performance 
parameters during execution. In this work, we achieve this by 
introducing a variable clock skew scheme to adjust the timing of 
pipeline stages dynamically. We show that the design process of 
these self-adjusting hardware structures can be automated. 
Particularly, we target the Delay Monitoring and Skew Buffer 
Insertion problem in order to determine the sensor locations and 
nominal delay of the skew buffer to maximize the average 
performance of a batch of chips. We formulate this problem as a 
stochastic mixed-integer programming problem and propose a 
simulated-annealing based algorithm for solving the problem.  

The novelty of our work lies in the following aspects. Majority of 
existing statistical yield optimization techniques are static [1-4]. 
However, we propose a dynamic technique that enables 
robustness towards process variations during run-time. Through 
the use of our proposed self-adjusting design it is possible to 
intervene before the timing variation actually manifests itself as a 
violation. This is a fundamentally different paradigm than existing 
dynamic techniques, which operate on the detect, stall, and re-
execute principle [5].  

We have evaluated the effectiveness of our approach on the 
pipeline of a high performance DEC Alpha-like microprocessor. 
Each block has been characterized in terms of the impact of 
process variations (die-to-die, within die…) on the timing of the 
critical paths within the blocks. Using these parametric models we 
have performed the automated delay monitor and variable skew 
buffer insertion in these blocks. A comparison between the 
designs with and without the self-adjusting enhancement reveals 
that, we are able to improve the batch performance by 9.5%. 
Batch performance is the metric corresponding to the average 
performance of a large set of chips, which is commonly used to 
assess the yield of a batch after applying speed binning. 

The remainder of this paper is organized as follows Section 2 
provides an overview of related work. In Section 3, the model of 
process variations and a brief review of the hardware design of 
the built-in delay sensor are presented, followed by the detailed 
discussion of the self-adjusting pipeline architecture. We 
introduce our systematic framework for designing a self-adjusting 
pipeline in Section 4. Our experimental evaluation is presented in 
Section 5. We conclude with a summary of our contributions and 
findings in Section 6. 

2. RELATED WORK 
The increasing impact of process and environmental variations on 
circuit timing has motivated several self-adjusting architectures. 
Chakraborty et al. considered the problem of guaranteeing the 



timing correctness of sequential circuits under on-chip 
temperature variation. The idea is to insert tuneable delay buffers 
into the clock tree, which can be adjusted on-the-fly [6, 7]. Long 
et al. [8] solved the same problem by introducing SACTA, a self-
adjusting clock tree architecture leveraging the specially designed 
skew buffers to achieve adaptability. The skew buffers provide 
proper clock skews which lengthen or shorten the effective clock 
cycle time for each pipeline stage depending on the local 
temperature level. 

Ernst et al. [5] proposed a circuit-level timing error 
detection/correction scheme. Each pipeline register lying on the 
critical path is coupled with a shadow register which is controlled 
by a delayed clock. The results stored in the pipeline registers and 
their corresponding shadow registers are compared and if they do 
not agree it is denoted as a timing error. In such a case, the 
pipeline is stalled and the erroneous operation is re-executed. One 
specific technique employed by this scheme is called dynamic 
retiming. The idea is to create intentional clock skews such that 
those pipeline stages that repeatedly experience timing errors are 
assigned longer intervals. The skews can be changed dynamically 
within a certain range if the execution time of the pipeline stage 
changes due to environmental fluctuations.  

Our scheme is fundamentally different as we introduce the delay 
sensors to detect the timing violations in internal nodes of the 
pipeline stages and we can reconfigure the adjustable skew 
buffers before the current operation is completed. Hence, we do 
not need to stall the pipeline and re-execute a failed operation.  

3. SELF-ADJUSTING PIPELINE 
ARCHITECTURE 
In this section, we will first analyze the impact of process 
variations on circuit timing, which motivated our self-
monitoring/adjusting scheme. Then, we will discuss the delay 
monitoring elements and the self-adjusting pipeline architecture. 

