
Caml-Shcaml ∗

An OCaml Library for Unix Shell Programming

Alec Heller Jesse A. Tov
Northeastern University
{alec,tov}@ccs.neu.edu

Abstract
Objective Caml is a flexible, expressive programming language, but
for manipulating Unix processes, nothing beats the terseness and
clarity of Bourne Shell:

ls *.docx | wc -l

To achieve the same effect in C requires several more lines of code
and, very likely, a glance at the manual page for readdir(). Despite
OCaml’s excellent Unix module, which provides access to a wide
variety of system calls, a task as simple as counting the .docx files
in the current directory is hardly easier in OCaml than in C. The
code looks largely the same.

Caml-Shcaml addresses this problem by bringing high-level
abstractions for Unix systems and shell programming to OCaml.
In particular, we take advantage of OCaml’s type system to offer
statically-checked data pipelines. External Unix processes and in-
ternal OCaml stream transducers communicate seamlessly within
these pipelines. Shcaml brings other essential systems concepts
into the world of typed functional programming as well, including
high-level interfaces to Unix facilities for I/O redirection, signal
handling, program execution, and subprocess reaping.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming—Objective Caml;
D.4.9 [Operating Systems]: Systems Programs and Utilities —
Command and control languages; D.4.1 [Operating Systems]:
Process Management

General Terms Languages

Keywords Shell programming, Objective Caml, Unix, domain-
specific languages, types

∗ This work was generously supported by Jane Street Capital.

This is the author’s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version was published in
Proc. ACM SIGPLAN Workshop on ML, 9:79–90, 2008. http://doi.acm.org/10.
1145/1411304.1411316

ML’08, September 21, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-062-3/08/09. . . $5.00

1. Introduction
Master Foo once said to a visiting programmer: “There is more
Unix-nature in one line of shell script than there is in ten
thousand lines of C.”

Rootless Root: The Unix Koans of Master Foo

The functional programmer and the shell programmer view the
universe differently. The former is most comfortable with typed,
structured data; the latter is accustomed to swimming in streams
of bytes. The similarity between composing functions and piping
processes together begs to be exploited. In practice, unfortunately,
these two paradigms don’t play so nicely together.

Many language libraries provide ways to request system ser-
vices. Traditionally, these have comprised wrappers around low-
level system calls or higher-level calls such as system(), which is
specified to “be as if a child process were created using fork(),
and the child process invoked the sh utility using execl()” (POSIX
2004). That is, to run a command (represented as a string) by
passing it off to the system shell to interpret: system("cut -d:
/etc/passwd ...").

This is not enough. It ought to be as easy as possible to move
data back and forth without writing a lot of boilerplate. To use
the low-level interface (see Figure 5 for an example), a program-
mer must write the sort of control structures and error handling
that makes traditional systems programming unpleasant and error-
prone. Using system() is little better, providing so little control
over the child process that only the most unsophisticated tasks can
reasonably be executed.

We intend Shcaml to be a middle path bridging these two views
of systems programming. It provides both detailed control and
elegant abstraction over the Unix environment. Shcaml achieves
this through an API and operators that are strongly reminiscent
of the Bourne Shell (Bourne 1978) without losing their essential
‘OCaml flavor.’ While Shcaml makes heavy use of OCaml’s type
system, structured data, and other functional language features, it
retains the Unix nature.

The working thesis of Shcaml’s design is that by enabling the
seamless flow of data between OCaml code and external processes,
programmers may mix and match the styles of computation that

cat /etc/passwd |
cut -d: -f1,7 |
grep ’:/usr/bin/scsh$’ |
sed ’s/^\(.*\):/\

echo "Check out Caml-Shcaml\!" | \
mail -s "A new shell" \1/’ |

sh

Figure 1. The problem

run begin
from_file "/etc/passwd" -|
Adaptor.Passwd.fitting () -|
grep (fun line -> Passwd.shell line =

"/usr/bin/scsh") -|
cut Passwd.name -|
mail_to ~subject:"A New Shell"

~msg:"Check out Caml-Shcaml!"
end

Figure 2. The Shcaml solution

they feel are most appropriate to solve their tasks. It is not difficult
to write a single, ad-hoc function to perform a task more easily done
by a shell utility. However, we believe that a well-designed library
will allow programmers to code at the same level of abstraction as
the shell, but within a larger functional program.

1.1 A Better Shell Script
The somewhat onerous shell program in Figure 1 sends mail to
every user on the system whose login shell is /usr/bin/scsh to
notify them of the presence of Shcaml. It achieves this by con-
sulting the /etc/passwd file, where users are associated with
(amongst other things) their login shell. Data in the passwd file
is stored in colon-separated seven-tuples, with one record per line.

Because we are only interested in usernames and login shells,
we generate a data stream containing each username associated
with its shell. The cat command reads the passwd file and sends
it along the pipeline to the cut invocation. In turn, cut projects
the first and seventh fields of each password record in the passwd
file, splitting on :, giving us a stream of user:shell pairs. Then, we
use grep to filter out non-Scsh users. We use sed next to transform
each user:shell pair into a shell command to send the desired email,
and pipe that to sh in order to evaluate it.

While it may appear somewhat obscure, this program is nonethe-
less a direct and natural implementation. The comparable program
written in Shcaml will share much of the structure of the shell
script. Like in the shell, Shcaml pipelines manipulate streams of
data. Our data streams (which we call shtreams) extend OCaml’s
standard stream abstraction with several new features. Shtreams
may be represented not only as a generating function, but explicitly
as an input channel and reader function. This facilitates passing
a shtream directly as input to another external Unix process. We
discuss shtreams in more detail in § 3. In our example, we wish to
generate a shtream of data from the passwd file, so we write

from_file "/etc/passwd"

for the first component in the Shcaml version of the pipeline.
If we want to test the shell field of the data that grep is

filtering, we must first be able to find the field in each line. In
our example, we must know that the shell field is the seventh
component of the record. Shcaml provides facilities for abstracting
this information, so that we may use meaningful names rather
than field numbers. We provide these operations through adaptors,
which we discuss further in § 5.1. To parse the information in
passwd file lines into records and add it to the data in our shtream,
we use the provided Passwd adaptor:

Adaptor.Passwd.fitting ()

Shcaml provides a variety of other adaptors, each of which contains
information for parsing a particular file format.

The Shcaml version of grep simply filters the lines of data it
receives by the given predicate:

grep (fun line -> Passwd.shell line = "/usr/bin/scsh")

We begin to see some of the power of Shcaml in this code. The
function Passwd.shell projects out the shell component of a
shtream containing data from the passwd file. Despite the ap-
parent simplicity, Passwd.shell is part of Shcaml’s more struc-
tured analog to lines of text in normal Unix pipelines. The type
of Passwd.shell ensures that any shtream of data which flows
through it must have a shell field to project. Because it is common
to write pipelines that add and remove different kinds of informa-
tion in a data stream, Shcaml lines support operations that OCaml’s
record, tuple, and object types do not.

