
Practical Affine Types ∗

Jesse A. Tov Riccardo Pucella

Northeastern University
{tov,riccardo}@ccs.neu.edu

Abstract

Alms is a general-purpose programming language that supports practical
affine types. To offer the expressiveness of Girard’s linear logic while keeping
the type system light and convenient, Alms uses expressive kinds that minimize
notation while maximizing polymorphism between affine and unlimited types.

A key feature of Alms is the ability to introduce abstract affine types via
ML-style signature ascription. In Alms, an interface can impose stiffer resource
usage restrictions than the principal usage restrictions of its implementation.
This form of sealing allows the type system to naturally and directly express a
variety of resource management protocols from special-purpose type systems.

We present two pieces of evidence to demonstrate the validity of our design
goals. First, we introduce a prototype implementation of Alms and discuss our
experience programming in the language. Second, we establish the soundness
of the core language. We also use the core model to prove a principal kinding
theorem.

1 A Practical Affine Type System
Alms is a practical, general-purpose programming language with affine types. Affine
types enforce the discipline that some values are not used more than once, which
in Alms makes it easy to define new, resource-aware abstractions. General-purpose
means that Alms offers a full complement of modern language features suitable for
writing a wide range of programs. Practical means that Alms is neither vaporware
nor a minimal calculus—it is possible to download Alms today and try it out.

Rationale. Resource-aware type systems divide into two camps: foundational cal-
culi hewing closely to linear logic, and implementations of special-purpose type sys-
tems designed to solve special problems. We argue that a general, practical type
∗This is the extended version of a paper of the same title submitted to POPL 2011.
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1 A PRACTICAL AFFINE TYPE SYSTEM

module type RW LOCK = sig
type (α, β) array — array of α identified by β
type excl — exclusive access
type shared — shared access
type β@γ : A — grants γ-level access to array β
val new : int → α →

E

β. (α, β) array

val acquireW : (α, β) array → β@excl
val acquireR : (α, β) array → β@shared
val release : (α, β) array → β@γ → unit

val set : (α, β) array → int → α → β@excl → β@excl
val get: (α, β) array → int → β@γ → α × β@γ

end

Figure 1: An interface for reader-writer locks (§2)

system based on Girard’s linear logic (1987) can naturally and directly express many
of the special cases, such as region-based memory management, aliasing control, ses-
sion types, and typestate. To this end, the language must satisfy several desiderata:

Convenience. Unlimited values are the common case, so working with them is as
smooth as in a conventional language.

Expressiveness. A wide variety of resource-aware type systems appear naturally as
idioms.

Familiarity. It is easy to use and understand.

Pragmatics. It provides the trappings of a modern, high-level programming lan-
guage, such as algebraic datatypes, pattern matching, exceptions, concurrency,
and modules.

Soundness. It has a clear theoretical foundation.

We show that Alms meets these criteria.
Alms employs a dependent kind system to determine whether a particular type

is affine or unlimited and to support polymorphism over affine and unlimited types.
This approach may sound complicated, but in practice it is no stranger or harder to
understand than the type systems of other functional programming languages.

Affine types, a weakening of linear types, forbid duplication of some values; unlike
with linear types, all values may be dropped. This flexibility is appropriate to a high-
level, garbage-collected language, and it interacts better with other features such as
exceptions.
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2 ALMS: THE LANGUAGE

Our Contributions. This paper introduces the programming language Alms, its
implementation, and its basic theory:

• We describe the design of Alms, whose novel features include precise kinds for
affine type constructors, and demonstrate how it expresses a variety of resource-
aware idioms (§2).

• Our implementation is a usable, full-featured prototype in which we have written
several thousand lines of code (§3).

• Alms rests on a firm theoretical basis. We provide a formal model (§4) and
establish essential theoretical properties (§5).

This extended version includes more detailed proofs in appendix A. Our implemen-
tation is available at www.ccs.neu.edu/~tov/pubs/alms.

2 Alms: The Language

Alms is a typed, call-by-value, impure functional language with algebraic data types,
pattern matching, reference cells, threads, exceptions, and modules with opaque sig-
nature ascription. Alms reads like Ocaml (Leroy et al. 2008) but is explicitly typed.
In most cases local type inference renders explicit type instantiation unnecessary.

We introduce Alms through a series of examples. Consider a simple Alms function,
deposit, that updates one element of an array by adding an integer:

let deposit (a: int Array.array) (acct: int) (amount: int) =
Array.set a acct (Array.get a acct + amount)

This function has a race condition between the read and the write, so we may want
to use a lock to enforce mutual exclusion:

let deposit (a: int Array.array) (acct: int)
(amount: int) (lock: Lock.lock) =

Lock.acquire lock;
Array.set a acct (Array.get a acct + amount);
Lock.release lock

Affine data. Locks can ensure mutual exclusion, but using them correctly is error-
prone. A rather coarse alternative to ensure mutual exclusion is to forbid aliasing of
the array altogether. If we have the only reference to an array then no other process
can operate on it concurrently. In Alms, we do this by declaring an interface that
includes a new, abstract array type:
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2 ALMS: THE LANGUAGE

module type AF ARRAY = sig
type α array : A
val new : int → α → α array
val set : α array → int A−→ α A−→ α array
val get : α array → int A−→ α × α array

end
module AfArray : AF ARRAY = struct . . . end

The notation “: A” specifies that type α AfArray.array has kind A, as in affine, which
means that any attempt to duplicate a reference to such an array is a type error. Two
points about the types of AfArray.get and AfArray.set are worth noting:

• Each must return an array because the caller cannot reuse the reference to the
array supplied as an argument.

• Type τ1 A−→ τ2 has kind A, which means that it may be used at most once.1
This is necessary because reusing a function partially applied to an affine value
would reuse that value.

We now rewrite deposit to use the AF ARRAY interface:

let deposit (a: int AfArray.array) (acct: int) (amt: int) =
let (balance, a) = AfArray.get a acct in

AfArray.set a acct (balance + amt)

If we attempt to use an AfArray.array more than once without single-threading it, a
type error results:

let deposit (a: int AfArray.array) (acct: int) (amt: int) =
let (balance, ) = AfArray.get a acct in
AfArray.set a acct (balance + amt)

Alms reports that the affine variable a is duplicated.
Implementing AfArray is just a matter of wrapping the primitive array type and

operations, and sealing the module with an opaque signature ascription:

module AfArray : AF ARRAY = struct
type α array = α Array.array

let new = Array.new
let set (a: α array) (ix: int) (v: α) = Array.set a ix v; a
let get (a: α array) (ix: int) = (Array.get a ix, a)

end
1It is tempting to call this an affine function, but standard terminology says that an affine

function uses its argument at most once, whereas here we have the type of a function itself usable
at most once. Whether an Alms function is affine is determined by the kind of the type of its formal
parameter.
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2 ALMS: THE LANGUAGE

The original array type α Array.array has kind U, as in unlimited, because it places no
limits on duplication. We can use it to represent an abstract type of kind A, however,
because U is a subkind of A, and Alms’s kind subsumption rule allows assigning
an abstract type a greater kind than that of its concrete representation. This is
somewhat akin to Standard ML’s treatment of equality types (Milner et al. 1997)
and Ocaml’s treatment of type constructor variance (Leroy et al. 2008). In SML,
eqtype is subsumed by type, in that signature matching can abstract an equality type
to a non-equality type but not vice versa.

We need not change new at all, and get and set are modified slightly to return the
array as required by the interface.

Affine capabilities. The affine array interface is quite restrictive. Because it re-
quires single-threading an array through the program, it cannot support operations
that do not actually require exclusive access to the array. However, Alms supports
creating a variety of abstractions to suit our needs. One way to increase our flexibil-
ity is to separate the reference to the array from the capability to read and write the
array. Only the latter needs to be affine.

For example, we may prefer an interface that supports “dirty reads,” which do not
require exclusive access but are not guaranteed to observe a consistent state:

module type CAP ARRAY = sig
type (α, β) array
type β cap : A
val new : int → α →

E

β. (α, β) array × β cap
val set : (α, β) array → int → α → β cap → β cap
val get : (α, β) array → int → β cap → α × β cap

val dirtyGet : (α, β) array → int → α
end

In this signature, (α, β) array is now unlimited and β cap is affine. Type array’s second
parameter, β, is a “stamp” used to tie it to its capability, which must have type
β cap (where β matches). In particular, the type of new indicates that it returns an
existential containing an array and a capability with matching stamps. The existential
guarantees that the stamp on an array can only match the stamp on the capability
created by the same call to new.

Operations set and get allow access to an array only when presented with the
matching capability. This ensures that set and get have exclusive access with respect
to other sets and gets. They no longer return the array, but they do need to return
the capability. On the other hand, dirtyGet does not require a capability and should
not return one.

For example, the CAP ARRAY interface allows us to shuffle an array while simul-
taneously computing an approximate sum:
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2 ALMS: THE LANGUAGE

let shuffleAndDirtySum (a: (α, β) CapArray.array)
(cap: β CapArray.cap) =

let th1 = Thread.fork (λλ → inPlaceShuffle a cap) in
let th2 = Thread.fork (λλ → dirtySumArray a) in

(Thread.wait th1,Thread.wait th2)

To implement CAP ARRAY, we need suitable representations for its two abstract
types. We represent CAP ARRAY’s arrays by the primitive array type, and capa-
bilities by type unit, which is adequate because these capabilities have no run-time
significance.

module A = Array

module CapArray : CAP ARRAY = struct
type (α, β) array = α A.array
type β cap = unit

let new (size: int) (init: α) = (A.new size init, ())
let set (a: α A.array) (ix: int) (v: α) = A.set a ix v
let get (a: α A.array) (ix: int) = (A.get a ix, ())
let dirtyGet = A.get

end

Type unit has kind U, but as in the previous example, we can abstract it to A to
match the kind of β CapArray.cap. The implementation of the operations is in terms
of the underlying array operations, with some shuffling to ignore capability arguments
(in set and get) and to construct tuples containing () to represent the capability in
the result (in new and get).2

Capabilities are values. Capabilities such as β CapArray.cap often represent the
state of a resource, but in Alms they are also ordinary values. They may be stored
in immutable or mutable data structures, packed into exceptions and thrown, or sent
over communication channels like any other value. For example, suppose we would
like a list of array capabilities. Lists are defined thus in the standard library:

type α̂ list = Nil | Cons of α̂ × α̂ list

The type variables we have seen until now could only be instantiated with unlimited
types, but the diacritic on type variable α̂ indicates that α̂ may be instantiated to
any type, whether affine or unlimited.

Whether a list should be treated as affine or unlimited depends on whether the
contents of the list is affine or unlimited. Alms represents this fact by giving the list
type constructor a dependent kind, where kind 〈α̂〉 denotes the kind of α̂:

2If you think this unit shuffling is unnecessary, we agree (§7).
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2 ALMS: THE LANGUAGE

α̂ list : 〈α̂〉 — list has kind Πα̂. 〈α̂〉

That is, the kind of a list is the same as the kind of its element type: type int list has
kind U, whereas β CapArray.cap list has kind A.

In general, the kind of a type is the least upper bound of the kinds of the types
that occur directly in its representation. For example:

type (α̂, β̂) r = α̂ × β̂ — 〈α̂〉 t 〈β̂〉
type (α̂, β̂) s = int × β̂ — 〈β̂〉
type (α̂, β̂) t = T1 of α̂ | T2 of (β̂, α̂) t — 〈α̂〉 t 〈β̂〉
type (α̂, β̂) u = U1 | U2 of (β̂, α̂) u — U
type (α̂, β̂) v = α̂ × (unit → β̂) — 〈α̂〉
type (α̂, β̂) w = α̂ × (unit 〈β̂〉−→ unit) — 〈α̂〉 t 〈β̂〉

Because both α̂ and β̂ are part of the representation of (α̂, β̂) r, it must be affine if
either of its parameters is affine. On the other hand, the phantom parameter α̂ is not
part of the representation of (α̂, β̂) s, so that has kind 〈β̂〉. The kinds of t and u are
the least solutions to these inequalities:

κ((α̂, β̂) t) w κ(α̂) κ((α̂, β̂) u) w U
κ((α̂, β̂) t) w κ((β̂, α̂) t)κ((α̂, β̂) u) w κ((β̂, α̂) u)

The kind of each type must be at least as restrictive as the kinds of all of its alterna-
tives.

For (α̂, β̂) v, the kind of β̂ does not appear because the domain and codomain of
a function type are not part of the function’s representation. Instead, function types
have their kind in a superscript as in the definition of type w. We saw this in the
AfArray example, where the superscripts were all A. (When the kind is U, we often
omit it.) We discuss the kinds of function types and their subtyping in more depth
in §4.3.

More possibilities. The rules of Alms are flexible enough to express a wide variety
of designs. For example, the ability to store capabilities in data structures allows us
to create a more dynamic interface than the static capabilities of CapArray:

module type CAP LOCK ARRAY = sig
include CAP ARRAY
val new : int → α →

E

β. (α, β) array
val acquire : (α, β) array → β cap
val release : (α, β) array → β cap → unit

end
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2 ALMS: THE LANGUAGE

This signature changes the type of new to return an array (with unique tag β) but
no capability. To operate on the array, one needs to request a capability using ac-
quire. Subsequent attempts to acquire a capability for the same array block until the
capability is released.

We implement CAP LOCK ARRAY in terms of CapArray without any privileged
knowledge about the representation of its capabilities. The implementation relies on
mvars, synchronized variables based Id’s M-structures (Barth et al. 1991). An α̂ mvar
may hold a value of type α̂ or it may be empty. While an mvar may contain an
affine value, the mvar itself is always unlimited. This is safe because calling take on a
non-empty mvar removes the value and returns it, while take on an empty mvar blocks
until another thread puts a value in it.

To implement CAP LOCK ARRAY we now represent an array as a pair of the
underlying (α, β) CapArray.array and an mvar to store its capability:

module CapLockArray : CAP LOCK ARRAY = struct
module A = CapArray
type (α, β) array = (α, β) A.array × β cap MVar.mvar

let new (size: int) (init: α) =
let (β, a, cap) = A.new size init in

(a,MVar.new cap)

let acquire (( ,mvar): (α, β) array) = MVar.take mvar
let release (( ,mvar): (α, β) array) (cap: β cap) =
MVar.put mvar cap

let set ((a, ): (α, β) array) = A.set a
let get ((a, ): (α, β) array) = A.get a
. . .

end

The new operation creates a new array-capability pair and stores the capability in an
mvar. Operations acquire and release use the mvar component of the representation,
while the old operations such as set must be lifted to project out the underlying
CapArray.array.

There are many more possibilities. Figures 1 and 2 show two interfaces for reader-
writer locks, which at any one time allow either exclusive read-write access or shared
read-only access. Signature RW LOCK (figure 1 on the first page) describes dynamic
reader-writer locks. The signature declares nullary types excl and shared and an
affine, binary type constructor (·@ ·). Capabilities now have type β@γ, where β ties
the capability to a particular array and γ records whether the lock is exclusive or
shared. Operation set requires an exclusive lock (β@excl), but get allows γ to be
shared or excl.

Signature FRACTIONAL (figure 2) describes static reader-writer locks based on
fractional capabilities (Boyland 2003). As in the previous example, the capability
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2 ALMS: THE LANGUAGE

module type FRACTIONAL = sig
type (α, β) array
type 1
type 2
type γ/δ
type (β, γ) cap : A
val new : int → α →

E

β. (α, β) array × (β, 1) cap

val split : (β, γ) cap → (β, γ/2) cap × (β, γ/2) cap
val join : (β, γ/2) cap × (β, γ/2) cap → (β, γ) cap

val set : (α, β) array → int → α →
(β, 1) cap → (β, 1) cap

val get : (α, β) array → int →
(β, γ) cap → α × (β, γ) cap

end

Figure 2: Another interface for reader-writer locks

type (β, γ) cap has a second parameter, which in this case represents a fraction of
the whole capability. The fraction is represented using type constructors 1, 2, and
(· / ·). A capability of type (β, 1) cap grants exclusive access to the array with tag β,
while a fraction less than 1 such as 1/2 or 1/2/2 indicates shared access. There are
operations split, which splits a capability whose fraction is γ into two capabilities of
fraction γ/2, and join, which combines two γ/2 capabilities back into one γ capability.
Again, set requires exclusive access but get does not.