3.1 Impact of Process Variations on Timing 
In deep sub-micron technology, circuit parameters such as gate-
oxide thickness, channel length, etc. are statistical parameters 
rather than fixed values. This phenomenon is called process 
variation and can be categorized into die-to-die (D2D) and with-
in-die (WID) variations. D2D variation refers to the variation in 
process parameters across dies and wafers, while WID variation is 
the variations on the circuit parameters across different regions in 
a single die. WID variation is considered to be the dominant 
factor in the deep-submicron regime. 
Since the CMOS gate delay is a function of the above mentioned 
circuit parameters, process variations have a direct impact on 
circuit timing. However, analysis shows that different pipeline 
stages can have different levels of susceptibility to process 
variations. According to the FMAX model introduced by 
Bowman et al. [9] the criticality of a pipeline stage is determined 
by the number of independent potential critical paths (Ncp) of the 
stage and the critical path logic depth (Lcp). A potential critical 
path refers to a path having a nominal delay close to the clock 
cycle time of the circuit. The pipeline stages having larger Ncp/Lcp 
ratios tend to be more vulnerable to process variations, and 
thereby having a higher probability of containing a critical path. 
For instance, a recent study on the effects of process variations on 
microprocessors has shown that the L1 cache has almost 60% 

chances of containing the critical path [10]. Another study also 
reports that process variations can have an uneven impact on the 
timing of different pipeline stages of a sequential circuit [1].   

This disparity motivated us develop a self-adjusting enhancement 
customized for the most vulnerable pipeline stage in a given 
design to monitor the internal timing violations. This 
customization is realized through the use of an automated design 
process. In Section 3.2, we first elaborate on how delay 
monitoring can be performed. Next, we present our proposed self-
adjusting pipeline architecture in Section 3.3. Finally, we describe 
the automated design framework to realize an instance of such a 
self-adjusting pipeline in Section 4.  

3.2 Delay Monitoring Elements 
Ghosh et al. [11] 
proposed a low-overhead 
built-in delay sensor 
(BIDS) which is capable 
of detecting failures at 
the internal nodes of a 
circuit. The schematic of 
the delay sensor is 
depicted in Figure 1. A 
sawtooth waveform with 
the duration of the time 
period of the reference 
clock is generated. This 
signal is connected to a track-and-hold (TAH) circuit whose 
sampling switch is controlled by the observation node P. Suppose 
node P is expected to make a transition from “1” to “0”. When 
node P is “1”, the switch is on and the output tracks the sawtooth 
waveform. As P makes a falling transition, the TAH switch is 
turned off and the voltage of the output capacitor of the TAH 
holds its value VTAH. The comparator then compares VTAH with 
VREF, which is a measure of the maximum tolerable delay TMAX of 
node P. If VTAH is higher than VREF, the output of the comparator 
becomes “1”, indicating a timing violation at node P. 
The above described BIDS can be calibrated for process 
variations [11]. Due to this process-variation-tolerant feature, in 
the following discussions, we will omit the impact of process 
variations on the delay sensors. 

3.3 Self-Adjusting Pipeline Architecture 
Figure 2 shows a portion of a sequential circuit. It consists of two 
pipeline stages. Assume that the first stage is significantly more 
likely to contain the critical path of the overall system compared 
with the subsequent pipeline stage. We refer to the first stage as 
the vulnerable stage. The bold lines denote the potential critical 
paths. The Ncp/Lcp ratio of the first stage (which is equal to 3/2) is 
much larger than that of the second stage (which is equal to 1/4). 
Figure 3 depicts the enhanced pipeline. First, we insert a set of 
BIDS to cover all potential critical paths in the first stage. The 
delay sensors are represented by ⊕ in Figure 3. Second, we add 
one adjustable skew buffer at the CLK pin of register R2. This 
buffer can provide one of two possible skew values at any given 
time. The structure of the adjustable skew buffer is shown in 
Figure 4. It consists of a δ-buffer (with nominal delay of μδ, and 
variance σδ2), a MUX and an OR gate. All the outputs of the delay 
sensors are OR-ed and then used to control the MUX. If an 
internal timing violation is detected by any sensor the output of 
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Figure 1. Schematic of the built-in 
delay sensor 