Once we have only those lines corresponding to Scsh users, we
may extract their usernames to send our mail message. First we
project their usernames:

cut Passwd.name

Finally, we pass the usernames to a function that sends the mail
message.

To put all these pieces together, we require something like
Unix’s pipes. Shcaml provides a combinator library for fitting
shtream computations such as the above into larger pipelines.
Functions from shtream to shtream can be lifted into fittings, which
can then be piped together with other fittings to create pipelines.
We discuss fittings in § 5. Once we have a fitting that represents
our whole computation, we may run that fitting, which causes
the computation actually to be executed. Our complete Shcaml
rendition of the script may be found in Figure 2.

While both the shell version and Shcaml version are written as
pipelines, only the shell version has multiple Unix process com-
municating over Unix pipes (Figure 3(a)). By contrast, The Shcaml
version comprises several stream transducers that communicate by
passing OCaml values within a single process (Figure 3(b)).

This code demonstrates the style in which Shcaml programs
are written, but it does not yet demonstrate the integration of
external Unix programs with OCaml code. Suppose that instead
of using the actual passwd file, we are given a shell script
get-passwd.sh that synthesizes a large amount of passwd-
formatted data from a directory service. We need only replace the
first fitting, from_file "/etc/passwd", with

command "get-passwd.sh"

This replaces the first stage in the pipeline with an external process,
which communicates over a Unix pipe with the second stage, which
is written in OCaml (Figure 3(c)).

Now, suppose that some users have requested not to receive
such announcements. Another script, remove-opt-out.sh, will
filter out their usernames. So we may add a call to this script in the
appropriate spot in the pipeline:

run begin
command "get-passwd.sh" -|
Adaptor.Passwd.fitting () -|
grep (fun line -> Passwd.shell line =

"/usr/bin/scsh") -|
cut Passwd.name -|
command "remove-opt-out.sh" -|
mail_to ~subject:"A New Shell"

~msg:"Check out Caml-Shcaml!"
end

In this case, we have inserted an external process in the middle of
the pipeline, and it communicates transparently with the OCaml
processes on each side (Figure 3(d)).

We may continue this process, swapping OCaml code for exter-
nal programs, or vice versa, as we desire. We need only be mindful
that external processes receive an untyped string version of the data
in each record, and produce untyped bytes that must be parsed again
if we are to make sense of them.

cat . . . // cut . . . // grep . . . //

(a) Several UNIX processes started from a shell script.

sed . . .
_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

echo . . . | mail . . .

sh

//

_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
from_file . . . //___

_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _
Passwd.fitting //___

OCaml
_ _ _�
�

�
�

_ _ _
grep . . . //___

(b) A Shcaml pipeline within one OCaml process.

_ _ _�
�

�
�

_ _ _
cut . . . //_______________

_ _ _ _ _�
�

�
�

_ _ _ _ _
mail_to . . .

get-passwd.sh
_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _
Passwd.fitting //___

OCaml
_ _ _�
�

�
�

_ _ _
grep . . . //___

(c) Shcaml with one external UNIX process and one OCaml process.

_ _ _�
�

�
�

_ _ _
cut . . . //_______________

_ _ _ _ _�
�

�
�

_ _ _ _ _
mail_to . . .//

get-passwd.sh
_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _
Passwd.fitting //___

OCaml
_ _ _�
�

�
�

_ _ _
grep . . . //___

(d) Shcaml with two external UNIX processes and two OCaml processes.

_ _ _�
�

�
�

_ _ _
cut . . . remove-opt-out.sh

_ _ _ _ _�
�

�
�

_ _ _ _ _
mail_to . . .

OCaml

// // //

Figure 3. Examples of pipelines

2. Background
In most programming language implementations on Unix, it is not
terribly challenging to execute subprocesses. However, to use these
subprocesses with the facility of a shell script requires delicate and
error-prone resource management. Additionally, Unix processes
communicate through character streams. Thus, even when pro-
gramming in a high-level language with sophisticated features for
the description and manipulation of data, dealing with other Unix
programs requires constant parsing and unparsing of data as it
passes to and from other processes. If we wish to take advantage
of shell-style abstractions in our functional programs, we need
a library that provides the shell’s key abstractions—redirection,
pipes, and foreground and background processes—at that higher
level, rather than at the level of system calls.

Modern scripting languages such as Perl and Ruby are often
considered appropriate tools for coordinating shell tasks with gen-
eral purpose computation. However, their approach to integrating
with Unix is no more sophisticated than most other languages. Perl
and Ruby both provide some convenient syntax for simple shell
interactions, but what makes these languages especially effective
is more likely their string matching features. String handling is not
nearly so easy in OCaml as it is in Perl, and reading string data from
an external process is often a less pleasant experience. Because
working with structured data is better than working with collections
of strings, Shcaml mitigates these shortcomings of OCaml with
respect to other scripting languages by handling a large proportion
of the string parsing automatically.

Perhaps the most well known project to bring shell program-
ming into the functional realm is Shivers’s (1994) Scheme Shell,
Scsh. Indeed, the design and implementation of Shcaml has been
strongly influenced by it. Scsh defines an embedded domain-
specific language for process creation and I/O redirection, known
as process forms. These are expanded by various special forms,
which execute the specified shell actions in different ways such
as in the foreground, the background, or by replacing the current
process image. This feature of Scsh is implemented using macros;
Shcaml, on the other hand, uses a combinator language to construct
fittings—first-class OCaml values—which are then interpreted by
functions known as runners.

Recognizing that “the string is a stark data structure and ev-
erywhere it is passed there is much duplication of process” (Perlis
1982), Scsh provides tools to ease the burden of dealing with
string data. While character streams are the lingua franca of Unix,
newline-delimited records are the most common dialect. A wide
variety of Unix programs consume and produce line-oriented data
formats. In Scsh, then, the idea is that an incoming character stream
will first be split into strings representing records (often at new-
lines, but not necessarily), then each record string will be split into
fields and given to the user in a list. This is a vast improvement
over dealing directly with a stream of characters, but in Shcaml, we
take this idea another step: a stream of OCaml string lists is
still rather stark, and we prefer to work with records having more
precise types. This enables a natural means of computing on the
data produced by external processes from within a typed language.

Shcaml distinguishes itself from Scsh most clearly in two in-
tertwined features: its use of combinators to create pipelines and its
use of the type system to express the structure of data flowing along
those pipelines. Unlike Scsh’s process forms, which are defined in
terms of macros, Shcaml’s pipelines are first-class OCaml values.
Furthermore, because the types of these pipelines control what data
must be present in the stream flowing through them, we obtain
stronger guarantees about the sanity of the pipeline computation.