Syntax matters. Given CapLockArray as defined above, we can rewrite deposit to
take advantage of it:

open CapLockArray

let deposit (a: (int, β) array) (acct: int) (amt: int) =
let cap = acquire a in
let (balance, cap) = get a acct cap in
let cap = set a acct (balance + amt) cap in

release a cap

While this gets the job done, the explicit threading of the capability can be inconve-
nient and hard to read. To address this, Alms provides preliminary support for an
alternative syntax inspired by a proposal by Mazurak et al. (2010):

let deposit (a: (int, β) array) (acct: int) (amt: int) =
let !cap = acquire a in

9



3 ALMS: THE IMPLEMENTATION

set a acct (get a acct cap + amt) cap;
release a cap

The pattern !cap bound by let marks cap as an “imperative variable,” which means
that within its scope, functions applied to cap are expected to return a pair of their
real result and the new version of cap. Alms transforms this code into the explicitly-
threaded version above. Currently this transformation happens before type checking,
which means that it cannot compromise soundness but also cannot exploit type in-
formation.

3 Alms: The Implementation
Our prototype, implemented in 16k lines of Haskell, is available at www.ccs.neu.edu/
~tov/pubs/alms. Besides a usable interpreter, it includes all the example code from
this paper and other Alms examples illustrating a variety of concepts:

• A capability-based interface to Berkeley Sockets ensures that the protocol to
set up a socket is followed correctly. This library also shows how exceptions
may be used for error recovery in the presence of affine capabilities.

• An echo server is built on top of the socket library.

• Two session types (Gay et al. 2003) libraries demonstrate different approaches
to alternation: one uses anonymous sums and the other uses algebraic datatypes
for named branches.

• Our version of Sutherland and Hodgman (1974) re-entrant polygon clipping
uses session types to connect stream transducers.

• The Alms standard library implements higher-order coercions for checked down-
casts which can, for example, turn a function of type (unit U−→ unit) U−→ thread
into a function of type (unit A−→ unit) U−→ thread by adding a dynamic check.

These examples are not the last word on what can be done in a language like
Alms. Haskell’s type classes (Wadler and Blott 1989), a general mechanism invented
to solve specific problems, have since found myriad unanticipated uses. Similarly,
a practical, general form of substructural types as offered by Alms likely has many
applications waiting to be uncovered.

We have now written several thousand lines of code in Alms, and this experience
has led to improvements in both its design and our skill at using what it has to offer.
For example, an earlier version of Alms had only unlimited ( U−→) and affine ( A−→) arrows,
but Alms’s behavioral contract library motivated the introduction of arrows whose
kinds involve type variables (e.g., 〈α̂〉−−→). In particular, we found ourselves writing the
same function multiple times with different qualifiers in the argument types, and the
addition of usage qualifier expressions eliminates this redundancy.
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4 ALMS: THE CALCULUS

4 Alms: The Calculus

We model Alms with a calculus based on System Fω<:, the higher-order polymorphic λ
calculus with subtyping (Pierce 2002). Our calculus, aλms , makes several important
changes to Fω<::

• Our type system’s structural rules are limited. In particular contraction, which
duplicates variables in a typing context to make them accessible to multiple sub-
terms, applies only to variables whose type is of the unlimited kind. Variables
of affine or polymorphic kind cannot be contracted.

• Our kind system is enriched with dependent kinds.

• Our kind system is also enriched with variance on type operators (Steffen 1997),
which allows abstract type constructors to specify how their results vary in
relation to their parameters.

• Type operators are limited to first-order kinds—that is, type operators may not
take type operators as parameters.

• Universally-quantified type variables are bounded only by a kind, not by a type.

• The subtyping relation is induced by the subtyping rule for functions, whereby
an unlimited-use function may be supplied where a one-use function is expected.

The calculus aλms also includes more types and terms than a minimal presentation
of Fω<:. Because we are interested in practical issues, we think it is important that our
model include products,3 sums, mutable references, and non-termination.

We do not model modules directly in aλms , but its higher-kinded type abstraction
makes aλms a suitable target for the first-order fragment of Rossberg et al.’s (2010)
“F-ing modules” translation.

4.1 Syntax

We begin with the syntax of aλms in figure 3. Terms (e) include the usual terms from
System F (variables, abstractions, applications, type abstractions, and type applica-
tions), several forms for data construction and elimination (nil, pairs, pair elimination,

3In linear logic terms, our calculus (like Alms) supplies multiplicative products (⊗) and additive
sums (⊕) directly. Additive products (&) are easily encoded by

τ1 & τ2 , ∀α:A. (τ1
A−→ α) + (τ2

A−→ α)
ϕ1tϕ2−−−−→ α

[e1, e2] , Λα:A.λk . case k of ι1 x1 → x1 e1; ι2 x2 → x2 e2,

where ϕ1 and ϕ2 are the kinds of τ1 and τ2.
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4.1 Syntax 4 ALMS: THE CALCULUS

x, y variables
α, β type variables
` store locations
e ::= terms

| x variable
| λx:τ.e abstraction
| e1 e2 application
| Λα:κ.v type abstraction
| e[τ ] type application
| fix e recursion
| 〈〉 nil value
| ι1 e left sum injection
| ι2 e right sum injection
| case e of ι1 x1 → e1; ι2 x2 → e2 sum destruction
| 〈e1, e2〉 pair construction
| case e of 〈x1, x2〉 → e1 pair destruction
| new e reference allocation
| swap e1 e2 reference access
| delete e reference deallocation
| ptr ` location (run-time only)

Figure 3: Syntax (i): metavariables and terms

τ, σ ::= types
| α type variable
| λα.τ type-level abstraction
| τ1 τ2 type-level application
| ∀α:κ.τ universal type
| τ1

ϕ−→ τ2 function type
| χ type constructor constant

χ ::= type constructor constants
| 1 unit
| (+) sum
| (×) product
| aref reference

Figure 4: Syntax (ii): types
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4 ALMS: THE CALCULUS 4.1 Syntax

(q,v,t,u)

A

U

(v,v,t,u)

±

+ −

�

v1 · v2 = v

· ± − + �
± ± ± ± �
− ± + − �
+ ± − + �
� � � � �

Figure 5: Syntax (iii): Qualifier constants, variances, and variance composition

ϕ ::= usage qualifier expressions
| q literal
| 〈α〉 qualifier of type variable
| ϕ1 t ϕ2 least upper bound
| ϕ1 u ϕ2 greatest lower bound

κ ::= kinds
| ϕ kind of proper types
| Παv.κ kind of type operators

Figure 6: Syntax (iv): kinds

sum injections, and sum elimination), recursion (fix e), and several operations on ref-
erence cells (allocation, linear swap, and deallocation). Location names (ptr `) appear
at run time but are not present in source terms. Values (v) are standard.

Types (τ , figure 4) include type variables, type-level abstraction and application,
universal quantification, function types, and type constructor constants for unit, sums,
products, and references. As in Alms, the function arrow carries a usage qualifier (ϕ),
which specifies whether the function is unlimited or one-use.

The two constant usage qualifiers (q), U for unlimited and A for affine, are the
bottom and top of the two-element lattice in figure 5. Now consider the K combinator
Λα:〈α〉.Λβ:〈β〉.λx:α.λy:β.x partially applied to a value: K[τ1][τ2] v. Whether it is safe
to duplicate this term depends on whether it is safe to duplicate v, and this is reflected
in the instantiation of α. To express this relationship, we introduce usage qualifier
expressions (ϕ), which form a bounded, distributive lattice over type variables with
U and A as bottom and top. We can thus give K type ∀α:〈α〉.∀β:〈β〉.α U−→ β 〈α〉−−→ α.

Qualifier expressions (figure 6) are the base kinds of aλms—that is, the kinds that
classify proper types that may in turn classify values. To classify type operators,
kinds (κ) also include dependent product kinds, written Παv.κ. This is the kind of
a type operator that, when applied to a type with kind ϕ, gives a type with kind
[ϕ/α]κ. For example, the kind of the Alms list type constructor in §2 is Πα+.〈α〉,
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4.2 Operational Semantics 4 ALMS: THE CALCULUS

Γ, Σ ::= typing contexts
| · empty
| Γ1,Γ2 concatenation
| α:κ kind of type variable
| x:τ type of variable
| `:τ type of location

Figure 7: Typing contexts

which means that list τ has the same kind as τ .4

The superscript + in kind Πα+.〈α〉 means that list is a covariant (or monotone)
type constructor: if τ1 is a subtype of τ2 then list τ1 is a subtype of list τ2. Variances
(v) form a four-point lattice (figure 5). A type operator may also be contravariant
(−), where the result varies inversely with the argument; omnivariant (�), where
argument may vary freely without affecting the result; or invariant (±) where the
argument may not vary at all without producing a subtyping-unrelated result. We
define a composition operation (·) on variances, where v1 · v2 is the variance of the
composition of type operators having variances v1 and v2.

The kinds of the type constructors for sums and references may aid understanding.
The sum type constructor (+) has kind Πα+.Πβ+.〈α〉 t 〈β〉. This means that the
kind of a sum type is at least as restrictive as the kinds of its disjuncts. It is covariant
in both arguments, which means that τ1 + τ2 is a subtype of τ ′1 + τ ′2 if τ1 is a subtype
of τ ′1 and τ2 is a subtype of τ ′2. The reference type constructor, on the other hand, has
kind Πα±.A. This means that reference cells are always affine and that their types
do not support subtyping in either direction.

Typing contexts (Γ or Σ; figure 7) associate type variables with their kinds, vari-
ables with their types, and locations with the types of their contents. By convention,
we use Γ for typing contexts that include neither affine variables nor locations, and
we use Σ for typing contexts that may include locations and affine (or indeterminate)
variables. We use dom(Γ) to refer to the type variables, variables, and locations
mapped by a context.

We define the free variables in a term (fv(e)) and the free type variables in a
variety of syntactic forms (ftv(e), ftv(τ), ftv(κ), etc.) in the standard way. We use
locs(e) to denote the set of location names present in term e. There are no binders
for locations.

4.2 Operational Semantics

The operational semantics of aλms is mostly a standard call-by-value reduction se-
mantics. We give a selection of rules in figure 8. The reduction relation (7−→) relates

4Whereas Alms uses ML’s conventional postfix notation for type-level application, aλms uses
prefix application.
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4 ALMS: THE CALCULUS 4.2 Operational Semantics

s1; e1 7−→ s2; e2 (small-step reduction)

(R-β) s; (λx:τ.e1) v2 7−→ s; [v2/x]e1

(R-B) s; (Λα:κ.v)[τ ] 7−→ s; [τ/α]v

(R-Fix) s; fix v 7−→ s; v (fix v)

(R-ChooseL) s; case ι1 v of ι1 x1 → e1; ι2 x2 → e2 7−→ s; [v/x1]e1

(R-ChooseR) s; case ι2 v of ι1 x1 → e1; ι2 x2 → e2 7−→ s; [v/x2]e2

(R-Unpair) s; case 〈v1, v2〉 of 〈x1, x2〉 → e 7−→ s; [v1/x1][v2/x2]e

(R-New) s; new v 7−→ s ] {` 7→ v}; ptr `

(R-Swap) s ] {` 7→ v1}; swap (ptr `) v2 7−→ s ] {` 7→ v2}; 〈ptr `, v1〉
(R-Delete) s ] {` 7→ v}; delete (ptr `) 7−→ s; 〈〉

(R-Cxt)
s; e

s;E[e]

7−→
7−→

s′; e′

s′;E[e′]

s ::=
| {}
| s1 ] s2
| {` 7→ v}

v ::=
| λx:τ.e
| Λα:κ.v
| 〈〉
| ι1 v
| ι2 v
| 〈v1, v2〉
| ptr `

E ::=
| [ ]
| E e2
| v1E
| E[τ ]
| fix E
| ι1 E
| ι2 E
| case E of ι1 x1 → e1; ι2 x2 → e2
| 〈E, e2〉
| 〈v1, E〉
| case E of 〈x1, x2〉 → e1
| new E
| swap E e2
| swap v1E
| delete E

Figure 8: Operational semantics
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4.3 Static Semantics 4 ALMS: THE CALCULUS

configurations (s; e) comprising a store and a term. A store maps locations (`) to
values (v). Stores are taken to be unordered and do not repeat location names.

The rules for reference operations are worth noting. In store s, new v chooses a
fresh location `, adding v to the store at location ` and reducing to the reference
ptr `. The operation swap (ptr `) v2 requires that the store have location ` holding
some value v1. It swaps v2 for v1 in the store, returning a pair of a reference to ` and
value v1. Finally, delete (ptr `) also requires that the store contain `, which it then
removes from the store. This means that freeing a location can result in a dangling
pointer, which would cause subsequent attempts to access that location to get stuck.
Our type system prevents this.

Γ ` κ kind κ is well formed (fig. 10)
Γ ` κ1 <: κ2 kind κ1 is subsumed by κ2 (fig. 10)
Γ ` Γ′ kinds in context Γ′ are well formed (fig. 10)
Γ ` α ∈ τ l v type τ varies v-ly when α increases (fig. 11)
Γ ` τ : κ type τ has kind κ (fig. 11)
τ1 ≡ τ2 types τ1 and τ2 are β-equivalent (fig. 12)
Γ ` τ1 <:v τ2 type τ1 is v-related to type τ2 (fig. 12)
Γ ` Σ � ϕ context Σ is bounded by qualifier ϕ (fig. 13)
` Γ; Σ dual contexts Γ; Σ are well formed (fig. 13)
` (Γ0; Σ0),Σ

′  Γ; Σ extending Γ0; Σ0 with Σ′ gives Γ; Σ (fig. 13)
Γ; Σ B e : τ term e has type τ (fig. 14)
Σ1 B s : Σ2 store s has type Σ2 (fig. 15)
B s; e : τ configuration s; e has type τ (fig. 15)

Figure 9: Type system judgments

4.3 Static Semantics

Our type system involves a large number of judgments, which we summarize in fig-
ure 9.

Kind judgments. Judgments on kinds appear in figure 10. The first judgment,
Γ ` κ , determines whether a kind κ is well formed in typing context Γ. A base kind
(i.e., a usage qualifier expression) is well formed provided that Γ specifies a kind for
all of its free variables. A dependent product kind Παv.κ is well formed if Γ maps
all of its free variables, provided it satisfies a second condition: whenever the bound
type variable α is free in κ—that is, when the kind is truly dependent—then variance
v must be + or ±. This rules out incoherent kinds such as Πα−.〈α〉 that classify no
useful type operator but whose presence breaks the kinding relation’s monotonicity
property (see lemma 30).
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4 ALMS: THE CALCULUS 4.3 Static Semantics

Γ ` κ (kind well-formedness)

OK-Qual
ftv(ϕ) ⊆ dom(Γ)

Γ ` ϕ

OK-Arr
if α ∈ ftv(κ) then + v v Γ, α:〈α〉 ` κ

Γ ` Παv.κ

Γ ` κ1 <: κ2 (subkinding)

KSub-Qual
Γ |= ϕ1 v ϕ2

Γ ` ϕ1 <: ϕ2

KSub-Arr
v1 v v2 Γ, α:〈α〉 ` κ1 <: κ2

Γ ` Παv1.κ1 <: Παv2.κ2

Γ ` Γ′ (kind context well-formedness)

Wf-Nil

Γ ` ·

Wf-ConsA
Γ ` Γ′ Γ ` κ

Γ ` Γ′, α:κ

Wf-ConsX
Γ ` Γ′

Γ ` Γ′, x:τ

Wf-ConsL
Γ ` Γ′

Γ ` Γ′, `:τ

Figure 10: Statics (i): kinds

The second judgment is subkinding: Γ ` κ1 <: κ2. As we will see, if a type has
kind κ1, then it may be used where κ1 or any greater kind is expected. For dependent
product kinds the subkinding order is merely the product order on the variance and
the result kind, but for base kinds the relation relies on an interpretation of qualifier
expressions.

We interpret qualifier expressions via a valuation V , which is a map from type
variables to qualifier constants. We extend V ’s domain to qualifier expressions:

V(q) = q V(ϕ1 t ϕ2) = V(ϕ1) t V(ϕ2)

V(〈α〉) = V(α) V(ϕ1 u ϕ2) = V(ϕ1) u V(ϕ2)

We need to interpret qualifier expressions under a typing context:

Definition 1 (Consistent valuations). A valuation V is consistent with a typing
context Γ if for all α:ϕ ∈ Γ, V(α) v V(ϕ).

Thus, a valuation is consistent with a context if it corresponds to a potential instan-
tiation of the type variables, given that context.