the OR gate becomes “1”. In that case, the delay of the adjustable 
skew buffer is equal to the sum of the MUX delay and the delay of 
the δ-buffer. Otherwise, when the output of the OR gate is “0”, 
indicating that no local timing violation is detected, the delay of 
the adjustable skew buffer becomes equal to the delay of the MUX 
only. We also add delay elements whose delay is equal to that of 
the MUX before the CLK ports of R1 and R3 so that in case no 
internal timing violation is detected, the circuit will operate the 
same as the original circuit. If an internal timing violation is 
detected within the vulnerable stage, the effective cycle time of 
this stage will be increased by the delay of the δ-buffer.  
Our scheme is essentially speculating on timing violations based 
upon monitoring of a set of internal nodes within the vulnerable 
stage. The detection of a timing violation at an internal node does 
not necessarily mean that the pipeline stage will fail without 
reconfiguration of the skew buffer. Hence, our definition of 
timing violation is probabilistic. Unlike our scheme existing self-
adjusting architectures that apply dynamic retiming check timing 
violation at the end of each pipeline stage. Clearly, they can 
determine a timing violation with certainty. However, they will 
not have the opportunity to intervene on time to avoid it. They 
detect a violation after the fact. On the other hand, the internal 
delay monitoring elements signal the possibility of timing 
violation with a certain probability. Similarly, the adjustable skew 
buffer will have a certain probability of success in avoiding the 
timing violation, since its own behavior is also subject to 
parametric variation. Our choice of the locations of the delay 
monitors and the specifications of the adjustable buffer (nominal 
delay value of the δ-delay buffer) will determine the effectiveness 
of the self-adjusting architecture. A given configuration will result 
in a certain probability of “yield”. This is what we are trying to 
maximize. This necessitates a systematic treatment of the 
associated optimization problem. We propose an automated 
design framework to derive the configuration of the self-adjusting 
architecture for a given pipeline topology and a set of parametric 
variations for timing. The benefit of our approach is that we are 
able to intervene for a statistically significant fraction of the 
internal timing violations and prevent them from turning into 
actual timing/computation errors at the pipeline stage boundary. 
Thereby, performance overhead of error detect/stall/re-execute 
based techniques is avoided. 

4. SYSTEMATIC FRAMEWORK FOR 
DESIGN OF SELF-ADJUSTING PIPELINES   
In this section, we propose a systematic framework to design a 
self-adjusting pipeline. First, for a given pipeline design the 
impact of timing variation on the latencies pipeline stages and the 
contribution of each stage to the overall critical path are 
determined. We make use of the FMAX model [9] described in 
Section 3.1 to accomplish this. Next, we identify the most 

vulnerable pipeline stage. This is the stage whose potential critical 
paths have the highest likelihood to contribute to the overall 
critical path. If the immediately adjacent pipeline stage has a 
significantly smaller probability of dictating the critical path of 
the overall pipeline, then it can be coupled with the vulnerable 
stage. In fact, our approach can be easily extended to handle two 
pipeline stages, which are not immediately adjacent. Then, we 
transform the vulnerable stage into a self-adjusting one. In 
practice, immediately adjacent pairs of pipeline stages can be 
found in current microprocessors. We will discuss specific 
examples in Section 5. This transformation can be applied to 
multiple pairs of pipeline stages iteratively. 
The design of a self-adjusting pipeline stage essentially involves 
determining the locations of the delay sensors within the 
vulnerable stage and the nominal delay of the δ-buffer residing 
within the adjustable skew buffer. Our goal is to maximize the 
average performance of a batch of chips. 

4.1 Problem Formulation 
To mitigate the impacts of process variation on a batch of chips, 
the technique of speed-binning is commonly used. After 
manufacturing, each chip is tested over a spectrum of frequencies 
until a timing failure is observed. The yield of a bin is defined as 
the percentage of chips that fall into this bin. 

Das et al. [10] introduced the Batch Performance (BP) metric to 
evaluate the average performance of a batch of chips. Assuming n 
bins with frequencies f1 < f2 < …< fn, each having yields y1, y2, …, 
yn, the Batch Performance is defined as  

                             
1

n

i i
i

BP f y
=

= ⋅∑                                          (1) 

We use the BP metric as the optimization objective of our 
problem.  