Shcaml is not the first attempt at a tight integration between
OCaml and the shell. Verlyck (2002) implemented Cash, a reason-
ably direct port of Scsh to OCaml.1 While Cash provides high-level
facilities for managing processes and creating pipelines, it provides
nothing analogous to Scsh’s process forms, and its data model does
not take advantage of OCaml’s type system.

Windows PowerShell, formerly Monad Shell, is Microsoft’s
new interactive shell and automation language (Snover 2002). Pow-
erShell scripts are composed of cmdlets, which are .NET classes
that implement various shell and management facilities such as
removing files or listing processes. Cmdlets may be connected into
object pipelines, which transmit streams of .NET objects, rather
than text as in Unix. As in Shcaml, this allows PowerShell pipelines
to deal in rich data, and it avoids much of the trouble and poten-

1 So direct, in fact, that the module names in Cash include section numbers
from the Scsh manual.

tial inaccuracy of parsing. Unlike Shcaml, PowerShell scripts are
untyped and make heavy use of reflection. Hotwire Shell (Walters
2007) is a program similar to PowerShell, but with a greater em-
phasis on graphical interface concerns.

3. Shtreams
Shtreams are the central abstraction in Shcaml’s tool kit. In Unix,
data is communicated between processes in a pipeline, which trans-
mits streams of bytes. This enables filter-style programs in Unix
to be relatively modular, because many communicate textual data
via the same interface. In Shcaml, we want to delegate parts of our
computation to other programs, but we also may want to write other
parts directly in OCaml. Those parts should communicate among
themselves with OCaml values rather than untyped bytes. Shcaml
uses shtreams to give a common interface to both internal genera-
tors that produce OCaml values and external processes connected
over Unix pipes. In many cases, this makes them interchangeable.

Regardless of whether a particular shtream’s data source is in-
ternal or external, the Shcaml Shtream library provides operations
to treat shtreams as stream-like or channel-like. The stream-like
interface is modeled on OCaml’s Stream module. Some operations
include

next : ’a Shtream.t -> ’a

which produces the next element of the given shtream (or raises an
exception), and

map : (’a -> ’b) -> ’a t -> ’b t

which lazily maps a function over a shtream. In order to use a
shtream as input for an external process, we need to turn the
shtream into an input channel:2

channel_of : ?procref:Proc.t option ref ->
?before:(unit -> unit) ->
?after:(unit -> unit) ->
(’a -> unit) -> ’a t -> in_channel

If given an external shtream, which produces elements by read-
ing from a channel, Shtream.channel_of merely returns the
underlying in_channel; it ignores the other four arguments. If
the given shtream is internal, however, then channel_of forks
a new process that it connects to the current process by a Unix
pipe. The new process then evaluates the rest of the shtream, using
the ’a -> unit function to output each element. The optional
arguments before and after are thunks that the new process
forces before and after evaluating the shtream, in case the data
format it produces needs a file header or footer. Finally, when
channel_of needs to fork, it stores the process ID of the child
process in procrec.

Shtreams may also be constructed from either internal or exter-
nal data sources. As in OCaml’s Stream module, a shtream may be
constructed from a generating function, such as

from : (int -> ’a option) -> ’a Shtream.t

which calls the generating function once, with an integer index, for
each element as the shtream is forced. We can also construct an
external shtream from any input channel:

of_channel : ?hint:(Reader.raw_line -> ’a) ->
(in_channel -> ’a) -> in_channel -> ’a t

Given a function of type in_channel -> ’a that reads items from
a channel, Shtream.of_channel constructs the shtream of those
items. We discuss the optional argument hint in § 5.1.

2 In OCaml, a formal argument ?label:type indicates an optional key-
word argument label with type type.

Unix command Stream combinator
grep filter

sed s/// map
xargs apply
sh eval
cut map πi

paste zip

Table 1. Common Unix commands and their stream combinator
counterparts

This design has an important implication: When two external
processes are composed, they speak directly over a Unix pipe, with
no OCaml code shuttling or marshalling data. When two internal
Shcaml transducers are composed, they run in the same OCaml
process, with no Unix pipe or marshalling in between. But when
an external process is composed with an internal stream, they are
able to communicate over a pipe, with marshalling happening on
the OCaml end.

3.1 Shtream Implementation
Shtreams are represented as an algebraic datatype with several
constructors:

type ’a data =
| Strict of ’a * ’a data
| Delay of (unit -> ’a data)
| Extern of in_channel
| TheEnd of Proc.status

The constructors Strict and Delay are used to represent internal
shtreams: Strict represents shtreams whose head has already
been evaluated, and Delay represents a totally unevaluted shtream.
The constructor Extern represents an external shtream, whose
contents are read from the in_channel. Finally, TheEnd repre-
sents an exhausted internal or external shtream, including the exit
status.3

A shtream’s ’a data is actually wrapped up in a record having
several other fields that influence the shtream’s behavior.

type ’a shtream = {
mutable data: ’a data;
(* · · · *)

}

4. Lines
Many of the most common and well-known shell utilities have
analogs among the standard stream combinators. We list some of
these correspondences in Table 1. Notably, all of these programs are
line-oriented, in the sense that they process their input as newline-
delimited streams of strings. Often, each line corresponds to a
record in some tabular data format. Shcaml pipelines are also es-
sentially line-oriented. However, rather than streams of strings, they
compute with shtreams of record values called line records.

In principle, a line of text flowing through a Unix pipeline
represents a record of data. Each program in the pipeline interprets
the line in some way, possibly parsing it into the relevant internal
representation, and then serializes its output records back into the
stream. In our prototypical example, the passwd file is composed
of lines, each a record having seven components separated by the
colon character. A program that is computing with data from the
passwd file will almost certainly split the file into lines, and often

3 It is possible for a shtream to begin with some number of internal Stricts
and Delays, and subsequently become external. This might happen if, for
example, a finite internal shtream is appended to an external shtream.

split each line into a more structured record with convenient access
to the seven fields.

We believe there are several problems with this approach:

• Parsing is often approximate, as data formats are not always
sufficiently well defined so that we can be sure that one pipeline
component’s printer agrees with the next format’s parser.

• The need to serialize each record as easily parsable text limits
the quantity and variety of metadata that may be easily attached
to each record.

• In quick, ad-hoc coding, it is often not worth the trouble of
designing a correct parser and easy-to-use representation. When
that one-shot script resurfaces in a year, it may not be clear
which field $4 represents.

It would be better if stream transducers that operate on rich data
could communicate language values where the type system can see
them, rather than marshalling at each step.

Given that, consider the shell pipeline
cat /etc/passwd | cut -d: -f1

which produces the usernames of all users in the passwd file. If we
replace both commands with internal stream operators, what types
should they have? The first component, cat, is producing a stream
of lines from the passwd file, so it should produce seven-element
records with names corresponding to the fields in /etc/passwd.
Thus, cut must consume those records and produce usernames.