Definition 2 (Qualifier subsumption). We say that ϕ1 is subsumed by ϕ2 in Γ,
written Γ |= ϕ1 v ϕ2, if for all valuations V consistent with Γ, V(ϕ1) v V(ϕ2).

In other words, in all possible instantiations of the type variables in Γ, qualifier ϕ1

being A implies that ϕ2 is A.
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4.3 Static Semantics 4 ALMS: THE CALCULUS

Γ ` α ∈ τ l v (variance of type variables with respect to types)

V-VarPre

Γ ` α ∈ α l +

V-VarAbs

Γ ` α ∈ β l �

V-Con

Γ ` α ∈ χ l �

V-Abs
Γ, β:〈β〉 ` α ∈ τ l v

Γ ` α ∈ λβ.τ l v

V-App
Γ ` α ∈ τ1 l v1 Γ ` α ∈ τ2 l v2 Γ ` τ1 : Πβv3.κ3

Γ ` α ∈ τ1 τ2 l v1 t v2v3

V-All
Γ, β:κ ` α ∈ τ l v1

v2 = if α ∈ ftv(κ) then ± else �
Γ ` α ∈ ∀β:κ.τ l v1 t v2

V-Arr
Γ ` α ∈ τ1 l v1 Γ ` α ∈ τ2 l v2
v3 = if α ∈ ftv(ϕ) then + else �

Γ ` α ∈ τ1
ϕ−→ τ2 l −v1 t v2 t v3

Γ ` τ : κ (kinding of types)

K-Var
α:κ ∈ Γ Γ ` κ Γ ` Γ

Γ ` α : κ

K-Abs
Γ, α:〈α〉 ` τ : κ Γ, α:〈α〉 ` α ∈ τ l v

Γ ` λα.τ : Παv.κ

K-App
Γ ` τ1 : Παv.κ Γ ` τ2 : ϕ

Γ ` τ1 τ2 : [ϕ/α]κ

K-All
Γ, α:κ ` τ : ϕ Γ, α:κ ` κ

Γ ` ∀α:κ.τ : [A/α]ϕ

K-Arr
Γ ` τ1 : ϕ1 Γ ` τ2 : ϕ2 Γ ` ϕ

Γ ` τ1
ϕ−→ τ2 : ϕ

K-Unit
Γ ` Γ

Γ ` 1 : U

K-Sum
Γ ` Γ

Γ ` (+) : Πα1
+.Πα2

+.〈α1〉 t 〈α2〉

K-Prod
Γ ` Γ

Γ ` (×) : Πα1
+.Πα2

+.〈α1〉 t 〈α2〉

K-Ref
Γ ` Γ

Γ ` aref : Πα±.A

Figure 11: Statics (ii): types
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τ1 ≡ τ2 (type equivalence)

E-Refl

τ ≡ τ

E-Sym
τ1 ≡ τ2

τ2 ≡ τ1

E-Trans
τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

E-Arr
τ11 ≡ τ21 τ12 ≡ τ22

τ11
ϕ−→ τ12 ≡ τ21

ϕ−→ τ22

E-All
τ1 ≡ τ2

∀α:κ.τ1 ≡ ∀α:κ.τ2

E-Abs
τ1 ≡ τ2

λα.τ1 ≡ λα.τ2

E-App
τ11 ≡ τ21 τ12 ≡ τ22

τ11 τ12 ≡ τ21 τ22

E-Beta

(λα.τ1) τ2 ≡ [τ2/α]τ1

Γ ` τ1 <:v τ2 (subtyping)

TSub-Eq
Γ ` τ1 : κ Γ ` τ2 : κ τ1 ≡ τ2

Γ ` τ1 <:v τ2

TSub-Omni
Γ ` τ1 : κ1 Γ ` τ2 : κ2

Γ ` τ1 <:� τ2

TSub-Trans
Γ ` τ1 <:v τ2 Γ ` τ2 <:v τ3 Γ ` τ2 : κ

Γ ` τ1 <:v τ3

TSub-Contra
Γ ` τ2 <:−v τ1

Γ ` τ1 <:v τ2

TSub-Abs
Γ, α:〈α〉 ` τ1 <:v τ2

Γ ` λα.τ1 <:v λα.τ2

TSub-App
Γ ` τ11 : Παv1.κ1 Γ ` τ21 : Παv2.κ2

Γ ` τ11 <:v τ21 Γ ` τ12 <:v·(v1tv2) τ22

Γ ` τ11 τ12 <:v τ21 τ22

TSub-All
Γ, α:κ ` τ1 <:v τ2

Γ ` ∀α:κ.τ1 <:v ∀α:κ.τ2

TSub-Arr
Γ ` τ11 <:−v τ21 Γ ` τ12 <:v τ22 Γ ` ϕ1 <:v ϕ2

Γ ` τ11
ϕ1−→ τ12 <:v τ21

ϕ2−→ τ22

Figure 12: Statics (iii): subtyping
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Kinding and variance. The first two judgments in figure 11, for computing vari-
ances and giving kinds to types, are defined by mutual induction. It should be clear
on inspection that the definitions are well-founded. Judgment Γ ` α ∈ τ l v means
that type variable α appears in type τ at variance v, or in other words, that type
operator λα.τ has variance v. Rules V-VarPre, V-VarAbs, and V-Con say that
type variables appear positively with respect to themselves and omnivariantly with
respect to types in which they are not free. Rule V-Abs says that a type variable
appears in a type operator λβ.τ at the same variance that it appears in the body τ .
The remaining three rules are more involved:

• By rule V-App, the variance of a type variable in a type application comes from
both the operator and the operand. The variance of α in τ1 τ2 is at least the
variance of α in τ1 and at least the variance of α in the τ2 composed with the
variance of operator τ1. This makes sense: if τ is a contravariant type operator,
then α appears negatively in τ α but positively in τ (τ α).

• By rule V-All, the variance of α in ∀β:κ.τ is at least its variance in τ . However,
if α appears in κ then it is invariant in ∀β:κ.τ . This reflects the fact that
universally-quantified types are related only if their bounds (κ) match exactly,
so changing a type variable that appears in κ produces an unrelated type. (This
means that aλms is based on the kernel variant of Fω<: (Pierce 2002).)

• By rule V-Arr, the variance of α in a function type τ1
ϕ−→ τ2 is at least its

variance in the codomain τ2 and at least the opposite (composition with −) of
its variance in the domain τ1. This reflects function argument contravariance.
The variance of α is at least + if it appears in the qualifier expression ϕ.

The second judgment, Γ ` τ : κ, assigns kinds to well formed types. Rule K-Var
merely looks up the kind of a type variable in the context. Rules K-Abs and K-App
are the usual rules for dependent abstraction and application, with two small changes
in rule K-Abs. First, it associates α with itself in the context, as α:〈α〉, which ensures
that occurrences of α in τ can be reflected in κ. Second, it appeals to the variance
judgment to determine the variance of the type operator. Rule K-All assigns a
universal type the same kind as its body, but with A replacing α. This is necessary
because the resulting kind is outside the scope of α. Qualifier A is a safe bound for
any instantiation of α, and no terms have types that lose precision by this choice.
The kind of an arrow type, in rule K-Arr, is just the qualifier expression attached
to the arrow. The remaining rules give kinds for type constructor constants, where
(+) and aref are as discussed in §4.1 and (×) has the same kind as (+).

Type equivalence and dereliction subtyping. The next two judgments in fig-
ure 12 are type equivalence and subtyping. The subtyping relation is parametrized
by a variance v, which gives the direction of the subtyping: Γ ` τ1 <:+ τ2 is the usual
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direction, judging τ1 a subtype of τ2. In terms of subsumption, this means that values
of type τ1 may be used where values of type τ2 are expected. The other variances are
useful in defining the relation in the presence of v-variant type operators: (<:−) gives
the inverse of the subtyping relation, (<:±) relates only equivalent types, and (<:�)
relates all types. We can see how this works this in rule TSub-App. To determine
whether τ11 τ12 is a subtype of τ21 τ22, we take v to be +, yielding

Γ ` τ11 : Παv1.κ1 Γ ` τ21 : Παv2.κ2
Γ ` τ11 <:+ τ21 Γ ` τ12 <:v1tv2 τ22

Γ ` τ11 τ12 <:+ τ21 τ22
.

This means that for the subtyping relation to hold:

• The operators must be related in the same direction, so that τ11 is a subtype of
τ21.

• The operands must be related in the direction given by the variances of the
operators. For example, if both operators are covariant, then the operands must
vary in the same direction, so that τ12 is a subtype of τ22. If both operators
are contravariant, then the operands must vary in the opposite direction. If the
operators are invariant then the operands cannot vary at all, but if they are
omnivariant then τ11 τ ′12 is a subtype of τ21 τ ′22 for any τ ′12 and τ ′22.

Rule TSub-Eq says that subtyping includes type equivalence (τ1 ≡ τ2), which
is merely β equivalence on types. Rule TSub-Omni allows any pair of types to
be related by �-variant subtyping, and rule TSub-Contra says that the opposite
variance sign gives the inverse relation. Rules TSub-Abs and TSub-All specify
that type operators and universally-quantified types are related if their bodies are.

Rule TSub-Arr is more than the usual arrow subtyping rule. Beyond the usual
contravariance for arguments and covariance for results, it requires that qualifiers ϕ1

and ϕ2 relate in the same direction. This rule is the source of non-trivial subtyping
in aλms , without which subtyping would relate only equivalent types. The rule has
two important implications.

First, an unlimited-use function can always be used where a one-use function is
expected. This corresponds to linear logic’s usual dereliction rule, which says that
the ! (“of course!”) modality may always be removed. ILL (Bierman 1993) has a rule:

∆ ` e : !A

∆ ` derelict e : A
Dereliction.

Dereliction is syntax-directed in this rule, but for practical programming we consider
that as too inconvenient. Thus, our subtyping relation supports dereliction as needed.

For example, the function for creating a new thread in Alms, Thread.fork, has typeA

α̂. (unit A−→ α̂) U−→ α̂ thread, which means that Thread.fork will not call its argument
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Γ ` Σ � ϕ (bound of typing context)

B-Nil

Γ ` · � U

B-ConsX
Γ ` Σ � ϕ1 Γ ` τ : ϕ2

Γ ` Σ, x:τ � ϕ1 t ϕ2

B-ConsL
Γ ` Σ � ϕ1 Γ ` τ : ϕ2

Γ ` Σ, `:τ � A

B-ConsA
Γ ` Σ � ϕ Γ ` κ

Γ ` Σ, α:κ � ϕ

` Γ; Σ (context well-formedness)

Wf
Γ ` Γ � U Γ ` Γ � ϕ

` Γ; Σ

` (Γ0; Σ0),Σ
′  Γ1; Σ1 (environment extension)

X-Nil

` (Γ; Σ), · Γ; Σ

X-ConsU
Γ0 ` τ : U

` (Γ0, x:τ ; Σ0),Σ
′  Γ1; Σ1

` (Γ0; Σ0), x:τ,Σ′  Γ1; Σ1

X-ConsA
Γ0 ` τ : ϕ

` (Γ0; Σ0, x:τ),Σ′  Γ1; Σ1

` (Γ0; Σ0), x:τ,Σ′  Γ1; Σ1

Figure 13: Statics (iv): typing contexts

more than once. However, this should not stop us from passing an unlimited-use
function to Thread.fork, and indeed we can. Dereliction subtyping allows us to use a
value of type unit U−→ α̂ where a value of type unit A−→ α̂ is expected. Alternatively,
by domain contravariance, we can use Thread.fork where a value of type

A

α̂. (unit U−→
α̂) U−→ α̂ thread is expected. In this case subsumption allows us to forget Thread.fork’s
promise not to reuse its argument.

The other important implication of dereliction subtyping will become clearer once
we see how qualifier expressions are assigned to function types. Subsumption makes it
reasonable to always assign functions the most permissive safe usage qualifier, because
subsumption then allows us to use them in a less permissive context. Dereliction
subtyping applies only to function types because in both the aλms calculus and Alms
language only function types carry qualifiers. For instance, Alms has no separate
types intU for unlimited integers and intA for affine integers. Integers are always
unlimited. If a programmer wants an affine version of int, she can create it in Alms
using the module system.
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Context judgments. Figure 13 defines two judgments on contexts. Judgment
Γ ` Σ � ϕ, which will be important in typing functions, computes an upper bound
ϕ on the qualifiers of all the types in context Σ. If a context contains any locations,
it is bounded by A; otherwise, its bound is the least upper bound of the qualifiers of
all the types of variables in the context.

The second judgment shows how environments are extended by variable bindings.
The typing judgment for terms will use two typing contexts: Γ holds environment
information that may be safely duplicated, such as type variables and variables of un-
limited type, whereas Σ holds information, such as location types and affine variables,
that disallows duplication. Given contexts Γ0 and Σ0, judgment ` (Γ0; Σ0),Σ

′  Γ; Σ
extends them by the variables and types in Σ′ to get Γ and Σ. Any variables may be
placed in Σ, but only variables whose types are known to be unlimited may be placed
in Γ, since Γ may be duplicated.

Term judgment. The typing judgment for terms appears in figure 14. The judg-
ment, Γ; Σ B e : τ , uses two typing contexts in the style of DILL (Barber 1996): the
unlimited environment Γ and the affine environment Σ. When typing multiplicative
terms such as application, we distribute Γ to both subterms but partition Σ between
the two:

Γ; Σ1 B e1 : τ1
ϕ−→ τ2 Γ; Σ2 B e2 : τ1

Γ; Σ1,Σ2 B e1 e2 : τ2
T-App

Unlike DILL, not all types in Σ are necessarily affine. Since types whose usage
qualifier involves type variables are not known to be unlimited, we place those in
Σ, to ensure that we do not duplicate values that might turn out to be affine once
universally-quantified types are instantiated.

The other multiplicative rules are T-Pair for product introduction, T-Unpair
for product elimination, and T-Swap for reference updates. Note that T-Swap does
not require that the type of the reference in its first parameter match the type of the
value in its second—in other words, swap performs a strong update. To type the term
case e of 〈x1, x2〉 → e1, rule T-Unpair first splits the affine environment into Σ1 for
typing subterm e and Σ2 for subterm e1. It invokes the context extension relation
(figure 13) to extend Γ and Σ2 with bindings for x1 and x2 in order to type e1. The
context extension relation requires that variables not known to be unlimited be added
to Σ2.

The rule for sum elimination, T-Choose, is both multiplicative and additive:
the affine context is split between the term being destructed and the branches of the
case expression. However, the portion of the context given to the branches is shared
between them, because only one or the other will be evaluated. Rule T-Choose also
uses the context extension relation to bind the pattern variables for the branches.