Problem 1 (Automated Delay Sensor Insertion and Clock 
Skew Buffer Configuration): Given 1) a two-stage balanced 
pipeline comprised of one highly process variations susceptible 
stage, following by one relatively robust stage, 2) the maximum 
tolerable delay for each internal node of the pipeline (derived 
trough statistical timing analysis), Determine the delay sensor 
locations and the nominal delay (μδ) of the adjustable skew buffer 
such that the BP metric of the pipeline is maximized. 

We model the two-stage 
pipeline as a directed 
acyclic graph (DAG) G. 
Figure 5 depicts the DAG 
for the pipeline shown in 
Figure 2. The CMOS 
gates are mapped to 
vertices and the 

Figure 5. Directed acyclic graph model 
of the pipeline shown in Figure 2 
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interconnects between gates are mapped to the directed edges. We 
use notation V and E to represent the set of vertices and the set of 
edges, respectively. The registers are mapped to a special set of 
vertices called the primary input/output vertices (gray vertices in 
Figure 5). The sets of primary input/output vertices of the ith stage 
will be denoted by PIi/POi. Each register between the two stages 
is split into one primary input and one primary output vertex with 
no edge between them. We call a path on G a primary path if it 
starts from a primary input vertex and ends at a primary output 
vertex. Due to process variations, multiple of these primary paths 
may be potential critical paths. Obviously, to capture all possible 
timing failures in the first stage, each potential critical path in this 
stage should be covered by a delay sensor, i.e., there should be a 
delay sensor located on one edge on this path. On the other hand, 
to keep the number of sensors minimal, each potential critical 
path in the first stage should contain no more than one sensor. 
Also, we do not need to place any sensor in the second stage, as 
we only focus on applying the enhancement to the most 
vulnerable stage. These requirements pose some constraints on 
the sensor locations. To formulate these constraints, we denote the 
sub-graph of G consisting of all the potential critical paths by Gpcp. 
We then assign a binary decision variable xi for each vertex vi of 
Gpcp. The decision variables specify the locations of the delay 
sensors: 

a sensor is located on directed edge (vi, vj), iff xi – xj = 1.  
To formulate the requirement that each path contains exactly one 
sensor, we have the following constraints:  

                    xi – xj  ≥ 0, for all (vi, vj) ∈E                       
   xp = 1, for all vp∈PI1 and xp = 0, for all vp∈PI2            (2) 

                    xq = 0, for all vq∈PO1 and vq∈PO2                

For a given primary path in the first stage, as the decision 
variables for the primary input and output vertices are 1 and 0, 
respectively, there should be at least one edge (vi, vj) on this path 
with xi – xj = 1, indicating that the primary path contains at least 
one sensor. On the other hand, since we require xi – xj ≥ 0 for all 
edges along this path, the decision variables of the vertices along 
the primary path can “toggle” at most once. This means there is at 
most one sensor on the primary path. Since the decision variables 
of all the primary input/output vertices in the second stage are 0, 
none of the primary paths in the second stage contains any delay 
sensor, as xi – xj = 0 for each edge (vi, vj) in the second stage.  
Another set of constraints are concerned with the fact that the 
reconfiguration of the adjustable skew buffer takes a certain 
amount of time. In fact, as shown in Figure 4, the output signals 
of the delay sensors need to propagate through an OR gate (may 
be an OR tree depending on the implementation) before reaching 
the control port of the MUX. If we place the delay sensors too 
close to the primary output vertices (although this would have 
enabled the most accurate assessment of total delay in the stage), 
we cannot guarantee that the skew adjustment takes into effect on 
time. To fulfill this requirement, we do not allow a sensor to be 
inserted after a vertex if the (μ – 3σ) delay between this vertex 
and any primary output is less than μOR + 3σOR. μOR and σOR

2 are 
the mean and variance of the delay of the OR gate, respectively. 
We perform a preprocessing on Gpcp to identify such vertices. We 
call the set formed by these vertices as the forbidden vertex set 
and denote it by VF. To ensure that no BIDS will be inserted after 

any vertex in VF, we only need to require that xf = 0, for each vf 
∈VF .                                          

Now let us analyze the batch performance. Denoting the 
probability that a chip operates correctly at a frequency below f 
by Pr(f), given a frequency bin [fk, fk+1], its yield is determined by  

yk = Pr(fk+1) – Pr(fk). 