Clearly, if cut is to be generally useful, it must be polymorphic.
A cut that was good only for extracting string fields from password
records would not be of much use. Rather, cut should take as its
argument a line record selector whose domain matches the line
records that cut is receiving in its input. For this to be maximally
flexible, the selector itself should be polymorphic as well, in that it
only cares that the line records have the field that it projects—it is
irrelevant what other fields may be present. For example, were we
to annotate each password record with information about the user’s
quota, last login, and mail spool, a function that looks only at the
username should be oblivious to the other data. We contend that
polymorphic record types, or row types, are an ideal solution.

4.1 Row Types
Wand (1987) introduced row types as a means for inferring object
types in a typed, object-oriented language. In a language with row
types, operations on records may be polymorphic in the fields of the
records on which they operate. For example, in a hypothetical row-
type calculus, we may express the notion of a record containing a
string-typed field labeled user and some other fields:

〈user : string ; ρ〉.
The type variable ρ is an extension variable, and it stands for the
other fields that might be present in a record having this type.

Consider, for example, a function that takes a record r and
selects fields shell : string and user : string from it:

λr. if r.shell = "/usr/bin/scsh"
then notify r.user
else 〈〉.

Clearly r is a record that has both of the mentioned fields, and it
may have others as well, so it will have a type scheme like

〈user : string ; shell : string ; ρ〉.
Row types may also support extension and concatenation. For

example, given a record r that has a field user : string, we may
wish to extend it by a field with the remaining quota of the user’s
account, leaving other fields unchanged:

λr. r with quota = userquota r .user.

Whatever the argument type, the result type should be the same,
except that now it has the field quota : int as well. What if it had a
quota field already? Depending on the particular system, we may
need to add a side constraint that eliminates or otherwise regulates
this possibility, so we give the function a type like

〈user : string ; ρ〉 → 〈user : string ; quota : int ; ρ〉 [quota#ρ],

where quota#ρ is the constraint that ρ does not include the label
quota.

4.2 Row Types in OCaml
When designing Shcaml, we intended to use OCaml’s row types to
implement structural subtyping and extension of line records. We
were in for an unpleasant surprise.

OCaml’s row types are restricted by a simple rule: if an exten-
sion variable would appear in two row types, then both rows are the
same (Rémy and Vouillon 1998). Equivalently, extension variables
in OCaml are anonymous, since there is no need to name them in
order to relate two different rows; thus, all extension variables are
written as .. in OCaml. This choice effectively disallows extension
and concatenation, because it cannot express the notion that row
types share some but not all of their fields.

Rémy and Vouillon explain this design decision in their imple-
mentation of Objective ML, of which modern OCaml is a direct
descendant. Because their language does not provide primitive op-
erations for extension and concatenation, they write,

[t]hese types can thus be ruled out without seriously restrict-
ing the language. Moreover, all programs keep the same
principal types. This restriction was implemented to avoid
explaining sorts to the user. It also makes the syntax for
types somewhat clearer, as row variables can then always
be replaced by ellipsis. Furthermore, sharing can always be
described with aliasing. For instance, 〈m : τ ; ρ〉 → 〈m :
τ ; ρ〉 is written (〈m : τ ; ..〉 as α) → α.

The consequences for Shcaml are dire: OCaml’s row types
cannot express extensible line records.

4.3 Faking It
While we cannot have real record extension in Shcaml, it is possible
to fake it, provided we assume a finite, closed world of field labels.
Our technique is essentially as described in Rémy (1993). We use a
phantom type encoding reminiscent of Fluet and Pucella (2006) to
embed Rémy’s type system in OCaml.

The encoding uses a phantom type parameter of k variables to
simulate a complete subtype lattice of 2k elements. For example,
suppose we wish to express a subtyping lattice with four elements:

O

����
????

A B

AB

????
����

We require a phantom type with two variables, which we might
construe as “presence of A” and “presence of B,” analogous to
Rémy’s distinguished type constructors pre and abs. In Shcaml,
we use an OCaml object type as the phantom parameter, since that
makes it easy to see which field is which4.

Fluet and Pucella’s treatment in Standard ML also requires two
abstract types, present and absent . Types in the lattice are rep-
resented differently depending on whether they occur in negative

4 The choice to use OCaml object types as a phantom parameter was
motivated by the particular type errors they induce. Type errors in Shcaml
can at times be rather large, but they are usually comprehensible.

Fitting combinator Usage Shell equivalent
(-|) : (’i -> ’m) t -> (’m -> ’o) t -> (’i -> ’o) t c1 -| c2 c1 | c2
(/</) : (text -> ’o) t -> dup_in_spec -> (text -> ’o) t c /</[d1%<&d2] c d1<&d2

(/>/) : (’i -> ’o elem) t -> dup_out_spec -> (’i -> ’o elem) t c />/[d1%>&d2] c d1>&d2

(^>>=) : (’i -> ’o) t -> (Proc.status -> (’i -> ’o) t) -> (’i -> ’o) t c ^>>= fun res -> . . . c; res=$? . . .
(^>>) : (’i -> ’o) t -> (’i -> ’o) t -> (’i -> ’o) t c1 ^>> c2 c1; c2
(&&^) : (’i -> ’o) t -> (’i -> ’o) t -> (’i -> ’o) t c1 &&^ c2 c1 && c2
(||^) : (’i -> ’o) t -> (’i -> ’o) t -> (’i -> ’o) t c1 ||^ c2 c1 || c2
(~>>) : (’i -> ’o) t list -> (’i -> ’o) t ~>>[c1; c2; c3; . . .] c1; c2; c3 . . .
(~&&) : (’i -> ’o) t list -> (’i -> ’o) t ~&&[c1; c2; c3; . . .] c1 && c2 && c3 . . .
(~||) : (’i -> ’o) t list -> (’i -> ’o) t ~||[c1; c2; c3; . . .] c1 || c2 || c3 . . .
(^&=) : (text -> ’b elem) t -> (Proc.t -> (’i -> ’o) t) -> (’i -> ’o) t c ^&= fun pid -> . . . c & pid=$! . . .
(^&) : (text -> ’b elem) t -> (’i -> ’o) t -> (’i -> ’o) t c1 ^& c2 c1 & c2

Table 2. Some of Shcaml’s fitting combinators

or positive position. In positive position, a type variable denotes
presence and the type absent to denote absence, whereas in nega-
tive position, present denotes presence and a type variable denotes
absence. For example, to represent the function type A → B, we
use the type

〈A : present ; B : β1〉 t → 〈A : absent ; B : β2〉 t.

We can read this as saying that the argument must haveA, and may
or may not haveB, and that the result does not haveA, and may be
treated as if it has B or not.