Rules T-New and T-Delete introduce and eliminate reference types in the usual
way. Likewise, the sum introduction rules rule T-Inl and rule T-Inr and type ab-
straction rule T-TAbs are standard. Rules T-Var, T-Ptr, and T-Unit are standard
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Γ; Σ B e : τ (typing of terms)

T-Subsume
Γ; Σ B e : τ ′ Γ ` τ ′ <:+ τ Γ ` τ : ϕ

Γ; Σ B e : τ

T-Weak
Γ; Σ B e : τ ` Γ; Σ,Σ′

Γ; Σ,Σ′ B e : τ

T-Var
x:τ ∈ Γ,Σ Γ ` τ : ϕ ` Γ; Σ

Γ; Σ B x : τ

T-Ptr
`:τ ∈ Σ · ` τ : ϕ ` Γ; Σ

Γ; Σ B ptr ` : aref τ

T-Abs
` (Γ; Σ), x:τ1  Γ′; Σ′ Γ′; Σ′ B e : τ2

Γ ` Σ � ϕ Γ ` τ1 : ϕ1

Γ; Σ B λx:τ1.e : τ1
ϕ−→ τ2

T-TAbs
Γ, α:κ; Σ B v : τ

Γ, α:κ ` κ
Γ; Σ B Λα:κ.v : ∀α:κ.τ

T-App
Γ; Σ1 B e1 : τ1

ϕ−→ τ2
Γ; Σ2 B e2 : τ1

Γ; Σ1,Σ2 B e1 e2 : τ2

T-TApp
Γ; Σ B e : ∀α:κ.τ

Γ ` τ ′ : κ′ Γ ` κ′ <: κ

Γ; Σ B e[τ ′] : [τ ′/α]τ

T-Fix
Γ; Σ B e : τ

U−→ τ

Γ; Σ B fix e : τ

T-Unit
` Γ; Σ

Γ; Σ B 〈〉 : 1

T-Inl
Γ; Σ B e : τ1 Γ ` τ2 : ϕ

Γ; Σ B ι1 e : τ1 + τ2

T-Inr
Γ; Σ B e : τ2 Γ ` τ1 : ϕ

Γ; Σ B ι2 e : τ1 + τ2

T-Pair
Γ; Σ1 B e1 : τ1
Γ; Σ2 B e2 : τ2

Γ; Σ1,Σ2 B 〈e1, e2〉 : τ1 × τ2

T-Choose
Γ; Σ B e : τ1 + τ2

` (Γ; Σ′), x1:τ1  Γ1; Σ1 Γ1; Σ1 B e1 : τ
` (Γ; Σ′), x2:τ2  Γ2; Σ2 Γ2; Σ2 B e2 : τ

Γ; Σ,Σ′ B case e of ι1 x1 → e1; ι2 x2 → e2 : τ

T-Unpair
Γ; Σ1 B e : τ1 × τ2 ` (Γ; Σ2), x1:τ1, x2:τ2  Γ′; Σ′ Γ′; Σ′ B e1 : τ

Γ; Σ1,Σ2 B case e of 〈x1, x2〉 → e1 : τ

T-New
Γ; Σ B e : τ

Γ; Σ B new e : aref τ

T-Swap
Γ; Σ1 B e1 : aref τ1 Γ; Σ2 B e2 : τ2

Γ; Σ1,Σ2 B swap e1 e2 : aref τ2 × τ1

T-Delete
Γ; Σ B e : aref τ

Γ; Σ B delete e : 1

Figure 14: Statics (v): terms
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for an affine calculus but not a linear one, as they implicitly support weakening by
allowing Σ to contain unused bindings. Rule T-Fix is also standard, modulo the
reasonable constraint that its parameter function be unlimited, since the reduction
rule for fix makes a copy of the parameter.

The type application rule T-TApp supports subkinding, because it requires only
that the kind of the actual type parameter be a subkind of that of the formal pa-
rameter. This is the rule that supports the sort of type abstraction that we used
in our examples of §2 to construct affine capabilities. For example, the rule lets us
instantiate affine type variable α with unlimited unit type 1:

Γ; Σ B (Λα:A.λx:α.e) : ∀α:A.α
ϕ−→ τ Γ ` 1 : U Γ ` U <: A

Γ; Σ B (Λα:A.λx:α.e)[1] : 1
ϕ−→ τ

T-TApp

Within its scope, α is considered a priori affine, regardless of how it may eventually
be instantiated. This term types only if x appears in affine fashion in e.

This brings us finally to T-Abs, the rule for typing term-level λ abstractions. To
type a term λx:τ1.e, rule T-Abs uses the context extension relation to add x:τ1 to its
contexts and types the body e in the extended contexts. It also must determine the
qualifier ϕ that decorates the arrow. Because abstractions close over their free vari-
ables, duplicating a function also duplicates the values of its free variables. Therefore,
the qualifier of a function type should be at least as restrictive as the qualifiers of the
abstraction’s free variables. To do this, rule T-Abs appeals to the context bounding
judgment (figure 13) to find the least upper bound of the usage qualifiers of variables
in the affine environment, and it requires that the function type’s qualifier be equally
restrictive.

This refines linear logic’s usual promotion rule, which says that the ! modality
may be added to propositions that in turn depend only on !-ed resources. In ILL, we
have

!∆ ` e : A

!∆ ` promote e : !A
Promotion,

where !∆ is a context in which all assumptions are of the form x : !B. As with
dereliction, in our system it only makes sense to apply promotion to function types.

Our treatment of promotion indicates why we need the explicit weakening rule
T-Weak, which allows discarding unused portions of the affine environment. In
order to give a function type the best qualifier possible, we need to remove from Σ
any unused variables or locations that might otherwise raise the bound on Σ, and the
algorithmic version of the type system as implemented in Alms does just that. In §5
we show that our implicit promotion mechanism selects the best usage qualifier for
function types.

Store and configuration judgments. In order to prove our type soundness the-
orem, we need to lift our typing judgments to stores and run-time configurations.
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Σ1 B s : Σ2 (store typing)

S-Nil

Σ B {} : ·

S-Cons
Σ1 B s : Σ′ ·; Σ2 B v : τ

Σ1,Σ2 B s ] {` 7→ v} : Σ′, `:τ

B s; e : τ (configuration typing)

Conf
Σ1 B s : Σ1,Σ2 ·; Σ2 B e : τ

B s; e : τ

Figure 15: Statics (vi): stores and configurations

The type of a store is a typing context containing the names of the store’s locations
and the types of their contents. The store typing judgment Σ1 B s : Σ2 gives store
s type Σ2 in the context of Σ1, which is necessary because values in the store may
refer to other values in the store. Rule S-Cons shows that the resources represented
by context Σ1 (i.e., Σ11,Σ12) are split between the values in s.

Our preservation lemma concerns typing judgments on configurations, B s; e : τ ,
which means that e has type τ in the context of store s. To type the configuration
by rule Conf, we type the store, splitting its type into Σ1, which contains locations
referenced from the store, and Σ2, which contains locations referenced from e.

5 Theoretical Results

We now state our two main theorems—principal qualifiers and type soundness—and
sketch their proofs. The full versions of our proofs may be found in appendix A.

Principal qualifiers. Alms and aλms go to a lot of trouble to find the best usage
qualifier expressions for function types. To make programming with affine types as
convenient as possible, we want to maximize polymorphism between one-use and un-
limited versions of functions. While writing the Alms standard library, we found that
usage qualifier constants A and U, even with dereliction subtyping, were insufficient
to give a principal type to some terms.

For example, consider function default, an eliminator for option types, sans func-
tion argument types:

let default (def: . . .) (opt: . . .) =
match opt with
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| Some x → x
| None → def

Without usage qualifier expressions, default has at least two incomparable types:

default1 :

A

α̂. α̂ U−→ α̂ option A−→ α̂
default2 :

A

α.α U−→ α option U−→ α.

In the first case, because α̂ might be affine, the partial application of default1 must be
a one-use function, but in the second case we know that α is unlimited so partially
applying default2 and reusing the result is safe. Formally, these types are incomparable
because the universally-quantified type variable α̂ in the former has a different kind
than α in the latter, and Alms uses the kernel variant of rule TSub-All. However,
even were we to replace rule TSub-All with a rule analogous to Fω<:’s full variant,

Γ, α:κ ` τ1 <:v τ2 Γ, α:κ ` κ1 <:−v κ2

Γ ` ∀α:κ1.τ1 <:v ∀α:κ2.τ2
TSub-Allfull,

the types would not be related by the subtyping order. More importantly, neither type
is preferable in an informal sense. The type of default1 allows α̂ to be instantiated to
an affine or unlimited type, but the result of partially applying it is a one-use function
even if α̂ is known to be unlimited:

default1 5 : int option A−→ int
default1 (aref 5) : int aref option A−→ int aref.

If we choose default2, the result of partial application is unlimited, but attempting to
instantiate α to an affine type is a type error:

default2 5 : int option U−→ int
default2 (aref 5) : Type error!

Alms avoids both problems and instead discovers that the best usage qualifier for the
arrow is the kind of the type variable:

default :

A

α̂. α̂ U−→ α̂ option 〈α̂〉−−→ α̂

default 5 : int option U−→ int
default (aref 5) : int aref option A−→ int aref.

Because this is an important property, we prove a theorem that every typeable
aλms function has a principal usage qualifier.

Theorem 8 (Principal qualifiers5). If Γ; Σ B λx:τ.e : τ1
ϕ−→ τ2, then it has a least

qualifier expression ϕ0; that is,
5Numbering of propositions in this section skips because it matches the numbering in appendix A

rather than the numbering in the short version of this paper.
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• Γ; Σ B λx:τ.e : τ1
ϕ0−→ τ2 and

• Γ ` ϕ0 <: ϕ′ for all ϕ′ such that Γ; Σ B λx:τ.e : τ1
ϕ′
−→ τ2.

Proof sketch. We obtain the principal qualifier ϕ0 as follows. Let Σ0 be the restriction
of Σ to exactly the free variables and locations of λx:τ.e. Let ϕ0 be the unique bound
of Σ0 given by Γ ` Σ0 � ϕ0. By strengthening, Γ; Σ0 B λx:τ.e : τ1

ϕ0−→ τ2, and by
rule T-Weak we can get the same type in Σ.

A derivation of Γ; Σ B λx:τ.e : τ1
ϕ′
−→ τ2 always involves rule T-Abs using some

portion of Σ, followed by some number of subsumptions and weakenings. Subsump-
tion will never let ϕ′ be less than ϕ0. However, weakening might allow us to type
λx:τ.e with a different portion of Σ than Σ0. We know that any superset of Σ0 has
bound no less than ϕ0, and while a non-superset of Σ0 may have a smaller bound,
we chose Σ0 so that only Σ0 and its supersets are suitable to type the term and then
weaken to Σ. (The full proof of theorem 8 may be found on page 40.) B

Thus, for a function in any given context, there is a least usage qualifier, and our
implementation can find the least qualifier by considering only the portion of Σ that
pertains to the free identifiers of the λ term, as suggested by the algorithmic rule

(T-Absalg)
` (Γ; Σ), x:τ1  Γ′; Σ′ Γ′; Σ′ B e : τ2

ϕ0 =

{
A if locs(e) 6= ∅⊔
{ϕ | x ∈ fv(e),Γ ` Σ(x) : ϕ} otherwise

Γ; Σ B λx:τ1.e : τ1
ϕ0−→ τ2

.

Type soundness. The key obstacle in our type soundness proof is establishing a
substitution lemma, which in turn relies on showing that the kind of the type of any
value accurately reflects the resources contained in that value, which itself comes as
a corollary to the proposition that the kinds of subtypes are themselves subkinds:

Lemma 30 (Monotonicity of kinding). If Γ ` τ1 <:+ τ2 where Γ ` τ1 : ϕ1 and
Γ ` τ2 : ϕ2, then Γ ` ϕ1 <: ϕ2.

This lemma is the reason for the premise in rule OK-Arr that for a kind Παv.κ,
variance v must be at least + if α ∈ ftv(κ). Otherwise, we could construct a coun-
terexample to lemma 30:

• β:Πα−.〈α〉 ` β (1
A−→ 1) <:+ (1

U−→ 1),

• β:Πα−.〈α〉 ` β (1
A−→ 1) : A, and

• β:Πα−.〈α〉 ` β (1
U−→ 1) : U,
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• but β:Πα−.〈α〉 ` A <: U is not the case.

The kind well-formedness judgment rules out kinds like Πα−.〈α〉.

Proof sketch for lemma 30. We define an extension of the subkinding relation, Γ `
κ1 / κ2, which is insensitive to the variances decorating Π kinds. Observe that on
qualifier expressions this new relation coincides with subkinding. We generalize the
induction hypothesis—if Γ ` τ1 <:+ τ2 where Γ ` τ1 : κ1 and Γ ` τ2 : κ2, then
Γ ` κ1 / κ2—and complete the proof by induction on the structure of the subtyping
derivation. (The full proof of lemma 30 may be found on page 65.) B

Corollary 32 (Kinding finds locations). Suppose that Γ; Σ B v : τ and Γ ` τ : ϕ
where dom(Σ) contains only locations (`). If any locations appear in v then Γ ` A <:
ϕ.

Proof sketch. By induction on the typing derivation. We use the previous lemma in
the case for the subsumption rule T-Subsume:

Case
Γ; Σ B v : τ ′ Γ ` τ ′ <:+ τ Γ ` τ : ϕ

Γ; Σ B v : τ
.

By the induction hypothesis, Γ ` τ ′ : A, and by lemma 30, Γ ` A <: ϕ.

(The full proof of corollary 32 may be found on page 68.) B

Corollary 32 lets us prove our substitution lemma. Then progress, preservation,
and type soundness are standard:
Theorem 55 (Type soundness). If B {}; e : τ then either e diverges or there exists
some store s and value v such that {}; e ∗7−→ s; v and B s; v : τ .

6 Related Work
In prior work, we showed how an Alms-like affine language may safely interoperate
with a conventional (non-affine) language (Tov and Pucella 2010). In particular, the
languages may freely share values, including functions. Attempts by the conventional
language to subvert the affine language’s invariants are prevented by dynamic checks
in the form of behavioral software contracts. That paper focused specifically on
multi-language interaction, using a predecessor of Alms.

System F◦. Mazurak et al. (2010) describe a calculus of “lightweight linear types.”
Their primary motivation is similar to ours: to remove needless overhead and provide
a “simple foundation for practical linear programming.”

System F◦ and the prior iteration of Alms independently introduced several new
ideas:
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• Both use kinds to distinguish linear (in Alms, affine) types from unlimited types,
where F◦’s kinds ◦ and ? correspond to our A and U, and their subkinding
relation ? ≤ ◦ corresponds to our U v A.

• F◦ uses existentials and subkinding to abstract unlimited types into linear types.
Alms (the language) uses modules and aλms (the calculus) uses higher-kinded
type abstraction to define abstract affine types, including type constructors
with parameters. Mazurak et al. mention the possibility of extending F◦ with
abstraction over higher kinds but do not show the details.

• They sketch out a convenient notation for writing linear computations. This
inspired our different implicit threading syntax, which is implemented in Alms
as mentioned at the end of §2.

There are also notable differences:

• F◦ has linear types, which disallow weakening, whereas Alms has affine types,
which support it. This is a trade-off. Linear types make it possible to enforce
liveness properties, which may be useful, for instance, to ensure that manual
memory management does not leak. On the other hand, we anticipate that
safely combining linearity with exceptions requires a type-and-effect system to
track when raising an exception would implicitly discard linear values. Alms
can support explicit deallocation so long as failure to do so is backed up by a
garbage collector.

• Alms’s unlimited-use function type is a subtype of its one-use function type.
F◦ does not provide subtyping, though they do show how η expansion can
explicitly perform the coercion that our subtyping does implicitly. Experience
with our implementation confirms that dereliction subtyping is valuable, though
we admit it comes at the cost of complexity.

• F◦ requires annotating abstractions (λκx:τ.e) to specify the kind of the result-
ing arrow type, which may only be ? or ◦. Alms refines this with qualifier
expressions and selects the least kind automatically.

• Mazurak et al. give a resource-aware semantics and prove that they can encode
regular protocols. We do neither but conjecture that our system enjoys similar
properties, except that weakening makes it possible to bail out of a protocol at
any point.

• Their sketch of rules for algebraic datatypes is similar to how ours work, though
ours are strictly stronger. For example, an option type in F◦ would have two
versions:

optionLin : ◦ ⇒ ◦ optionUn : ?⇒ ?.
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Our dependent kinds in Alms let us define one type constructor whose kind
subsumes both:

option : Πα̂+. 〈α̂〉.

Clean. At first glance, Clean’s uniqueness types appear to be dual to affine types.
Uniqueness types are descriptive—they indicate that a particular reference is unique—
while affine (and linear) types are prescriptive, since they restrict what may be done
to some reference in the future but do not necessarily know where it’s been. Similarly,
Clean’s subtyping relation, which allows forgetting that a value is unique, appears
dual to Alms’s, which allows pretending that an unlimited value is affine. However,
the duality breaks down in the higher-order case. When a partially applied function
captures some unique free variable, Clean’s type system must prohibit aliasing of
the function in order to maintain descriptive uniqueness when the function is fully
applied (Plasmeijer and Eekelen 2002). In Clean’s terminology, function types with
the unique attribute are “essentially unique,” but we might call them “affine.”

There is a strong similarity between our kinding judgment and Clean’s unique-
ness propagation rules that relate the uniqueness of data structures to that of their
constituent parts. While Clean supports subtyping, it does not have a subkinding
relation analogous to Alms or F◦’s. In particular, Clean requires that the uniqueness
attributes declared for an abstract type in a module’s interface exactly match the
uniqueness attributes in the module’s implementation.

Use types and qualifiers. Wadler (1991) discusses several variants of linear type
systems. He proposes something akin to dereliction subtyping (i.e., !A ≤ A) and
points out that in such a system, terms such as λf.λx.f x have several unrelated
types. (We made a similar observation in §5.) In order to recover principal types, he
introduces use types, which decorate the exponential modality with a use variable i:
!i. The use variable ranges over 0 and 1, where !0A = A and !1A = !A. This provides
principal types, but at the cost of adding use-variable inequality constraints to type
schemes.