Therefore, the batch performance of the self-adjustable pipeline 
can be calculated as follows 

                ( ) ( )( )1
1

Pr Pr
n

k k k
k

BP f f f+
=

= ⋅ −∑                          (3) 

Let us first calculate the probability Pr(f). We associate each 
vertex vi on Gpcp with a random variable Di which describes the 
accumulative delay at the output of the gate that vi corresponds to. 
Di can be obtained using a statistical timing analysis technique. 
Although it is generally is hard to determine Di if we consider the 
spatial correlation and path reconvergence, it can be approximated 
by a Gaussian distribution as it is commonly practiced in 
statistical timing analysis techniques. 
Denoting the maximal tolerable delay at vi by Di

m, the sensor 
system will raise an alert if there is a sensor detecting a timing 
violation. Defining the following function 

                       1, 0
( )

0, 0
x

x
x

α
   >⎧

= ⎨    ≤⎩
,                                         (4) 

A sensor located at edge (vi, vj) detects an error if random variable 
α((xi–xj)(Di–Di

m ) is equal to 1. Therefore, the sensor system raises 
an alert when the random variable R1  

            ( ) ( )( )
( )

1
,i j

m
i j i i

v v

R x x D Dα= − ⋅ −∑                       (5)  

is larger than 0. As we have described in Section 3.3, upon the 
detection of a timing violation, the pipeline automatically 
generates a clock skew by amount of δ. Due to process variations 
δ itself is not a fixed value. We model δ as a Gaussian variable 
with mean value μδ and variance σδ2, where the value of σδ2 
depends on the technology. Therefore, μδ alone is sufficient to 
represent the distribution of δ. After reconfiguration, the pipeline 
will operate correctly if the delay of each primary output of the 
first stage is smaller than (1/f + δ). Also, the delay of the primary 
outputs of the second stage should be smaller than (1/f – δ). Let us 
introduce a second random variable R2 

( ) ( )
1 2

2
PO PO

1 1
k k

k k
v v

R D f D fα δ α δ
∈ ∈

⎛ ⎞ ⎛ ⎞
= − + + ⋅ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏       (6)  

R2 will be equal to 1 if and only if for each primary output vertex 
vk, α(– Dk + 1/f – δ) is equal to 1, representing the situation that no 
primary path actually violates the timing constraint. Therefore, 
the pipeline meets the timing constraint after reconfiguration if 
and only if R2 = 1. On the other hand, if the sensor system does 
not detect any timing error, i.e., if R1 = 0, the pipeline operates 
correctly if the following random variable R3 is equal to 1. 

 ( ) ( )
1 2

3
PO PO

1 1
k k

k k
v v

R D f D fα α
∈ ∈
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Note that R1 > 0 and R1 = 0 are mutually exclusive events. 
Therefore, the probability that the self-adjusting pipeline operates 
correctly at a frequency below f is given by 

           Pr(f) = Pr(R1 > 0, R2 = 1) + Pr(R1 = 0, R3 = 1).         (8) 

The batch performance can then be determined by substituting (8) 
into (3). Although Expression (3) involves {fi}, these frequency 
values are predetermined. The decision variables that can be 
adjusted are the sensor locations, given by {xi} subject to the 
constraint set (2) and the mean of the skew buffer delay μδ.  

According to the above discussion, Problem 1 can be formulated 
as a Stochastic Mixed-Integer Programming (SMIP) problem: 

  ( )1 2max , ,..., ,VBP x x x δμ                   

             s.t.            xi – xj  ≥ 0, for each (vi, vj)∈E 
                              xp = 1, for each vp∈PI1                              
                              xq = 0, for each vq∈PO1   
                              xp = 0, for each vp∈PI2                                 (9)      
                              xq = 0for each vq∈PO2 
                              xf  = 0, for each vf ∈VF 

                                             xi ∈ {0, 1}, for each vi∈V 
                              μδ ∈ R+ 

4.2 Simulated-Annealing Based Optimization 
Generally speaking, stochastic mixed-integer programming 
problems are extremely hard [12]. The objective function stated 
above cannot be expressed analytically. Random variables R1 and 
R2 are correlated as well as R1 and R3. This makes the 
computation of Pr(R1 > 0, R2 > 0) and Pr(R1 = 0, R3 > 0) 
extremely complicated. Therefore, we use Monte Carlo 
simulation (on 10,000 randomly generated instances of pipelines) 
to evaluate the cost function for a given set of {xi} and a given 
mean skew buffer delay μδ. We propose to use a simulated-
annealing based technique to solve the stochastic mixed-integer 
programming problem described in last section.  