In OCaml, however, we can make present a subtype of absent
directly, which means that the positive versus negative distinction
is no longer necessary, and we represent the type A→ B as

<a : present; b : absent> t
-> <a : absent; b : present> t

Shcaml’s line records assume a closed world of labels, and
assume (for the most part) that each label may be associated with
only one type. It also assumes that every line record carries a string
representing its “main” value, which is the component of the line
record that is sent to an external process, if necessary. Shcaml im-
plements a domain-specific language in which to specify the world
of labels, from which it generates a line record implementation
at compile time. We might, for example, declare a world of three
labels:

val a : int
val b : bool
val c : string

This generates selectors and functional updaters for each field:

a : <a : present; b : ’b; c : ’c> line -> int
b : <a : ’a; b : present; c : ’c> line -> bool
c : <a : ’a; b : ’b; c : present> line -> string

set_a : int -> <a : ’a; b : ’b; c : ’c> line
-> <a : present; b : ’b; c : ’c> line

set_b : bool -> <a : ’a; b : ’b; c : ’c> line
-> <a : ’a; b : present; c : ’c> line

set_c : string -> <a : ’a; b : ’b; c : ’c> line
-> <a : ’a; b : ’b; c : present> line

Because those types are somewhat unwieldy, we implemented a
syntax extension that simulates extension variables. Using the ex-
tension, we may write the types of a and set_a as

a : <a : present; ..> line -> int
set_a : int -> <a : ’a; .. as ’r>

-> <a : present; .. as ’r>

Shcaml’s line record DSL also supports nested records, which
may include mandatory fields. For example, the basis world in-
cludes a nested line record Passwd, which contains fields from the

/etc/passwd file. While a Passwd subrecord may be present or
absent, if it is present, then all its fields are present as well. Shcaml
comes with a large initial predefined world, which in addition to
/etc/passwd records, includes key-value pairs, arbitrary tabular
data (with optional field names), /etc/group records, the stat
structure for file metadata, file mode bits, process metadata from
ps, /etc/fstab records, and mailcap entries. Some of these
line records are not read from text files but built from the result
particular system calls; in general, line records may be constructed
by arbitrary computations.

5. Fittings
Given a value is : int shtream -> string shtream, that is,
a process that consumes values of type int to produce values of
type string, and given another process sb : string shtream
-> bool shtream that consumes strings to produce bools, we
may compose them into a process that consumes ints and produces
bools:

let ib (src : int shtream) : bool shtream = sb (is src)

We may then apply ib to an int shtream to construct a bool
shtream.

This simple function composition story is sufficient to express
many typed pipelines, but there are other things we cannot easily
do with processes composed in this manner that are simple in shell:

• Shell commands may have their input and output redirected.
• Shell commands may be sequenced, such that a sequence of

processes share the same input and output at their spot in the
pipeline.

• Shell commands may be executed conditionally based on the
result code of other processes.

Beyond these semantic considerations, we believe it is syntactically
advantageous to write long pipelines in diagrammatic (left-to-right)
rather than standard composition order.

Fittings, Shcaml’s process notation, are intended to solve these
problems. A fitting of type (’a -> ’b) Fitting.t generally
represents an ’a shtream -> ’b shtream function. Fittings are
composed in diagrammatic order with the fitting pipe operator
(-|), and provide combinators for redirection, sequencing, and
conditionals. Fittings are first class objects, and a variety of func-
tions may be used to actually run them in varying contexts.

While fittings are notionally similar to shtream-to-shtream
functions, fitting composition is not merely function composition.
Rather, it constructs a data structure that allows particular combi-
nations to be specialized when fittings are run. For example, the
fitting to_file f writes its input out to the file f. If this fitting
is composed on the right with a fitting that produces an internal

Adaptor

Fitting

Line

Delimited

Reader

Shtream

LineShtream

Channel

AnyShtream

Proc

Signal

StringShtream

Figure 4. Module dependency graph for Shcaml

shtream, then it opens the file, reads each element from its input
shtream, and writes each element to the file. If its input comes from
an external process, however, to_file opens the file before the
process on its left is started, so that the process’s standard output
may be redirected to the file directly, avoiding the need for OCaml
to shuttle the data between the external process and the file. This
may seem like a minor optimization, but it actually has important
semantic consequences. Suppose, for example, that one wants to
run a program interactively from within a fitting, even if the current
redirections do not point to the terminal:

from_file "/dev/tty"
-| command "ssh example.com" />/ [2%>&1]
-| to_file "/dev/tty"

If the command’s standard output is a not a terminal, its output
is buffered for efficiency, which means that the user may see re-
sponses not when they are produced but when the buffer eventually
is flushed. Thus, it is important that to_file did not connect
the command’s standard output directly to /dev/tty, rather than
shuttle the data through a pipe from ssh and then to /dev/tty.

Fitting combinators. In addition to the pipe operator (-|),
Shcaml provides fitting operators for redirection, conditionals,
sequencing, and starting background processes (Table 2).

The redirection operators (/>/) and (/</) add input and out-
put redirections, respectively, to a fitting. Each takes a fitting and a
list of redirection specifiers such as [2 %>& 1; 1 %> "out"],
which sends standard output to the file out and redirects errors to
the standard output.

Conditionals are derived from the conditional operator (~>>=),5

which takes a fitting to run and a continuation that receives the first
fittings result code and then returns the next fitting to run. Both

5 The strong resemblance many of our operator symbols bear to line noise
is not intended to remind users of the lexical syntax of another popular
scripting language, but is due to OCaml’s operator precedence and fixity
rules.

the standard shell conditional operators, (&&^) and (||^), and the
sequencing operator (^>>) are easily defined in terms of (~>>=):

let (&&^) a b = a ^>>= function
| Proc.WEXITED 0 -> b
| n -> yield n

let (||^) a b = a ^>>= function
| Proc.WEXITED 0 as n -> yield n
| _ -> b

let (^>>) a b = a ^>>= fun _ -> b

List versions of the conditional and sequencing operators are avail-
able as well.

The background operator (^&=) is used in continuation-passing
style just as (^>>=) is, but it passes its continuation a process
ID rather than an exit code. Operator (^&) combines two fittings,
running its left argument in the background but not making its PID
available.

Fitting runners. Shcaml provides several functions for running
fittings:

run evaluates a fitting connected to the
standard input and output, waits for it,
and returns its exit status

run_bg evaluates a fitting connected to the
standard input and output, returning its
process ID

run_source evaluates a fitting connected to the
standard input and returns a shtream of
its output

run_sink returns a coshtream object that allows
writing to the fitting’s input

run_shtream renders a fitting as a shtream-to-shtream
function

run_in run a fitting, returning its input as an
in_channel

run_out run a fitting, returning its output as an
out_channel

run_backquote returns the output of a fitting as a string

5.1 Readers, Splitters, and Adaptors
A principal design goal for Shcaml is to change data from un-
typed, unstructured strings to useful structured data as early and
easily as possible. Two Unix programs will happily communicate
directly through a pipe, and two internal stream transducers will
pass OCaml values with no need of marshalling. But when the
output from an external program flows to the input of an internal
transducer, we require some mechanism to turn bytes into meaning-
ful data that is easy to work with in OCaml. We factor this work into
two steps, first identifying the boundaries of records, and second
splitting records into fields.