A use-variable inequality of the form i ≤ j is essentially an implication i ⊃ j,
where 1 is truth and 0 is falsity. De Vries et al. (2008) show, in the setting of
uniqueness types, how such inequalities may be represented instead using Boolean
logic. For example, if we have a type

. . . !i . . . !j . . . , [i ≤ j],

we can discard the inequality constraint and represent it instead as

. . . !i . . . !i∨k . . . ,

because i ≤ (i∨k). In general, any collection of use-variable inequalities (or uniqueness-
attribute constraints) may be eliminated by replacing some of the use variables with
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propositional formulae over use variables. This insight is the source of Alms’s usage
qualifier expressions.

If we follow use types to their logical conclusion, we reach λURAL (Ahmed et al.
2005), wherein each type is composed of a pretype that describes its representation
and a qualifier that gives its usage. Alms does not follow this approach because
we insist that qualified types are too verbose for a user-visible type system. Their
system’s qualifier lattice includes two more than ours, R for relevant types that allow
duplication but not discarding, and L for linear types. This results in a rich and
elegant system, but we do not believe R and L would be useful in a language like
Alms.

However, there is an interesting correspondence between our kinding rules and
their type rules. For example, our product type constructor (×) has kind Πα+.Πβ+.〈α〉t
〈β〉, which means that the kind of a product type is the least upper bound of the
kinds of its components. The product typing rule in λURAL enforces a similar con-
straint, that the qualifier of a product type, ξ, must upper bound the qualifiers of its
components τ1 and τ2.

∆ ` Γ Γ1 � Γ2 ∆ ` ξ : QUAL
∆; Γ1 ` v1 : τ1 ∆ ` τ1 � ξ
∆; Γ2 ` v2 : τ2 ∆ ` τ2 � ξ

∆; Γ ` 〈v1, v2〉 : ξ(τ1 ⊗ τ2)
(MPair).

Vault. DeLine and Fähndrich’s Vault (2001) is a safe, low-level language with sup-
port for typestate. It tracks keys, which associate static capabilities with the identity
of run-time objects, in the same manner that Alms uses existentially-quantified type
variables to tie values to capabilities. This allows static enforcement of a variety of
protocols. As an example, DeLine and Fähndrich give a tracked version of the Berke-
ley Sockets API. In previous work on Alms we show how Alms expresses the same
interface.

Vault’s treatment of capabilities may be more convenient to use than Alms’s, be-
cause while Alms requires explicit threading of capability values, Vault’s key sets are
tracked automatically within function bodies. On the other hand, because capabilities
in Alms appear as ordinary values, we may combine them using the native intuition-
istic logic of Alms’s type system. Instead, Vault must provide a simple predicate
calculus for expressing pre- and post-conditions. For more complicated logic, Vault
allows embedding capabilities in values, but since the values are untracked, extracting
a capability from a value requires a dynamic check. Alms’s type system eliminates
the need for such checks for affine values stored in algebraic datatypes, though it also
allows dynamic management of affine values by storing them in reference cells.

Notably, Alms can also express Fähndrich and DeLine’s adoption and focus (2002).
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Sing#. Microsoft’s experimental Singularity operating system is written in Sing#,
a high-level systems programming language that extends Spec# (Fähndrich et al.
2006). Sing# has built-in support for channel contracts, which are a form of session
type providing static checking of communication protocols between device drivers
and other services. Unlike more idealistic linear systems, the design acknowledges
the need to allow for failure: every protocol implicitly includes branches to close the
channel at any point.

Sing# processes do not share memory but can allocate tracked objects on a com-
mon exchange heap. Only one process has access to an exchange heap object at a
given time, but a process may give up access and transmit the object over a channel
to another process, which then claims ownership of it.

Alms’s library includes two different implementations of session types supporting
different interfaces, and the exchange heap concept is easily expressible as well.

7 Future Work and Conclusion
We already enjoy programming in Alms, but we are not done yet.

• In §2, we found that adding capabilities to an existing interface often involves
wrapping the old version of a function to ignore a new argument of type unit or
construct a tuple containing unit for its result. This is unnecessary. While the
client outside the abstraction barrier needs to see types that involve the affine
capabilities, the implementation has no use for them.
To eliminate much of this noise, we can extend our subtyping relation to take
advantage of the fact that unit is, well, a unit:

Γ ` τ2 singleton
Γ ` τ1 <:v τ1 × τ2

Γ ` τ2 singleton
Γ ` τ1 <:v τ2 × τ1

Γ ` τ2 singleton
Γ ` τ1

ϕ−→ τ2
ϕ−→ τ3 <:v τ1

ϕ−→ τ3

This is implementable via a type erasure technique such as intensional poly-
morphism (Crary et al. 2002). Not representing compile-time capabilities at
run time has performance benefits as well.

• Alms’s local type inference eliminates most explicit type applications, but need-
ing to annotate all function arguments is irksome. To fix this, we are exploring
possibilities for type inference. While we suspect that our limited subtyping
should not impede full Damas-Milner–style inference (Damas and Milner 1982),
Alms has several idioms that rely on existential types. We are exploring whether
an extension for first-class polymorphism, such as HML (Leijen 2009), would
be suitable for Alms.

Alms is not finished, but our prototype is at this point usable for experimentation.
It is based on a calculus, aλms , whose type system we have proved sound. While some
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parts of the type system are complex, we have seen in practice that Alms types are
tractable and Alms programs do not look very different from the functional programs
to which we are accustomed. It currently implements algebraic datatypes, exceptions,
pattern matching, concurrency, and opaque signature ascription. The language is
rich enough to express Vault-style typestate, a variety of static and dynamic locking
protocols, checked downcasts of one-use functions to unlimited-use functions, session
types, and more.
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A Additional Proofs
Conventions. We follow several conventions throughout:

• If there is a context ΣX and we introduce ΣX1 and ΣX2, this means that Σ =
ΣX1,ΣX2, up to permutation.

• Contexts ΣX1 and ΣX2 are taken to be disjoint.

• Following Barendregt, we use evasive relettering liberally. Bound (type) vari-
ables, as in λx:τ.e, Λα:κ.v, ∀α:κ.τ , λα.τ , and Παv.κ, are fresh for any syntax
that appears outside their scope.

A.1 Principal Qualifiers
Definition 3 (Kind semilattices). We partition the kinds by arity, where κj are the
kinds of arity j:

κ0 ::= ϕ

κj+1 ::= Παv.κj.

Then, subject to a context ∆ mapping type variables to kinds, (κj, <:,tj,⊥j) is a
bounded join semilattice, defined inductively for each arity j by:

ϕ1 t0 ϕ2 = ϕ1 t ϕ2

(Παv1.κj1) tj+1 (Παv2.κj2) = Παv1 t v2.(κj1 tj κ
j
2)

⊥0 = U

⊥j+1 = Πα�.⊥j.

We omit the arity superscript j when it is clear from context.

Proof. We show that the previous definition gives a bounded join semilattice, by
induction on j:

Case 0.

When ∆ is empty, qualifier expressions ϕ form the free bounded semilattice
over uninterpreted type variables (〈α〉), with join (t) and bottom U all as given
in the syntax of qualifier constants and expressions. When ∆ is non-empty, we
quotient the semilattice as follows: for each type variable α:U ∈ ∆, we add the
constraint that 〈α〉 = U.

Case i+ 1.

The semilattice on κi+1 is isomorphic to the product semilattice on v×κi. This
follows from definition 3 and by inspection of rule KSub-Arr, noting that the
addition of α:〈α〉 to the context does not quotient 〈α〉.
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Lemma 4 (Well-formed kind semilattice). For kinds κ1 and κ2 of the same arity j,
if ∆ ` κ1 and ∆ ` κ2 then ∆ ` κ1 t κ2 .

Proof. By induction on j:

Case 0.

Let ϕ1 = κ1 and ϕ2 = κ2. By inversion, ftv(ϕ1) ⊆ dom(∆) and ftv(ϕ2) ⊆
dom(∆). Then

• ftv(ϕ1 t ϕ2) ⊆ ftvϕ1 ∪ ftvϕ2 ⊆ dom ∆.

Case j′ + 1.

Then there are some κ′1, κ′2, v1, and v2 such that

• κ1 = Παv1.κ′1 and

• κ2 = Παv2.κ′2.

Then by definition 3,

• κ1 t κ2 = Παv1 t v2.κ′1 t κ′2.

By inversion of rule OK-Arr,

• ∆, α:〈α〉 ` κ′1 ,
• if α ∈ ftv(κ′1) then + v v1,

• ∆, α:〈α〉 ` κ′2 ,
• if α ∈ ftv(κ′2) then + v v2.

By the induction hypothesis,

• ∆, α:〈α〉 ` κ′1 t κ′2 .

Finally, if α ∈ ftv(κ′1 t κ′2), it must be in at least κ′1 or κ′2, which means that
either + v v1 or + v v2, which means that + v v1 t v2.

Lemma 5 (Unique kinds and unique variances).

1. If ∆ ` τ : κ and ∆ ` τ : κ′ then κ = κ′.

2. If ∆ ` α ∈ τ l v and ∆ ` α ∈ τ l v′ then v = v′.

Proof. By induction on the structure of τ .

1. For kinding:
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Case α.
The only applicable rule is K-Var. By inversion, it must be the case that
α:κ ∈ ∆. and α:κ′ ∈ ∆. Since contexts do not admit repetition, κ = κ′.

Case λα.τ1.
The only applicable rule is K-Abs. By inversion, there must be some κ1
and v1 where κ = Παv1.κ1 such that

• ∆, α:〈α〉 ` τ1 : κ1 and
• ∆, α:〈α〉 ` α ∈ τ l v1.

Likewise, there must be some κ′1 and v′1 where κ′ = Παv′
1.κ′1 such that

• ∆, α:〈α〉 ` τ1 : κ′1 and
• ∆, α:〈α〉 ` α ∈ τ l v′1.

By the induction hypothesis, κ1 = κ′1, and by the induction hypothesis
part (2), v1 = v′1. Therefore, κ = κ′.

Case τ1 τ2.
By inversion of rule K-App and the induction hypothesis twice, relying on
the fact that substitution is a function.

Case ∀α:κ1.τ1.
By inversion of rule K-All and the induction hypothesis, relying on the
fact that substitution is a function.

Case τ1
ϕ−→ τ2.

Then κ = ϕ = κ′.

Case χ.
The only applicable rule is one of K-Unit, K-Sum, or K-Prod, depending
on the form of χ.

2. For variance:

Case β.
If α = β then v = v′ = +. Otherwise, v = v′ = �.

Case λβ.τ1.
By inversion of rule V-Abs,

• ∆, β:〈β〉 ` α ∈ τ1 l v and
• ∆, β:〈β〉 ` α ∈ τ1 l v′.

By the induction hypothesis, v = v′.

Case τ1 τ2.
By inversion of rule V-App,
• ∆ ` α ∈ τ1 l v1,
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• ∆ ` α ∈ τ2 l v2, and
• ∆ ` τ1 : Πβv3.κ3

where v = v1 t (v2 · v3). Likewise by inversion,

• ∆ ` α ∈ τ1 l v′1,
• ∆ ` α ∈ τ2 l v′2, and
• ∆ ` τ1 : Πβv′

3.κ′3

where v′ = v′1 t (v′2 · v′3).
By the induction hypothesis twice, v1 = v′1 and v2 = v′2. By the induction
hypothesis at part (1), Πβv3.κ3 = Πβv′

3.κ′3, and thus v3 = v′3. Therefore,
v = v′.

Case ∀α:κ1.τ1.
As for λα.τ1, but with rule V-All.

Case τ1
ϕ−→ τ2.

As for τ1 τ2, but with rule V-Arr.

Case χ.
Then v = v′ = � by rule V-Con.

Corollary 6 (Unique context bounds). If ∆ ` Σ � ϕ and ∆ ` Σ � ϕ′ then ϕ = ϕ′.

Proof. By induction on the structure of Σ:

Case ·.
The only applicable rule is rule B-Nil, so ϕ = ϕ′ = U.

Case Σ′, α:κ.

The only applicable rule is rule B-ConsA. By inversion,

• ∆ ` Σ′ � ϕ and

• ∆ ` Σ′ � ϕ′.

Then by the induction hypothesis, ϕ = ϕ′.

Case Σ′, x:τ .

The only applicable rule is rule B-ConsX. By inversion there exist some ϕ1

and ϕ2 such that

• ∆ ` Σ′ � ϕ1 and

• ∆ ` τ : ϕ2

where ϕ = ϕ1 t ϕ2. Likewise, there exist some ϕ′1 and ϕ′2 such that
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• ∆ ` Σ′ � ϕ′1 and

• ∆ ` τ : ϕ′2

where ϕ′ = ϕ′1 t ϕ′2. By the induction hypothesis, ϕ1 = ϕ′1, and by lemma 5,
ϕ2 = ϕ′2. Thus, ϕ = ϕ′.

Case Σ′, `:τ .

The only applicable rule is rule B-ConsL, so ϕ = ϕ′ = A.

Lemma 7 (Context bounding).

1. If Γ ` Σ1 � ϕ1 and Γ ` Σ2 � ϕ2 then Γ ` Σ1,Σ2 � ϕ1 t ϕ2.

2. If Γ ` Σ � ϕ and Γ ` τ : ϕ′ where x:τ ∈ Σ then Γ ` ϕ′ <: ϕ.

Proof.

1. By induction on the structure of Σ2.

2. By induction on the structure of Σ.

Theorem 8 (Principal function qualifiers). If term Γ; Σ B λx:τ.e : τ1
ϕ′
−→ τ2, then

there is a least qualifier expression ϕ0 such that:

• Γ; Σ B λx:τ.e : τ1
ϕ0−→ τ2, and

• Γ ` ϕ0 <: ϕ for all ϕ such that Γ; Σ B λx:τ.e : τ1
ϕ−→ τ2.

Proof. By assumption, Γ; Σ B λx:τ.e : τ ′1
ϕ′
−→ τ ′2. Two rules apply at the root of

the typing derivation: the syntax-directed rule T-Abs and the subsumption rule
T-Subsume. Without loss of generality, we can collapse multiple subsumptions to
one by transitivity, or expand zero subsumptions to one by reflexivity, which means
that we need only consider derivations of the form

A : ` (Γ; Σ), x:τ  Γ′; Σ′

B : Γ′; Σ′ B e : τ2
C : Γ ` Σ � ϕ
D : Γ ` τ : ϕ1

Γ; Σ B λx:τ.e : τ
ϕ−→ τ2

T-Abs

J : ∆ ` τ <:− τ ′1
K : ∆ ` ϕ <: ϕ′

L : ∆ ` τ2 <:+ τ ′2

∆ ` τ ϕ−→ τ2 <:+ τ ′1
ϕ′
−→ τ ′2

TSub-Arr

Γ; Σ B λx:τ.e : τ ′1
ϕ′
−→ τ ′2

T-Subsume.

Now let Σ0 be Σ restricted to the free variables and locations of λx:τ.e. If x:τ ∈ Σ′

then let Σ′0 = Σ0, x:τ ; otherwise let Σ′0 = Σ0. Thus, ` (Γ; Σ0), x:τ  Γ′; Σ′0. By
corollary 6, let ϕ0 be the unique qualifier expression such that Γ ` Σ0 � ϕ0. By
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inspection of the typing rules, we may strengthen B to Γ′; Σ′0 B e : τ2, because we
removed only irrelevant assumptions from Σ′0. Thus, we can derive:

A′ : ` (Γ; Σ0), x:τ  Γ′; Σ′0
B′ : Γ′; Σ′0 B e : τ2
C ′ : Γ ` Σ0 � ϕ0

D : Γ ` τ : ϕ1

Γ; Σ′ B λx:τ.e : τ
ϕ0−→ τ2

T-Abs

J : ∆ ` τ <:− τ ′1
K′ : ∆ ` ϕ0 <: ϕ0

L : ∆ ` τ2 <:+ τ ′2

∆ ` τ ϕ0−→ τ2 <:+ τ ′1
ϕ0−→ τ ′2

TSub-Arr

Γ; Σ′ B λx:τ.e : τ ′1
ϕ0−→ τ ′2

T-Subsume

Γ; Σ B λx:τ.e : τ ′1
ϕ0−→ τ ′2

T-Weak.