Some observations help us accelerate the algorithm. First, once 
we fix the values of the decision variables, since random variable 
R3 defined by (8) does not involve δ, Pr(R1 = 0, R3 = 1) in (8) will 
not vary with μδ. Second, as random variable Dk takes only 
positive value, if δ is larger than 1/f, R2 will be 0, which means 
that Pr(R1 > 0, R2 = 1) = 0. Therefore, μδ is actually confined 
within a relatively small range. Due to the difficulty of obtaining 
the analytical expression of BP, we use Monte Carlo simulation to 
evaluate BP. Utilizing the fact that the possible range of μδ is 
strictly limited, local search techniques for black-box 
optimization such as blind random search or adaptive sampling 
search can be adopted efficiently to find the μδ value, which 
maximizes BP (could be sub-optimal) for a given set of decision 
variables [13].  

Solution Space: We call a decision variable set X = {x1, x2, …, 
x|V|} a legal decision variable set if it satisfies constraint (2). 
According to the above discussion, for each legal decision 
variable set X we can use local search techniques to obtain the 
most suitable μδ for X. Therefore, we only need the simulated-
annealing process to set the values of the decision variables.  
Initial Solution: An obvious legal initial solution is  

                    11,
0, otherwise

i
i

v PI
x

   ∈⎧
= ⎨    ⎩

                                         (10) 

Other legal solutions, which can be obtained easily by solving 
inequality set (2), can also be used.   

Solution Perturbation: We define two types of moves to perturb 
the current solution: 

M0(xj, X) (0→1 toggle): i) keep the value of xi for each i ≠j; ii) 
change the value of xj from 0 to 1 if 1) xj  = 0 and xi = 1 for each 
(vi, vj)∈E, and 2) xj∉VF; 

M1(xi, X) (1→0 toggle): i) keep the value of xj for each j ≠i;  ii) 
change the value of xi from 1 to 0 if xj = 1 and xj = 0 for each (vi, 
vj)∈E; 

Each move transforms a legal decision variable set to another 
legal set. To efficiently implement the perturbation, we maintain 
two sets X0 and X1. X0 contains candidates for move M0 defined as 
X0 = {xj | xj = 0 Λ xi = 1 for each (vi, vj)∈E}. X1 is defined 
similarly: X1 = {xi | xi = 1 V xj = 0 for each (vi, vj)∈E}. 

After a move, we need to update X0 and X1. The rules for updating 
X0 and X1 are as follows: 

After M0: X0 = X0+{xk | for each (vj, vk)∈E} – {xj}, X1 = X1+{xj}; 

After M1: X0 = X0+{xi}, X1 = X1+{xk | for each (vk, vi)∈E} – {xi}; 

Figure 6 shows the pseudo code of the simulated-annealing based 
BIDS Insertion and Clock Skew Configuration algorithm. To 
determine the initial temperature, we perform a sequence of 
random moves and calculate ΔBP

avg, the average cost changes for 
all downhill moves. Then, the initial temperature is chosen such 
that exp(ΔBP

avg / T) = P, where P represents the initial probability 
of accepting downhill moves and is very close to 1. At each 
temperature, a number of trials are attempted until either we make 
N downhill moves, or the total number of moves exceeds 2N, 
where N is an increasing function of |V|, the number of vertices. 
When we exit from the inner loop, the temperature is reduced by a 

Algorithm SA_BIDS_CSC_Insertion { 
T = ΔBP

avg
 / ln P; // initial temperature 

X = {xi | i = 1, 2, …, |V|}, xi = 1 iff vi∈PI1; // initial solution 
Xbest = X; 
X0 = Φ; // initial candidates for M0 