The first task, extracting records from an input channel, is per-
formed by readers. Intuitively, readers allow the programmer to
treat any output format as if it were “line-oriented.” For many data
formats, records are delimited by newlines, but Shcaml readers
are not constrained in this way—they are merely passed an input
channel and must produce a raw_line record:

type raw_line = { content : string;
before : string;
after : string; }

This definition reveals readers also to have a more subtle respon-
sibility in Shcaml than just reading files. Because the programmer
may compose fittings arbitrarily (up to well-typedness), it is essen-

tial that text read and parsed from a Unix program retain sufficient
information as to reproduce it exactly. Readers keep track of not
only the portion of each line that contains the data, but also the text
they trim or ignore.

Once data has been split into raw_line records by a reader,
it must be parsed into meaningful OCaml data, such as a line
record. A splitter takes a raw_line and attempts to parse it into
a line record of the appropriate type—for example, the password
splitter takes a raw_line and, if successful, returns a line record
containing the parsed password fields.

An adaptor combines a fitting for splitting a particular format
along with a “reader hint” for the reader appropriate to that format.
For example, the password adaptor has type

(< passwd: absent; .. as ’r > line ->
< passwd: present; .. as ’r > line) fitting

which is a fitting that consumes line records with no password
data (and perhaps other fields) and produces line records with the
password data parsed from their “main” string (and the same other
fields).

The password adaptor has another effect as well: it sends a
hint to the upstream fitting that the source should use a reader
appropriate for password files. If the user has specified another
reader explicitly when reading from the file, this will not override
it and the user’s specified reader will be used. If the user does
not explicitly specify a reader, then an adaptor causes a reasonable
default reader for its file format to be used.

6. Processes and Channels
Shcaml’s higher-level abstractions (such as fittings) are based on
mid-level abstractions around Unix processes and file handles.
Shcaml’s Proc module, for example, provides easier management
of subprocesses.

In Unix, new processes are created by the fork() system call,
which returns the process ID of the new child process to the parent.
After a successful call to fork(), the parent process may call wait()
or one of its variants (e.g. waitpid()), which waits for a child (or the
specified child) to terminate and returns its exit status. There are
several rules that govern how this works:

• By default, each child’s process metadata is retained by the
system, pending the parent’s call to wait(); thus, if the parent
does not wait, the process table fills with garbage.

• The parent may elect to have all children removed automati-
cally from the process table, thereby losing access to their exit
statuses.

• The parent may wait on each child no more than once, since
waiting causes the child to be removed from the process table.

When a user starts programs from a shell, the shell takes care of all
this, but when a programmer starts child processes by calling fork()
directly, it may be difficult to get right.

Shcaml provides a better interface, which is based on Scsh
(Shivers 1994). Proc.fork returns a Proc.t value, which can be
used to wait for the child process to exit and return its status, or to
retrieve its exit status only if the child has exited, in a non-blocking
manner. Because Shcaml waits on every child and stores its exit
status in a weak hash table, there is no need for the parent to wait—
if it drops all references to the Proc.t value, then Shcaml will
remove the child from its own process table. Conversely, so long
as the Proc.t exists, the status may be retrieved as many times as
necessary from Shcaml’s process table.

The Channel module enriches OCaml’s standard I/O to make it
both more flexible and easier to manage. In OCaml, in_channels
support only reading and out_channels support only writing.

Because they have different types, attempting to write to an
in_channel is a static error. In the Unix world, however, a process
accesses files through file descriptors, which are merely integer
indices into a table of open files. Unix file descriptors may be open
for reading, writing, or both, and attempting to write to a read-
only descriptor is a dynamic error. Thus, we actually have two
mismatches:

• File descriptors fail to catch some erroneous uses at compile
time that OCaml’s channels prohibit via the type system.

• OCaml’s channels are unidirectional, which means they do not
directly support the bidirectional aspect of file descriptors.

Furthermore, when writing systems programs it is often neces-
sary to work directly with file descriptors rather than channel ab-
stractions, because some features (such as redirection) are specified
in terms of file descriptors. Sometimes, when interacting with the
shell, for example, even abstract file descriptors are insufficient, and
knowledge of the actual integer values is necessary.

Shcaml’s Channel module solves the mismatch problem and
supports the low-level use cases. We take advantage of OCaml’s
open variants so that it is easy to express various combinations of
I/O possiblities:

type gen_in_channel = [‘InChannel of in_channel
| ‘InDescr of descr
| ‘InFd of int]

type gen_out_channel = [‘OutChannel of out_channel
| ‘OutDescr of descr
| ‘OutFd of int]

type gen_channel = [gen_in_channel
| gen_out_channel]

Many of Shcaml’s channel operations operate on the precise type
appropriate for what they do. Using these types, it is possible to
specify that an operation requires a file descriptor with a particular
mode, or to allow an operation to take either an input or output
channel.

Shcaml also makes starting external processes and communi-
cating with them over pipes both easier and more flexible than C
or OCaml’s Unix module. Writing in either C or OCaml, there are
essentially two ways to start an external process.

If we want a certain level of control, for example, if we want
to know the PID of the child in order to signal it, we may use the
low-level system call interface. This requires explicit creation of a
pipe, forking, redirection, and execution of the new program; then,
when the parent is done talking to the subprocess, it needs to close
the pipe and wait for it to exit. We demonstrate this (without the
proper error checking) in Figure 5(a). To acheive the same level of
control in OCaml, the code we write is largely the same as in C
(Figure 5(b)). Shcaml, on the other hand, provides detailed control
with a high-level library call (Figure 5(c)). Shcaml’s process and
pipe creation functions also accept optional arguments for setting
up addition pipes and redirections in the child process, modifying
the search path, or running arbitrary OCaml code in the subprocess.