We now must show that ϕ0 is the least usage qualifier that can be given to λx:τ.e.
Since ϕ0 is the least upper bound for Σ0, the only way to get a lower qualifier would
be to remove some variables from Σ0, but we defined Σ0 to contain only variables
relevant to λx:τ.e, which means that nothing else can be removed.

A.2 Type Soundness

A.2.1 Type Substitutions

Definition 9 (Type substitution). We define type substitution on a variety of syn-
tactic classes—types ([τ/α]τ ′), terms ([τ/α]e), and contexts ([τ/α]∆)—in the stan-
dard homomorphic, binding-respecting way, but only when τ is closed. Because we
need to define [τ/α](τ1

ϕ−→ τ2), we also need to define type substitution on kinds:
[τ/α]κ.

We require that τ be closed and well-formed, in particular, that · ` τ : κ′ for some
kind κ′ (uniquely determined by lemma 5). If κ′ is an arrow kind, then we define
[τ/α]κ = κ. On the other hand, if κ′ is a qualifier expression ϕ, then we define
[τ/α]κ = [ϕ/α]κ.

Lemma 10 (Type substitution on kind well-formedness). If ∆, α:κ′ ` κ and ∆ ` τ :
κ′ then [τ/α]∆ ` [τ/α]κ .

Proof. By cases on κ′”

Case Παv.κ′′.

Then [τ/α]κ = κ, so ∆ ` [τ/α]κ by weakening.

Case ϕ′.

By induction on the derivation of κ:
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Case
ftv(ϕ) ⊆ dom(∆)

∆, α:ϕ′ ` ϕ
.

By inversion, ftv(ϕ′) ⊆ dom(∆), and since α 6∈ ftv([ϕ′/α]ϕ), noting that
dom ∆ = dom([τ/α]∆), we know that ftv([ϕ′/α]ϕ) ∈ dom([τ/α]∆).

Case
if β ∈ ftv(κ) then + v v ∆, α:ϕ′, β:〈β〉 ` κ

∆, α:ϕ′ ` Πβv.κ
.

By the induction hypothesis, [τ/α]∆, β:〈β〉 ` [τ/α]κ . Since β is bound
with κ in scope, β is fresh for τ , which means that β ∈ [τ/α]κ if and only
if β ∈ ftv κ. Then by rule OK-Arr.

Lemma 11 (Qualifier substitution on qualifier subsumption). If ∆, α:ϕ |= ϕ1 v ϕ2

then [ϕ/α]∆ |= [ϕ/α]ϕ1 v [ϕ/α]ϕ2.

Proof. Let V be any valuation consistent with [ϕ/α]∆. That means that for all
β:ϕ′′ ∈ [ϕ/α]∆, V(β) v V(ϕ′′). Equivalently, for all β:ϕ′ ∈ ∆, we know that V(β) v
V([ϕ/α]ϕ′). (Note that β 6= α or else ∆, α:ϕ would be ill formed.)

Now let V ′ = V{α 7→ V(ϕ)}. Note that V ′(β) = V(β) and that V ′(ϕ′) =
V([ϕ/α]ϕ′). Then V ′(β) v V ′(ϕ′) for all β:ϕ′ ∈ ∆. Furthermore, we defined V ′
so that V ′(α) = V ′(ϕ), so V ′(α) v V ′(ϕ). Thus, V ′ is consistent with ∆, α:ϕ.

By definition 2, since ∆, α:ϕ |= ϕ1 v ϕ2, we now know that V ′(ϕ1) v V ′(ϕ2).
Note that V ′(ϕ1) = V([ϕ/α]ϕ1) and V ′(ϕ2) = V([ϕ/α]ϕ2). Then we know that
V([ϕ/α]ϕ1) v V([ϕ/α]ϕ2). Since V is an arbitrary valuation consistent with [ϕ/α]∆,
this means that [ϕ/α]∆ |= [ϕ/α]ϕ1 v [ϕ/α]ϕ2.

Corollary 12 (Type substitution on subkinding). If ∆, α:κ ` κ1 <: κ2 and · ` τ : κ
then [τ/α]∆ ` [τ/α]κ1 <: [τ/α]κ2.

Proof. By cases on the subkinding derivation:

Case
v1 v v2 ∆, β:〈β〉, α:κ ` κ′1 <: κ′2

∆, α:κ ` Πβv1.κ′1 <: Πβv2.κ′2
.

By the induction hypothesis and rule KSub-Arr.

Case
∆, α:κ |= ϕ1 v ϕ2

∆, α:κ ` ϕ1 <: ϕ2

.

We need to show that [τ/α]∆ |= [τ/α]ϕ1 v [τ/α]ϕ2. If κ the kind of τ , is not
a base kind, then this is trivially the case. Otherwise, there exists some ϕ such
that ∆, α:ϕ |= ϕ1 v ϕ2. Then by lemma 11, [ϕ/α]∆ |= [ϕ/α]ϕ1 v [ϕ/α]ϕ2.

Lemma 13 (Non-free type variables do not vary). If α 6∈ ftv τ then ∆ ` α ∈ τ l �.

Proof. By induction on the structure of τ .
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Lemma 14 (Type substitution on kinding and variance). For any type τ and kind κ
such that · ` τ : κ,

1. If ∆, α:κ ` τ ′ : κ′ then [τ/α]∆ ` [τ/α]τ ′ : [τ/α]κ′.

2. If ∆, β:〈β〉, α:κ ` β ∈ τ ′ l v, where β 6∈ ftv τ and β 6∈ ftv(∆, α:κ), then
[τ/α]∆, β:〈β〉 ` β ∈ [τ/α]τ ′ l v.

Proof. We proceed by mutual induction on the kinding and variance derivations.

1. For kinding:

Case
α′:κ′ ∈ ∆, α:κ ∆, α:κ ` κ′ ` ∆, α:κ; ·

∆, α:κ ` α′:κ′
.

By lemma 10, [τ/α]∆ ` [τ/α]κ′ .
If α 6= α′ then [τ/α]α′ = α′. Clearly α′:[τ/α]κ′ ∈ [τ/α](∆, α:κ). Then by
rule K-Var.
If α = α′ then κ = κ′ and [τ/α]α′ = τ . We know that · ` τ : κ, so by
weakening,
• [τ/α]∆ ` [τ/α]α′:κ′.

It remains to be shown that [τ/α]κ′ = κ′. If τ is a type operator, then by
definition 9, [τ/α]κ′ = κ′. Otherwise, κ′ is a type qualifier ϕ. Note that
we admit two forms of bindings for α:ϕ:

Case α:〈α〉.
Then [α/α]α = α.

Case α:ϕ where α 6∈ ftvϕ.
Then [ϕ/α]ϕ = ϕ.

Case
` ∆, α:κ; ·

∆, α:κ ` 1 : U
.

By rule K-Unit, since [τ/α]1 = 1 and [τ/α]U = U.

Case
∆, α:κ, β:〈β〉 ` τ ′′ : κ′′ ∆, α:κ, β:〈β〉 ` β ∈ τ ′′ l v

∆, α:κ ` λβ.τ ′′ : Πβv.κ′′
.

By the induction hypothesis,

• [τ/α]∆, β:〈β〉 ` [τ/α]τ ′′ : [τ/α]κ′′.

Since β is fresh and only τ ′′ and κ′′ appear in its scope, we know that
β 6∈ ftv τ ∪ ftv(∆, α:κ). Thus, we can apply the induction hypothesis at
part (2) to get

• [τ/α]∆, β:〈β〉 ` β ∈ [τ/α]τ ′′ l v.
Then by rule K-Abs.
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Case
∆, α:κ ` τ1 : Πβv.κ′′ ∆, α:κ ` τ2 : ϕ

∆, α:κ ` τ1 τ2 : [ϕ/β]κ′′
.

By the induction hypothesis twice,
• [τ/α]∆ ` [τ/α]τ1 : Πβv. [τ/α]κ′′ and
• [τ/α]∆ ` [τ/α]τ2 : [τ/α]ϕ.

By rule K-App,
• [τ/α]∆ ` [τ/α](τ1 τ2) : [[τ/α]ϕ/β][τ/α]κ′′.

Since β is bound in this rule with ϕ not in its scope, we know that β is not in
the free type variables of ϕ. Therefore, [[τ/α]ϕ/β][τ/α]κ′′ = [τ/α][ϕ/β]κ′′,
and thus
• [τ/α]∆ ` [τ/α](τ1 τ2) : [τ/α][ϕ/β]κ′′.

Case
∆, α:κ, β:κ′′ ` τ ′′ : ϕ ∆, α:κ ` κ′′

∆, α:κ ` ∀β:κ′′.τ ′′ : [A/β]ϕ
.

By lemma 10 and the induction hypothesis,
• [τ/α]∆ ` [τ/α]κ′′ and
• [τ/α]∆, β:[τ/α]κ′′ ` [τ/α]τ ′′ : [τ/α]ϕ.

Because β is fresh for τ , [A/β][τ/α]ϕ = [τ/α][A/β]ϕ, Then by rule K-All,
• [τ/α]∆ ` [τ/α](∀β:κ′′.τ ′′) : [τ/α][A/β]ϕ.

Case
∆, α:κ ` τ1 : ϕ1 ∆, α:κ ` τ2 : ϕ2 ∆, α:κ ` ϕ

∆, α:κ ` τ1
ϕ−→ τ2 : ϕ

.

By the induction hypothesis twice, lemma 10, and rule K-Arr.

Case
` ∆, α:κ; ·

∆, α:κ ` aref : Πβ±.A
.

As in the 〈〉 case.

Case
` ∆, α:κ; ·

∆, α:κ ` (+) : Πβ1+.Πβ2+.〈β1〉 t 〈β2〉
.

As in the previous case.

Case
` ∆, α:κ; ·

∆, α:κ ` (×) : Πβ1+.Πβ2+.〈β1〉 t 〈β2〉
.

As in the previous case.

2. For variance:

Case ∆, β:〈β〉, α:κ ` β ∈ β l +.
Since α 6= β, [τ/α]β = β, so [τ/α]∆, β:〈β〉 ` β ∈ β l +.

Case ∆, β:〈β〉, α:κ ` β ∈ β′ l �.
If β′ 6= α then [τ/α]β′ = β′, so [τ/α]∆, β:〈β〉 ` β ∈ [τ/α]β′ l �.
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If β′ = α, then we must consider because β 6∈ ftv τ , and by lemma 13,
[τ/α]∆, β:〈β〉 ` β ∈ τ l �.

Case
∆, α:κ, β:〈β〉, β′:〈β′〉 ` β ∈ τ ′′ l v

∆, β:〈β〉, α:κ ` β ∈ λβ′.τ ′′ l v
.

By the induction hypothesis and rule V-Abs.

Case

∆, β:〈β〉, α:κ ` β ∈ τ1 l v1 ∆, β:〈β〉, α:κ ` β ∈ τ2 l v2
∆, β:〈β〉, α:κ ` τ1 : Πβ′v3.κ3

∆, β:〈β〉, α:κ ` β ∈ τ1 τ2 l v1 t (v2 · v3)
.

By the induction hypothesis twice at part (2), the induction hypothesis
once at part (1), and rule V-App.

Case
∆, β:〈β〉, α:κ, β′:κ′ ` β ∈ τ ′′ l v1 v2 = if β ∈ ftv(κ′) then ± else �

∆, β:〈β〉, α:κ ` β ∈ ∀β′:κ′.τ ′′ l v1 t v2
.

By the induction hypothesis,
• [τ/α]∆, β:〈β〉, β′:[τ/α]κ′ ` β ∈ [τ/α]τ ′′ l v1.

Since β 6= α and β 6∈ ftv κ, β ∈ ftv κ′ iff β ∈ ftv[τ/α]κ′, so

• v2 = if β ∈ ftv(([τ/α]κ′)) then ± else �.

Then by rule V-All.

Case

∆, β:〈β〉, α:κ ` β ∈ τ1 l v1 ∆, β:〈β〉, α:κ ` β ∈ τ2 l v2
v3 = if β ∈ ftv(ϕ) then + else �

∆, β:〈β〉, α:κ ` β ∈ τ1
ϕ−→ τ2 l (−v1) t v2 t v3

.

By the induction hypothesis twice,
• [τ/α]∆, β:〈β〉 ` β ∈ [τ/α]τ1 l v1 and
• [τ/α]∆, β:〈β〉 ` β ∈ [τ/α]τ2 l v2.

Furthermore, note that β ∈ ftvϕ if and only if β ∈ (ftv[τ/α]ϕ). Because
β 6= α, the substitution cannot remove β, and because β 6∈ ftv τ , the
substitution canot add β. Thus,

• v3 = if β ∈ ftv(([τ/α]ϕ)) then + else �.

Then by rule V-Arr.

Case ∆, β:〈β〉, α:κ ` β ∈ χ l �.
Note that [τ/α]χ = χ. Then by rule V-Con.

Lemma 15 (Type substitution on type equivalence). If τ1 ≡ τ2 then [τ/α]τ1 ≡
[τ/α]τ2.

Proof. By induction on the type equivalence derivation τ1 ≡ τ2:
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Case τ1 ≡ τ1.

Then [τ/α]τ1 ≡ [τ/α]τ1 by rule E-Refl.

Case
τ2 ≡ τ1

τ1 ≡ τ2
.

By the induction hypothesis and rule E-Sym.

Case
τ1 ≡ τ3 τ3 ≡ τ2

τ1 ≡ τ2
.

By the induction hypothesis twice and rule E-Trans.

Case
τ11 ≡ τ21 τ12 ≡ τ22

τ11
ϕ−→ τ12 ≡ τ21

ϕ−→ τ22
.

By the induction hypothesis twice and rule E-Arr.

Case
τ ′1 ≡ τ ′2

∀β:κ′.τ ′1 ≡ ∀β:κ′.τ ′2
.

By the induction hypothesis twice and rule E-All.

Case
τ ′1 ≡ τ ′2

λβ.τ ′1 ≡ λβ.τ ′2
.

By the induction hypothesis and rule E-Abs.

Case
τ11 ≡ τ21 τ12 ≡ τ22

τ11 τ12 ≡ τ21 τ22
.

By the induction hypothesis twice and rule E-App.

Case (λβ.τ ′1) τ
′
2 ≡ [τ ′2/β]τ ′1.

Then

• [τ/α]τ1 = (λβ. [τ/α]τ ′1) [τ/α]τ ′2 and

• [τ/α]τ2 = [[τ/α]τ ′2/β][τ/α]τ ′1,

and finally

• (λβ. [τ/α]τ ′1) [τ/α]τ ′2 ≡ [[τ/α]τ ′2/β][τ/α]τ ′1.

by rule E-Beta.

Lemma 16 (Type substitution on subtyping). If ∆, α:κ ` τ1 <:v τ2 and · ` τ : κ
then [τ/α]∆ ` [τ/α]τ1 <:v [τ/α]τ2.

Proof. We proceed by induction on the subtyping derivation:
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Case
τ1 ≡ τ2 ∆, α:κ ` τ1 : κ ∆, α:κ ` τ2 : κ

∆, α:κ ` τ1 <:v τ2
.

By lemma 15, lemma 14 twice, and rule TSub-Eq.

Case
∆, α:κ ` τ1 <:v τ3 ∆, α:κ ` τ3 <:v τ2 ∆, α:κ ` τ3 : κ

∆, α:κ ` τ1 <:v τ2
.

By the induction hypothesis twice, lemma 14, and rule TSub-Trans.

Case
∆, α:κ ` τ2 <:−v τ1

∆, α:κ ` τ1 <:v τ2
.

By the induction hypothesis and rule TSub-Contra.

Case
∆, α:κ, β:〈β〉 ` τ ′1 <:v τ ′2
∆, α:κ ` λβ.τ ′1 <:v λβ.τ ′2

.

By the induction hypothesis and rule TSub-Abs.

Case

∆, α:κ ` τ11 : Παv1.κ1 ∆, α:κ ` τ21 : Παv2.κ2
∆, α:κ ` τ11 <:v τ21 ∆, α:κ ` τ12 <:v·(v1tv2) τ22

∆, α:κ ` τ11 τ12 <:v τ21 τ22
.

By the induction hypothesis twice, lemma 14 twice, and rule TSub-App.

Case
∆, α:κ, β:κ′ ` τ ′1 <:v τ ′2

∆, α:κ ` ∀β:κ′.τ ′1 <:v ∀β:κ′.τ ′2
.

Note that ∆, α:κ, β:κ′ = ∆, β:κ′, α:κ. Then by the induction hypothesis and
rule TSub-All.