X1 = {xj | vi ∈PI1 for each (vi, vj)∈E}; // Initial candidates for M1 

Do { 
        MT = downhill = reject = 0; 
        Do { 
                Randomly select xi from X0∪X1; 
                Xnew = M0(xi, X) if xi∈X0, M1(xi, X) otherwise; 
                MT = MT + 1; 
                Local search for μδ that maximizes BP(Xnew, μδ); 
                ΔBP = BP(Xnew, μδ) – BP(X, μδ); 
                If ((ΔBP > 0) or (random < exp(ΔBP / T)) { 
                     If (ΔBP < 0) downhill = downhill + 1; 
                     X = Xnew; // accept the new solution 
                     Update X0 and X1; // accept the new solution 
                     If (BP(X, μδ) > BP(Xbest, μδ)) Xbest = X; 
                } Else { 
                      reject = reject + 1; 
                } 
        } While ((downhill < N) and (MT < 2N)); 
        T = λT; 
} While ((reject / MT < 0.95) and (T > ε)); 

} 

Figure 6. Pseudo code of the simulated-annealing based algorithm 



fixed ratio λ, which is set to 0.85 in our implementation. The 
entire algorithm terminates when the number of accepted moves 
becomes too small (≤ 5% of total number of moves made), or 
when the temperature becomes too low. 

5. EXPERIMENTAL RESULTS 
We have tested our scheme on a DEC Alpha-like 6-stage pipeline. 
The pipeline is depicted in Figure 7. It is a 4-way processor with 
64KB Level 1 instruction and data caches each. The pipeline 
latencies have been balanced such that the nominal latency of 
each stage is 400ps (corresponding to 2.5GHz clock frequency).  
It has been reported that at 45nm technology, L1 data cache has 
the highest probability (58.9%) of containing a critical path in a 
pipeline similar to our target 6-stage pipeline [10]. Furthermore, 
this probability is significantly lower (less than 2%) for the 
immediately adjacent Instruction Fetch stage [10]. Therefore, we 
evaluated the effectiveness of our proposed solution by applying 
it onto these two stages. We generated the DAG model of the L1 
data cache and the Instruction Fetch unit. The cache is a special 
structure which contains analog circuitry and memory cells. 
Obviously, the BIDS is only capable of monitoring digital 
waveforms. Therefore, the sensors cannot be located arbitrarily in 
the block. We have isolated the digital portion comprised of input 
inverters, decoder, and output selection logic. We created a DAG 
representation of this portion. Then, we performed one pass of 
static timing analysis on this model to identify the potential 
critical paths and construct the graph model Gpcp that consists of 
these paths. Our simulated-annealing based optimization 
algorithm is then applied on Gpcp to determine μδ and the sensor 
insertion points, maximizing the batch performance. 
We assume six frequency bins: B1 = [2.00, 2.05], B2 = [2.05, 2.10], 
B3 = [2.10, 2.15], B4 = [2.15, 2.20], B5 = [2.20, 2.25], B6 = [2.25, 
2.30], where the unit is GHz. Figure 8 shows the results for speed-
binning where the x-axis represents the frequency bins and the y-
axis represents the yields for each bin. The light and dark bars 
show the yields of the original and enhanced self-adjusting 
pipelines across the frequency bins, respectively. It can be seen 
that the average frequency shifts right (i.e., towards a higher value) 
after we enhance the pipeline with a set of BIDS and the 
adjustable skew buffers. We calculate the batch performance 
based on the speed-binning results. The batch performance value 
for the self-adjusting pipeline is 2.178GHz, while the same value 
for the original pipeline is 1.989GHz, indicating a 9.5% 
improvement. This result denotes the yield improvement for two 
specific stages. However, the overall yield distribution for the 
entire microprocessor is expected to be similar. The main reason 
for that is the fact that the L1 cache dictates the critical path of the 
overall microprocessor pipeline 58.9% of the time. Finally, note 
that our systematic framework can be applied to any given 
sequential circuit. For different processor architectures and 
technology and process parameters other pipeline stages can be 
targeted.  

6. CONCLUSIONS 
In this paper, we have proposed a self-adjusting pipeline 
architecture to enhance system performance and reliability. We 
employ built-in delay sensors to monitor the internal timing 
violations and variable skew buffers to adjust circuit timing. We 
further propose a systematic framework to automatically 
determine the delay sensor placement and the skew buffer 
configuration. Experimental results on a microprocessor pipeline 
reveal that we can enhance the batch performance by 9.5%.  
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