If we value convenience over control, both C and OCaml
offer a library call that takes care of the details for us (figures
5(d) and 5(e)). Unfortunately, in this case we cannot discover
the PID of the child process. More disconcertingly, while C’s
popen (resp., OCaml’s open_process_in) appears to return a
normal FILE* (in_channel), it cannot be closed with the usual
fclose (close_in). To close it properly we must use pclose
(close_process_in). Shcaml provides a similar high-level API
(Figure 5(f)), but the resulting in_channel may be closed with
close_in, which means that there is no need to keep track of
which channels are connected to files and which to processes.

int fd[2]; pipe(fd);
int pid = fork();

if (pid) { /* parent */
close(fd[1]);
/* · · · */
close(fd[0]);
waitpid(pid, &status, 0);

} else { /* child */
close(fd[0]);
dup2(fd[1], 1);
execlp("ls", "ls", "-l", NULL);
exit(1);

}

(a) Low-level C

let (fd0,fd1) = pipe () in
let pid = fork () in

if pid <> 0 then (* parent *)
(close fd1;
(* · · · *);
close fd0;
waitpid [] pid)

else (* child *)
(close fd0;
dup2 fd1 stdout;
execvp "ls" [| "ls"; "-l" |];
exit 1)

(b) Low-level OCaml

let procref = ref None in
let ic = open_program_in

~procref
"ls" ["-l"] in

(* · · · *)
close_in ic

(c) Shcaml

FILE *ifd = popen("ls -l", "r");
/* · · · */
pclose(ifd);

(d) Using the C library

let ic = open_process_in "ls -l" in
(* · · · *)
close_process_in ic

(e) Using the OCaml library

let ic = open_command_in "ls -l"
(* · · · *)
close_in ic

(f) Shcaml

Figure 5. Piping from external processes: C vs. OCaml

Furthermore, Shcaml’s high-level interface is the same as its
high-control interface, providing detailed control via optional
arguments.

7. Some More Examples
In this section, we demonstrate two example scripts written in
Shcaml, in order to give a better sense of the library.

Process grep. Some Unix systems come with the utility pgrep,
which examines the process table and returns the process IDs of
running commands whose name matches its argument. While de-
veloping Shcaml, we noticed that the Unix systems that we were
using did not have pgrep. A few lines of code solved that problem.
The ps function above is a convenience function provided with
Shcaml that will generate a shtream of lines containing data parsed
from the Unix ps program, from which we then filter with grep
and project out the correct field:

let pgrep pat = run begin
ps () -|
grep (Reader.starts_with pat ◦ Line.Ps.command) -|
cut (string_of_int ◦ Line.Ps.pid)

end

Racing processes. The following code runs a collection of pro-
cesses concurrently, and when one of the processes finishes, it
kills the others. This provides funtionality akin to McCarthy’s am-
biguous function operator, amb (1963), but for Unix shell pro-
cesses.

The program is factored into two functions. The function
bg_list takes a list of commands to run in parallel and a continu-
ation to which it passes the list of their process IDs (as Proc.ts):

let rec bg_list commands kont =
match commands with
| [] -> kont []
| x :: xs -> command x ^&= fun proc ->

bg_list xs ^$ fun procs ->
kont (proc :: procs)

The function race takes a list of commands, which it passes to
bg_list to start them in the background. It uses wait_any to wait
until one of them exits (we do not care about the exit status), sends
a signal to kill all of them, and then exits successfully:

let race commands = run begin
bg_list commands ^$ fun procs ->
ignore ^$ Proc.wait_any procs;
List.iter (Proc.kill ~raise:false 9) procs;
yield (Proc.WEXITED 0)

end

8. An Informal Benchmark

The programmer grew distressed. “But through the C language
we experience the enlightenment of the Patriarch Ritchie! We
become as one with the operating system and the machine,
reaping matchless performance!”

Rootless Root: The Unix Koans of Master Foo

We designed a simple benchmark for Shcaml to get a feel for how it
compares to other systems in performance and ease of use. For each
benchmark, we use the average of ten trials, run in single-user mode
on an Apple MacBook with 2 GHz Intel Core 2 Duo processor and
2 GB of memory. The benchmark is to read a file containing 100
copies of our /usr/dict/words (23,493,600 lines), retain only
lines matching a particular regular expression, drop lines matching
a different regular expression, and then count the number of lines
remaining.

We chose this benchmark because it requires processing a non-
trivial amount of data, and because it is readily implemented as a
pipeline which must be passed through several pipes.

The baseline implementation (sh-pipe) is in shell:

cat words |
grep ’.aaa*.’ |
grep -v ’.ooo*.’ |
wc -l

This script works by delegating to four subprocesses connected by
pipes. First, cat reads the file and writes it to the pipe that the first
grep above reads from. That grep filters out all words which do
not contain a substring matching the regular expression .aaa*. (a
single character, two or more as, followed by another character).
This filtered data is passed to another instance of grep, which
removes lines that match its pattern, .ooo*.. Finally, the data is
piped to wc -l, which counts the number of lines and prints the
result.

run begin
command "cat words" -|
command "grep ’.aaa*.’" -|
command "grep -v ’.ooo*.’" -|
command "wc -l"

end

(a) shcaml-pipe

(run
(| (cat words)

(grep .aaa*.)
(grep -v .ooo*.)
(wc -l)))

(b) scsh-pipe

Figure 6. Pipeline-based benchmark implementations

my $count = 0;

open STDIN, "words";

while (<>) {
if (/.aaa*./o and not /.ooo*./o) {

++$count;
}

}

print " $count\n";

(a) perl-int

let aaastar = Str.regexp ".*.aaa*." in
let ooostar = Str.regexp ".*.ooo*." in

let count = ref 0 in

Shtream.iter {| incr count |} (run_source begin
from_file "words" -|
grep (fun str ->

Str.string_match aaastar str 0) -|
grep (fun str ->

not (Str.string_match ooostar str 0))
end);

print_endline (" " ^ string_of_int (!count))

(b) shcaml-int

stringbuf buf;
regex aaastar(".aaa*."), ooostar(".ooo*.");
int count(0);
ifstream f("words");

while (f.good()) {
buf.str("");
f.get(buf).get();
string s = buf.str();
if (aaastar.match(s) && !ooostar.match(s))

++count;
}

cout << " " << count << endl;

(c) c++-int

(define .aaa*. (rx (: any "aa" (* "a") any)))
(define .ooo*. (rx (: any "oo" (* "o") any)))

(call-with-input-file "words"
(lambda (fd)

(port-fold
fd
read-line
(lambda (line count)

(if (and (regexp-search? .aaa*. line)
(not (regexp-search .ooo*. line)))

(+ 1 count)
count))

0)))

(d) scsh-int

Figure 7. Single-process benchmark implementations

run begin
command "cat words" -|
sed id -|
command "grep ’.aaa*.’" -|
sed id -|
command "grep -v ’.ooo*.’" -|
sed id -|
command "wc -l"

end

(a) shcaml-mix

(run
(| (cat words)

(begin (copy-lines))
(grep .aaa*.)
(begin (copy-lines))
(grep -v .ooo*.)
(begin (copy-lines))
(wc -l)))

(b) scsh-mix

Figure 8. Benchmark implementations with a mixed pipeline

implementation real (s) user (s) sys (s)
shcaml-pipe 0.82 0.75 0.40
sh-pipe 0.82 0.75 0.38
scsh-pipe 0.85 0.77 0.40

perl-int 9.52 9.18 0.33
shcaml-int 17.61 17.11 0.49
c++-int 24.14 23.25 0.88
scsh-int 938.41 902.11 36.28

shcaml-mix 122.85 79.83 146.21
scsh-mix 1026.71 1016.07 20.67

Table 3. Benchmark results

We implemented this benchmark using essentially three strate-
gies:

• In Shcaml and Scsh, we translated the shell script directly;
each of these versions, like the shell version, starts the four
subprocesses and then waits (shcaml-pipe and scsh-pipe, Fig-
ure 6). Consequently, they perform almost the same as the shell
version.