Case
∆, α:κ ` τ11 <:−v τ21 ∆, α:κ ` τ12 <:v τ22 ∆, α:κ ` ϕ1 <:v ϕ2

∆, α:κ ` τ11
ϕ1−→ τ12 <:v τ21

ϕ2−→ τ22
.

By the induction hypothesis twice, corollary 12, and rule TSub-Arr.

Lemma 17 (Type substitution on context bounding). If ∆, α:κ ` Σ � ϕ and · ` τ : κ
then [τ/α]∆ ` [τ/α]Σ � [τ/α]ϕ.

Proof. By induction on the derivation of ∆, α:κ ` Σ � ϕ:

Case ∆, α:κ ` · � ϕ.

That is, Σ = ·. By inversion of rule B-Nil, ϕ = U. Noting that [τ/α]U = U, by
rule B-Nil,

• [τ/α]∆ ` · � [τ/α]U.
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Case
∆, α:κ ` Σ′ � ϕ1 ∆, α:κ ` τ ′ : ϕ2

∆, α:κ ` Σ′, x:τ ′ � ϕ1 t ϕ2

.

By the induction hypothesis and lemma 14,

• [τ/α]∆ ` [τ/α]Σ′ � [τ/α]ϕ1 and

• [τ/α]∆ ` [τ/α]τ ′ : [τ/α]ϕ2.

Then by rule B-ConsX,

• [τ/α]∆ ` [τ/α](Σ′, x:τ ′) � [τ/α](ϕ1 t ϕ2).

Case
∆, α:κ ` Σ′ � ϕ1 ∆, α:κ ` τ ′ : ϕ2

∆, α:κ ` Σ′, `:τ ′ � A
.

By the induction hypothesis and lemma 14,

• [τ/α]∆ ` [τ/α]Σ′ � [τ/α]ϕ1 and

• [τ/α]∆ ` [τ/α]τ ′ : [τ/α]ϕ2.

Then by rule B-ConsL, [τ/α]∆ ` [τ/α]Σ′, `:[τ/α]τ ′ � [τ/α]A

Case
∆, α:κ ` Σ′ � ϕ ∆, α:κ ` κ′

∆, α:κ ` Σ′, α′:κ′ � ϕ
.

By the induction hypothesis, lemma 10, and rule B-ConsA.

Lemma 18 (Type substitution on context well-formedness). If ` Γ, α:κ; Σ and · `
τ : κ then ` [τ/α]Γ; [τ/α]Σ.

Proof. By inversion of rule Wf, lemma 17 twice, and rule Wf.

Lemma 19 (Type substitution on context extension). If ` (Γ0, α:κ; Σ0),Σ
′  Γ1, α:κ; Σ1

and · ` τ : κ then ` ([τ/α]Γ0; [τ/α]Σ0), [τ/α]Σ′  [τ/α]Γ1; [τ/α]Σ1.

Proof. By induction on the derivation of ` (Γ, α:κ; Σ),Σ1  Γ′, α:κ; Σ′:

Case ` (Γ, α:κ; Σ), · Γ, α:κ; Σ.

Then [τ/α]· = ·, so
• ` ([τ/α]Γ; [τ/α]Σ), · [τ/α]Γ; [τ/α]Σ

by rule X-Nil.

Case
Γ0, α:κ ` τ : U ` (Γ0, α:κ, x:τ ′; Σ0),Σ

′  Γ1, α:κ; Σ1

` (Γ0, α:κ; Σ0), x:τ ′,Σ′  Γ1, α:κ; Σ1

.

Note that because τ is closed, α:κ and x:τ ′ commute. By lemma 14 and the
induction hypothesis,

• [τ/α]Γ0 ` [τ/α]τ ′ : U and

48



A ADDITIONAL PROOFS A.2 Type Soundness

• ` ([τ/α](Γ0, x:τ ′); [τ/α]Σ0), [τ/α]Σ′  [τ/α]Γ1; [τ/α]Σ1.

Then by rule X-ConsU.

Case
Γ0, α:κ ` τ ′ : ϕ ` (Γ0, α:κ; Σ0, x:τ ′),Σ′  Γ1, α:κ; Σ1

` (Γ0, α:κ; Σ0), x:τ ′,Σ′  Γ1, α:κ; Σ1

.

By lemma 14 and the induction hypothesis,

• [τ/α]Γ0 ` [τ/α]τ ′ : [τ/α]ϕ and
• ` ([τ/α]Γ0; [τ/α](Σ0, x:τ ′)), [τ/α]Σ′  [τ/α]Γ1; [τ/α]Σ1,

and finally

• ` ([τ/α]Γ0; [τ/α]Σ0), [τ/α](x:τ ′,Σ′) [τ/α]Γ1; [τ/α]Σ1

by rule X-ConsA.

Lemma 20 (Type substitution on typing). If Γ, α:κ; Σ B e : τ and · ` τ ′ : κ then
[τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α]e : [τ ′/α]τ .

Proof. By induction on the height of the typing derivation:

Case
Γ, α:κ; Σ B e : τ ′′ Γ, α:κ ` τ ′′ <:+ τ Γ, α:κ ` τ : ϕ

Γ, α:κ; Σ B e : τ
.

By the induction hypothesis,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α]e : [τ ′/α]τ ′′.

By lemma 16 and lemma 14,

• [τ ′/α]Γ ` [τ ′/α]τ ′′ <:+ [τ ′/α]τ and
• [τ ′/α]Γ ` [τ ′/α]τ : [τ ′/α]ϕ.

Then by rule T-Subsume,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α]e : [τ ′/α]τ.

Case
Γ′1; Σ1 B e : τ ` Γ1,Γ2, α:κ; Σ1,Σ2

Γ1,Γ2, α:κ; Σ1,Σ2 B e : τ
.

There are two possibilities for Γ′1:

Case Γ′1 = Γ1.
Then by weakening, Γ1, α:κ; Σ1 B e : τ . This derivation has the same
height, so we can apply the induction hypothesis as in the next case.

Case Γ′1 = Γ1, α:κ.
Then by the induction hypothesis,
• [τ ′/α]Γ1; [τ ′/α]Σ1 B [τ ′/α]e : [τ ′/α]τ,
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by lemma 18,

• ` [τ ′/α](Γ1,Γ2); [τ ′/α](Σ1,Σ2),

and by weakening,

• [τ ′/α](Γ1,Γ2); [τ ′/α](Σ1,Σ2) B [τ ′/α]e : [τ ′/α]τ.

Case
x:τ ∈ Γ, α:κ,Σ Γ ` τ : ϕ ` Γ, α:κ; Σ

Γ, α:κ; Σ B x : τ
.

Then x:τ ∈ Γ,Σ, and thus

• x:[τ ′/α]τ ∈ [τ ′/α]Γ, [τ ′/α]Σ.

By lemma 14 and lemma 18,

• [τ ′/α]Γ ` [τ ′/α]τ : [τ ′/α]ϕ and

• ` [τ ′/α]Γ; [τ ′/α]Σ.

Note that [τ ′/α]x = x. Then by rule T-Var,

• [τ ′/α]Γ; [τ ′/α]Σ B x : [τ ′/α]τ.

Case
`:τ1 ∈ Σ · ` τ1 : ϕ ` Γ, α:κ; Σ

Γ, α:κ; Σ B ptr ` : aref τ1
.

Since τ1 types in the empty context, α is not free in τ1, so [τ ′/α]τ1 = τ1.
Furthermore,

• [τ ′/α](ptr `) = ptr ` and

• `:τ1 ∈ [τ ′/α]Σ.

By lemma 18,

• ` [τ ′/α]Γ; [τ ′/α]Σ.

Then by rule T-Ptr,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α](ptr `) : [τ ′/α](aref τ1).

Case

` (Γ, α:κ; Σ), x:τ1  Γ′; Σ′

Γ′; Σ′ B e2 : τ2 Γ, α:κ ` Σ � ϕ Γ, α:κ ` τ1 : ϕ1

Γ, α:κ; Σ B λx:τ1.e2 : τ1
ϕ−→ τ2

.

Let Γ′′, α:κ = Γ′, and note that ` (Γ; Σ), x:τ1  Γ′′; Σ′. By the induction
hypothesis,

• [τ ′/α]Γ′′; [τ ′/α]Σ′ B [τ ′/α]e2 : [τ ′/α]τ2.

By lemma 19, lemma 17, and lemma 14,
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• ` ([τ ′/α]Γ; [τ ′/α]Σ), x:[τ ′/α]τ1  [τ ′/α]Γ′′; [τ ′/α]Σ′,

• [τ ′/α]Γ ` [τ ′/α]Σ � [τ ′/α]ϕ, and

• [τ ′/α]Γ ` [τ ′/α]τ1 : [τ ′/α]ϕ1.

Then by rule T-Abs,

• [τ ′/α]Γ; [τ ′/α]Σ B λx:[τ ′/α]τ1. [τ
′/α]e2 : [τ ′/α](τ1

ϕ−→ τ2).

Case
Γ, α:κ; Σ1 B e1 : τ1

ϕ−→ τ2 Γ, α:κ; Σ2 B e2 : τ1

Γ, α:κ; Σ1,Σ2 B e1 e2 : τ2
.

By the induction hypothesis twice,

• [τ ′/α]Γ; [τ ′/α]Σ1 B [τ ′/α]e1 : [τ ′/α]τ1
[τ ′/α]ϕ−−−−→ [τ ′/α]τ2 and

• [τ ′/α]Γ; [τ ′/α]Σ2 B [τ ′/α]e2 : [τ ′/α]τ1.

Then by rule T-App,

• [τ ′/α]Γ; [τ ′/α](Σ1,Σ2) B [τ ′/α](e1 e2) : [τ ′/α]τ2.

Case
Γ, α:κ, α1:κ1; Σ B e1 : τ1 Γ, α:κ ` κ1

Γ, α:κ; Σ B Λα1:κ1.v1 : ∀α1:κ1.τ1
.

By lemma 10 and the induction hypothesis,

• [τ ′/α]Γ ` [τ ′/α]κ1 and

• [τ ′/α]Γ, α1:[τ
′/α]κ1; [τ ′/α]Σ B [τ ′/α]v1 : [τ ′/α]τ1,

and by rule T-TAbs,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α](Λα1:κ1.v1) : [τ ′/α](∀α1:κ1.τ1).

Case
Γ, α:κ; Σ B e1 : ∀α1:κ1.τ2 Γ, α:κ ` τ1 : κ1

Γ, α:κ; Σ B e1[τ1] : [τ1/α1]τ2
.

By the induction hypothesis,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α]e1 : ∀α1:[τ
′/α]κ1. [τ

′/α]τ2,

and by lemma 14,

• [τ ′/α]Γ ` [τ ′/α]τ1 : [τ ′/α]κ1.

Note that [[τ ′/α]τ1/α1][τ
′/α]τ2 = [τ ′/α][τ1/α1]τ2. Then by rule T-TApp,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α](e1[τ1]) : [τ ′/α][τ1/α1]τ2.
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Case
Γ, α:κ; Σ B e1 : τ

U−→ τ

Γ, α:κ; Σ B fix e1 : τ
.

By the induction hypothesis,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α]e1 : [τ ′/α]τ
U−→ [τ ′/α]τ.

Then by rule T-Fix,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α](fix e1) : [τ ′/α]τ.

Case
` Γ, α:κ; Σ

Γ, α:κ; Σ B 〈〉 : 1
.

By lemma 18,

• ` [τ ′/α]Γ; [τ ′/α]Σ,

and by rule T-Unit, [τ ′/α]Γ; [τ ′/α]Σ B 〈〉 : 1.

Case
Γ, α:κ; Σ B e1 : τ1 Γ, α:κ ` τ2 : ϕ

Γ, α:κ; Σ B ι1 e1 : τ1 + τ2
.

By the induction hypothesis,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α]e1 : [τ ′/α]τ1,

and by lemma 14,

• [τ ′/α]Γ ` [τ ′/α]τ2 : [τ ′/α]ϕ.

By rule T-Inl,

• [τ ′/α]Γ; [τ ′/α]Σ B [τ ′/α](ι1 e1) : [τ ′/α](τ1 + τ2).

Case
Γ, α:κ; Σ B e2 : τ2 Γ, α:κ ` τ1 : ϕ

Γ, α:κ; Σ B ι2 e2 : τ1 + τ2
.

As in the previous case.

Case

Γ, α:κ; Σ1 B e′ : τ1 + τ2
` (Γ, α:κ; Σ2), x1:τ1  Γ1; Σ21 Γ1; Σ21 B e1 : τ
` (Γ, α:κ; Σ2), x2:τ2  Γ2; Σ22 Γ2; Σ22 B e2 : τ

Γ, α:κ; Σ1,Σ2 B case e′ of ι1 x1 → e2; ι2 x2 → e2 : τ
.

Let Γ′1, α:κ = Γ1 and Γ′2, α:κ = Γ2. Then by the induction hypothesis,

• [τ ′/α]Γ; [τ ′/α]Σ1 B [τ ′/α]e′ : [τ ′/α]τ1 + [τ ′/α]τ2,

• [τ ′/α]Γ′1; [τ ′/α]Σ21 B [τ ′/α]e1 : [τ ′/α]τ , and

• [τ ′/α]Γ′2; [τ ′/α]Σ22 B [τ ′/α]e2 : [τ ′/α]τ.
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By lemma 19,

• ` ([τ ′/α]Γ; [τ ′/α]Σ2), x1:[τ
′/α]τ1  [τ ′/α]Γ′1; [τ ′/α]Σ21 and

• ` ([τ ′/α]Γ; [τ ′/α]Σ2), x2:[τ
′/α]τ2  [τ ′/α]Γ′1; [τ ′/α]Σ22.

Then by rule T-Choose,

• [τ ′/α]Γ; [τ ′/α](Σ1,Σ2) B [τ ′/α](case e′ of ι1 x1 → e2; ι2 x2 → e2) : [τ ′/α]τ.

Case
Γ, α:κ; Σ1 B v1 : τ1 Γ, α:κ; Σ2 B v2 : τ2

Γ, α:κ; Σ1,Σ2 B 〈v1, v2〉 : τ1 × τ2
.

By the induction hypothesis twice and rule T-Pair.

Case

Γ, α:κ; Σ1 B e′ : τ1 × τ2
` (Γ, α:κ; Σ2), x1:τ1, x2:τ2  Γ′; Σ′ Γ′; Σ′ B e1 : τ

Γ, α:κ; Σ1,Σ2 B case e′ of 〈x1, x2〉 → e1 : τ
.

Let Γ′′, α:κ = Γ′′. Then by the induction hypothesis twice and lemma 19,

• [τ ′/α]Γ; [τ ′/α]Σ1 B [τ ′/α]e′ : [τ ′/α]τ1 × [τ ′/α]τ2,

• [τ ′/α]Γ′′; [τ ′/α]Σ′ B [τ ′/α]e1 : [τ ′/α]τ , and

• ` ([τ ′/α]Γ; [τ ′/α]Σ2), x1:[τ
′/α]τ1, x2:[τ

′/α]τ2  [τ ′/α]Γ′′; [τ ′/α]Σ′

Then by rule T-Unpair,

• [τ ′/α]Γ; [τ ′/α](Σ1,Σ2) B [τ ′/α](case e′ of 〈x1, x2〉 → e1) : [τ ′/α]τ.

Case
Γ, α:κ; Σ B e1 : τ1

Γ, α:κ; Σ B new e1 : aref τ1
.

By the induction hypothesis and rule T-New.

Case
Γ, α:κ; Σ1 B e1 : aref τ1 Γ, α:κ; Σ2 B e2 : τ2

Γ, α:κ; Σ1,Σ2 B swap e1 e2 : aref τ2 × τ1
.

By the induction hypothesis twice and rule T-Swap.

Case
Γ, α:κ; Σ B e1 : aref τ1

Γ, α:κ; Σ B delete e1 : 1
.

By the induction hypothesis and rule T-Delete.

A.2.2 Properties of Contexts

Observation 21 (Strengthening).
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1. Type- and kind-level judgments are unaffected by variables and locations in the
domain of the context. Let Γ′ be a context with no type variable bindings, that
is, there are no α:κ ∈ Γ′. Then:

(a) If Γ,Γ′ ` κ then Γ ` κ .
(b) If Γ,Γ′ ` τ : κ then Γ ` τ : κ.

(c) If Γ,Γ′ ` τ1 <:v τ2 then Γ ` τ1 <:v τ2.