• In Perl, Shcaml, Scsh, and C++, we implemented the program
directly, without delegating to subprograms (perl-int, shcaml-
int, scsh-int, and c++-int, Figure 7). Each of these programs
reads lines in a loop, matches using a regular expression library,
and counts. These programs perform significantly worse than
the pipeline-based implementations. Almost all of the overhead,
it seems, is due to these languages’ slow implementations of file
I/O—these programs spend significant time just reading lines
from the input file. In this category, Perl was the clear winner,
with Shcaml taking twice as long as Perl, C++ taking almost
three times as long, and Scsh the slowest.

• In Shcaml and Scsh, we implemented the benchmark as a
pipeline intermixing external unix processes and data-shuttling
code written in the host language (shcaml-mix and scsh-
mix, Figure 8). These programs performed extremely poorly
compared to the other implementations. In fact, Scsh crashed in
seven out of then 10 trials. Much of the time, again, appears to
be spent in the host languages’ I/O systems.

Table 3 shows the mean user, system and wall-clock time over
10 runs of each implementation of the benchmark (except for scsh-
mix, which only completed three times). From these results, we can
see that the pipeline-based Shcaml implementation is competitive
with the original shell version and the comparable Scsh implemen-
tation. This is reassuring, as it suggests that Shcaml introduces
virtually no overhead when simply acting as a shell. Certainly, the
results we observed for several of the benchmark runs would not
have been so dramatic if the various language implementations we
tested had faster I/O routines. These timings suggest that I/O inef-
ficiency is a greater performance bottleneck than any inefficiencies
introduced by Shcaml.

We consider these results evidence that the ability to integrate
external Unix processes into larger programs simply and seam-
lessly is a useful and effective tool. Not only does Shcaml make
it easy to take advantage of the functionality of extant programs
on the system, it also helps programmers write more efficient code
than they might have otherwise. Traditionally, Unix programs have
been designed to be small utilities that do a single thing very well.
If an application can take advantage of this software in a convenient
way, it may not only be easier to write, but indeed perform compet-
itively or even flat-out dominate ad-hoc code written to achieve the
same task.

9. Conclusion
“And who better understands the Unix-nature?” Master Foo
asked. “Is it he who writes the ten thousand lines, or he who,
perceiving the emptiness of the task, gains merit by not
coding?”

Rootless Root: The Unix Koans of Master Foo

Shcaml is a rich library6 that unifies OCaml and shell program-
ming. It provides versatile and powerful functionality at several
levels of abstraction, which may be used individually or in concert
to make it easier for programmers to control Unix processes. Mid-
level abstractions found in Shcaml’s Channel and Proc modules
provide a uniform interface to the primitive computational con-
structs provided by the operating system. Data shtreams allow
the programmer to conveniently and efficiently construct pipelines
that freely intermix OCaml code with external Unix processes.
Complex pipelines may be created and manipulated through fit-
tings, which provide a combinator library very close to the shell’s
command language. Fittings are designed to work with special line
record values whose types express precise information about the
data flowing through pipelines.

In contrast to the conventional library of operating system calls,
Shcaml provides an expressive and convenient means to take ad-
vantage of Unix and shell programming idioms inside a typed,
functional programming language. However, it does not currently
enable the converse functionality: A terse, pragmatic, and effective
syntax for calling into OCaml from an interactive command shell.
In the future, we would like to develop a syntax for an interactive
command shell that could be translated into Shcaml.

Shcaml is not a small program. It comprises roughly 8000 lines
of commented Objective Caml. Some aspects of the functionality
that we implemented in order to make Shcaml viable were concrete
instances of language technologies that have existed for over a
decade. For example, the implementation of line records, which
weighs in at a hefty 1400 lines, would be rendered obsolete (and in
fact quite inferior) if OCaml’s row types supported extension.

People talk a lot these days about “scripting languages.” We
propose that Shcaml points toward a new sweet spot in scripting
language design. Writing short shell scripts in OCaml is now as
smooth as writing large applications, and integrating the two is
easy and intuitive. OCaml programs scale to large applications with
thousands of lines; with Shcaml, they also scale down to just the
right few. We have shown that there is no conflict between easy
access to system facilities and advanced type and module features;
they can coexist or even complement one another.

Acknowledgments
Thank you to Dan Brown, Jed Davis, Riccardo Pucella, Sam Tobin-
Hochstadt, and Aaron Turon for their thoughtful comments, advice,
and encouragement on many drafts of this paper. Many thanks also
to Jane Street Capital for initially sponsoring this project as part of
their OCaml Summer of Code program.

References
Standard for information technology – portable operating system interface

(POSIX). shell and utilities. IEEE Std 1003.1, 2004 Edition. The Open
Group Technical Standard. Base Specifications, Issue 6. Includes IEEE
Std 1003.1-2001, IEEE Std 1003.1-2001/Cor 1-2002 and IEEE Std
1003.1-2001/Cor 2-2004. Shell and Utilities, 2004.

S. R. Bourne. An introduction to the UNIX shell. Bell System Technical
Journal, 57(6):1971–1990, 1978.

6 Source code and documentation may be found at http://www.ccs.neu.
edu/home/tov/shcaml/.

M. Fluet and R. Pucella. Phantom types and subtyping. Journal of
Functional Programming, 16(2):751–791, 2006.

J. McCarthy. A basis for a mathematical theory of computation. Computer
Programming and Formal Systems, pages 33–70, 1963.

A. J. Perlis. Epigrams on programming. ACM SIGPLAN Notices, 17(9):
7–13, 1982.

D. Rémy. Type inference for records in a natural extension of ML. In
C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object-
Oriented Programming. Types, Semantics and Language Design. MIT
Press, 1993.

D. Rémy and J. Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory and Practice of Object Systems, 4:27–50, 1998.

Rootless Root: The Unix Koans of Master Foo. In E. S. Raymond. The Art
of Unix Programming. Addison-Wesley, 2004.

O. Shivers. A Scheme shell. Technical report, Massachusetts Institute of
Technology, 1994.

J. Snover. Monad manifesto. Technical report, Microsoft, August 2002.
B. Verlyck. Cash, the Caml Shell. INRIA, 2002. URL http://pauillac.

inria.fr/cash/.
C. G. Walters. Hotwire shell, 2007. URL http://hotwire-shell.org/.
M. Wand. Complete type inference for simple objects. In Proc. 2nd Annual

IEEE Symposium on Logic in Computer Science (LICS’87), pages 37–
44, 1987.