(d) If Γ,Γ′ ` κ1 <: κ2 then Γ ` κ2 <: κ2.

(e) If Γ,Γ′ ` α ∈ τ l v then Γ ` α ∈ τ l v.
(f) If Γ,Γ′ ` Σ � ϕ then Γ ` Σ � ϕ.

(g) If ` (Γ0; Σ0),Γ
′  Γ; Σ and one of the preceding judgments holds in Γ then

it holds in Γ0 as well.

2. The context bounding judgment is unaffected by type variables in the domain
of the subject context; The context well-formedness judgments are unaffected by
type variables in the domain of the affine context. Let ∆′ by a context with no
variables nor locations, only type variables. Then:

(a) ∆ ` Σ,∆′ � ϕ if and only if ∆ ` Σ � ϕ.

(b) ` Γ; Σ,∆′ if and only if ` Γ; Σ.

(c) If Γ; Σ,∆′ B e : τ then Γ; Σ B e : τ .

Justification.

1. (a-f) By inspection of the rules we can see that these judgments never directly
observe variables or locations in their context, and they never indirectly
observe them through appeal to some other judgment not sharing this
property.

(g) Observe that Γ may differ from Γ0 only by adding the types of some vari-
ables.

2. (a) By induction on the length of ∆′.

(b) By the previous subpart.

(c) Observe that no rule for the typing judgment looks up a type variable in
Σ, and furthermore, the only rules to which it passes Σ are covered by the
previous two subparts.

Lemma 22 (Contexts close terms). If Γ; Σ B e : τ and x ∈ fv e then there exists
some τ ′ such that x:τ ′ ∈ Γ,Σ.

Proof. By inspection of the typing rules, we see that x can only be typed if it occurs
in the context, and furthermore the typing rules must type every subterm of e.
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Lemma 23 (Coalescing of context extension). ` (Γ0; Σ0),Σ
′
1  Γ1; Σ1 and ` (Γ1; Σ1),Σ

′
2  

Γ2; Σ2 if and only if ` (Γ0; Σ0),Σ
′
1,Σ

′
2  Γ2; Σ2

Proof. By induction on the structure of Σ′1:

Case ·.
Then

• ` (Γ0; Σ0), · Γ0; Σ0,

• ` (Γ0; Σ0),Σ
′
2  Γ2; Σ2, and

• ` (Γ0; Σ0), ·,Σ′2  Γ2; Σ2.

Case α:κ,Σ′′1.

There is no rule for adding α:κ, so both sides of the bi-implication are false.

Case `:τ,Σ′′1.

There is no rule for adding `:τ , so both sides of the bi-implication are false.

Case x:τ,Σ′′1.

Note that Γ0, Γ1 and Γ2 all support the same type- and kind-level judgments,
by observation 21.

If there is no ϕ such that Γ0 ` τ : ϕ, there is no rule for adding x:τ , so both
sides of the bi-implication are false.

If there exists some ϕ such that Γ0 ` τ : ϕ, then by inversion of rule X-ConsA
twice, it suffices to show that ` (Γ0; Σ0, x:τ),Σ′′1  Γ1; Σ1 and ` (Γ1; Σ1),Σ

′
2  

Γ2; Σ2 if and only if ` (Γ0; Σ0, x:τ),Σ′′1,Σ
′
2  Γ2; Σ2. This holds by the induction

hypothesis.

If Γ0 ` τ : U, then by inversion of rule X-ConsU twice, it suffices to show
that ` (Γ0, x:τ ; Σ0),Σ

′′
1  Γ1; Σ1 and ` (Γ1; Σ1),Σ

′
2  Γ2; Σ2 if and only if

` (Γ0, x:τ ; Σ0),Σ
′′
1,Σ

′
2  Γ2; Σ2. This too holds by the induction hypothesis.

Lemma 24 (Context extension soundness). Suppose that ` (Γ0; Σ0),Σ
′  Γ; Σ. Then

` Γ0; Σ0 if and only if ` Γ; Σ.

Proof. By induction on the derivation of ` (Γ0; Σ0),Σ
′  Γ; Σ:

Case ` (Γ; Σ), · Γ; Σ.

Trivially.

Case
Γ0 ` τ : U ` (Γ0, x:τ ; Σ0),Σ

′  Γ1; Σ1

` (Γ0; Σ0), x:τ,Σ′  Γ1; Σ1

.

Suppose that ` Γ0; Σ0. Then there exists some ϕ such that
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• Γ0 ` Γ0 � U and

• Γ0 ` Σ0 � ϕ.

By rule X-ConsU and weakening,

• Γ0, x:τ ` Γ0, x:τ � U and

• Γ0, x:τ ` Σ0 � ϕ.

Then by the induction hypothesis, ` Γ1; Σ1.

Conversely, suppose that ` Γ1; Σ1. By the induction hypothesis, ` Γ0, x:τ ; Σ0,
which means there exists some ϕ such that

• Γ0, x:τ ` Γ0, x:τ � U and

• Γ0, x:τ ` Σ0 � ϕ.

By inversion of rule X-ConsU and observation 21,

• Γ0 ` Γ0 � U and

• Γ0 ` Σ0 � ϕ.

Case
Γ0 ` τ : ϕ ` (Γ0; Σ0, x:τ),Σ′  Γ1; Σ1

` (Γ0; Σ0), x:τ,Σ′  Γ1; Σ1

.

Suppose that ` Γ0; Σ0. Then

• Γ0 ` Γ0 � U and

• Γ0 ` Σ0 � ϕ0.

By rule X-ConsA

• Γ0 ` Σ0, x:τ � ϕ0 t ϕ.

Then by the induction hypothesis, ` Γ1; Σ1.

Conversely, suppose that ` Γ1; Σ1. By the induction hypothesis, ` Γ0; Σ0, x:τ ,
which means there exists some ϕ′ such that.

• Γ0 ` Γ0 � U and

• Γ0 ` Σ0, x:τ � ϕ′.

By inversion of rule X-ConsA, there exists some ϕ0 such that

• Γ0 ` Σ0 � ϕ0

where ϕ′ = ϕ0 t ϕ. Then by rule Wf.
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A.2.3 Regularity Properties

Lemma 25 (Regularity of kinding). If ∆ ` τ : κ then ∆ ` ∆.

Proof. By induction on the kinding derivation. Rules K-Var, K-Unit, K-Sum,
K-Prod, and K-Ref have ∆ ` ∆ as a premise. Rules K-App and K-Arr use ∆ as
the context for a kinding judgment in the premise, so it’s well-formed by the induction
hypothesis. The remaining two cases:

Case
∆, α:〈α〉 ` τ : κ ∆, α:〈α〉 ` α ∈ τ l v

∆ ` λα.τ : Παv.κ
.

By the induction hypothesis, ∆, α:〈α〉 ` ∆, α:〈α〉. By inversion of rule Wf-ConsA,
∆, α:〈α〉 ` ∆, and since α is fresh for ∆, we can strangthen to ∆ ` ∆.

Case
∆, α:κ ` τ : ϕ ∆ ` κ

∆ ` ∀α:κ.τ : [A/α]ϕ
.

By the induction hypothesis, ∆, α:κ ` ∆, α:κ. Then by inversion of rule Wf-ConsA,
∆, α:κ ` ∆. Since α is fresh for ∆, we can strengthen to ∆ ` ∆.

Lemma 26 (Regularity of typing). If Γ; Σ B e : τ then ` Γ; Σ.

Proof. By induction on the typing derivation.
Rules T-Subsume, T-TApp, T-Fix, T-Inl, T-Inr, T-New, and T-Delete use

the same context Γ; Σ for in a typing derivation premise, so these cases hold by the
induction hypothesis.

Rules T-Weak, T-Var, T-Ptr, and T-Unit have ` Γ; Σ explicitly as a premise.
We consider the remaining rules by cases:

Case
` (Γ; Σ), x:τ1  Γ′; Σ′ Γ′; Σ′ B e : τ2 Γ ` Σ � ϕ Γ ` τ1 : ϕ1

Γ; Σ B λx:τ1.e : τ1
ϕ−→ τ2

.

By the induction hypothesis, ` Γ′; Σ′. Then by lemma 24.

Case
Γ; Σ1 B e1 : τ1

ϕ−→ τ2 Γ; Σ2 B e2 : τ1

Γ; Σ1,Σ2 B e1 e2 : τ2
.

By the induction hypothesis twice, ` Γ; Σ1 and ` Γ; Σ2. By inversion of rule Wf
twice, there exist some ϕ1 and ϕ2 such that

• Γ ` Γ � U,

• Γ ` Σ1 � ϕ1, and

• Γ ` Σ2 � ϕ2.

By lemma 7,

• Γ ` Σ1,Σ2 � ϕ1 t ϕ2.
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Then by rule Wf.

Case
Γ, α:κ; Σ B v : τ

Γ; Σ B Λα:κ.v : ∀α:κ.τ
.

By the induction hypothesis, ` Γ, α:κ; Σ. By inversion of rule Wf, there exists
some ϕ such that

• Γ, α:κ ` Γ, α:κ � U and

• Γ, α:κ ` Σ � ϕ.

By inversion of rule X-ConsA,

• Γ, α:κ ` Γ � U.

Note that α is bound, with only v and τ in its scope, so it cannot appear
elsewhere in Γ or Σ, so we have that

• Γ ` Γ � U and

• Γ ` Σ � ϕ.

Then by rule Wf.

Case

Γ; Σ B e : τ1 + τ2
` (Γ; Σ′), x1:τ1  Γ1; Σ1 Γ1; Σ1 B e1 : τ
` (Γ; Σ′), x2:τ2  Γ2; Σ2 Γ2; Σ2 B e2 : τ

Γ; Σ,Σ′ B case e of ι1 x1 → e1; ι2 x2 → e2 : τ
.

By the induction hypothesis twice, ` Γ; Σ and ` Γ1; Σ2. By lemma 24,

• ` Γ; Σ′

. Then by inversion of rule Wf twice,

• Γ ` Γ � U,

• Γ ` Σ � ϕ, and

• Γ ` Σ′ � ϕ′.

By lemma 7, Γ ` Σ,Σ′ � ϕ t ϕ′. Then by rule Wf.

Case
Γ; Σ1 B e1 : τ1 Γ; Σ2 B e2 : τ2

Γ; Σ1,Σ2 B 〈e1, e2〉 : τ1 × τ2
.

As in the T-App case.

Case
Γ; Σ1 B e : τ1 × τ2 ` (Γ; Σ2), x1:τ1, x2:τ2  Γ′; Σ′ Γ′; Σ′ B e1 : τ

Γ; Σ1,Σ2 B case e of 〈x1, x2〉 → e1 : τ
.

As in the T-Choose case.
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Case
Γ; Σ1 B e1 : aref τ1 Γ; Σ2 B e2 : τ2

Γ; Σ1,Σ2 B swap e1 e2 : aref τ2 × τ1
.

As in the T-App case.

Lemma 27 (Variance coherence). Suppose that

• ∆, β:〈β〉 ` ∆, β:〈β〉,

• ∆, β:〈β〉 ` τ : κ,

• ∆, β:〈β〉 ` β ∈ τ l v, and

• β 6∈ ftv ∆.

If β ∈ ftv κ then + v v.

Proof. By induction on the kinding derivation:

Case ∆, β:〈β〉 ` β:κ.

Then v = +.

Case ∆, β:〈β〉 ` α:κ.

By inversion of rule K-Var, α:κ ∈ ∆. Then β 6∈ ftv ∆ contradicts β ∈ ftv κ, so
this case is vacuous.

Case
∆, β:〈β〉, α:〈α〉 ` τ ′ : κ′ ∆, β:〈β〉, α:〈α〉 ` α ∈ τ ′ l v′

∆, β:〈β〉 ` λα.τ ′ : Παv′
.κ′

.

By inversion of rule V-Abs,

• ∆, β:〈β〉, α:〈α〉 ` β ∈ τ ′ l v.

If β ∈ ftv(Παv′
.κ′) then β ∈ ftv κ′. Then by the induction hypothesis, + v v.

Case
∆, β:〈β〉 ` τ1 : Παv3.κ3 ∆, β:〈β〉 ` τ2 : ϕ

∆, β:〈β〉 ` τ1 τ2 : [ϕ/α]κ3
.

By inversion of rule V-App, there exist some v1 and v2 such that

• ∆, β:〈β〉 ` β ∈ τ1 l v1,
• ∆, β:〈β〉 ` β ∈ τ2 l v2, and
• v = v1 t v2v3.

If β ∈ ftv([ϕ/α]κ3) then either β ∈ ftv κ3 or both β ∈ ftvϕ and α ∈ ftv κ3:

• If β ∈ ftv κ3, then β ∈ Παv3.κ3. Then by the induction hypothesis, + v v1,
so + v v1 t v2v3 as well.
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• If β ∈ ftvϕ and α ∈ ftv κ3, then by the induction hypothesis, + v v2, and
because Παv3.κ3 is well-formed, + v v3. Then + v v1 t v2v3.

Case
∆, β:〈β〉, α:κ′ ` τ ′ : ϕ ∆, β:〈β〉 ` κ′

∆, β:〈β〉 ` ∀α:κ′.τ ′ : [A/α]ϕ
.

By inversion of rule V-All,

• ∆, β:〈β〉, α:κ′ ` β ∈ τ ′ l v1 and

• v2 = if β ∈ ftv(κ′) then ± else �

where v = v1 t v2. If β ∈ ftv([A/α]ϕ) then β ∈ ftvϕ. Then by the induction
hypothesis + v v1, which means that + v v1 t v2.

Case
∆, β:〈β〉 ` τ1 : ϕ1 ∆, β:〈β〉 ` τ2 : ϕ2 ∆, β:〈β〉 ` ϕ

∆, β:〈β〉 ` τ1
ϕ−→ τ2 : ϕ

.

By inversion of rule V-Arr, there exist some v1, v2, and v3 such that

• ∆, β:〈β〉 ` β ∈ τ1 l v1,
• ∆, β:〈β〉 ` β ∈ τ2 l v2,
• v3 = if β ∈ ftv(ϕ) then + else �, and

• v = −v1 t v2 t v3.

If β ∈ ftvϕ then v3 = +, so + <: −v1 t v2 t v3.

Case
` ∆, β:〈β〉; ·

∆, β:〈β〉 ` 1 : U
.

β 6∈ ftv κ.

Case
` ∆, β:〈β〉; ·

∆, β:〈β〉 ` (+) : Πα1
+.Πα2

+.〈α1〉 t 〈α2〉
.

β 6∈ ftv κ.

Case
` ∆, β:〈β〉; ·

∆, β:〈β〉 ` (×) : Πα1
+.Πα2

+.〈α1〉 t 〈α2〉
.

β 6∈ ftv κ.

Case
` ∆, β:〈β〉; ·

∆, β:〈β〉 ` aref : Πα±.A
.

β 6∈ ftv κ.

Lemma 28 (Type kinds are well-formed). If ∆ ` τ : κ then ∆ ` κ .

Proof. By induction on the kinding derivation:
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Case
α:κ ∈ ∆ ∆ ` κ

∆ ` α:κ
.

By the premise.

Case
∆, α:〈α〉 ` τ : κ ∆, α:〈α〉 ` α ∈ τ l v

∆ ` λα.τ : Παv.κ
.

By the induction hypothesis,

• ∆, α:〈α〉 ` κ .

By lemma 27, if α ∈ ftv κ then + v v. Then by rule OK-Arr.

Case
∆ ` τ1 : Παv.κ ∆ ` τ2 : ϕ

∆ ` τ1 τ2 : [ϕ/α]κ
.

By the induction hypothesis twice,

• ∆ ` Παv.κ and

• ∆ ` ϕ .

Then by inversion rule OK-Arr on the former,

• ∆, α:〈α〉 ` κ .

Then by lemma 10.

Case
∆, α:κ ` τ : ϕ ∆ ` κ

∆ ` ∀α:κ.τ : [A/α]ϕ
.

By the induction hypothesis,

• ∆, α:κ ` ϕ ,

and by inversion of rule OK-Qual,

• ftv(ϕ) ⊆ dom(∆, α:κ).

Then

• ftv([A/α]ϕ) ⊆ dom(∆),

and by rule OK-Qual,

• ∆ ` [A/α]ϕ .
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Case
∆ ` τ1 : ϕ1 ∆ ` τ2 : ϕ2 ∆ ` ϕ

∆ ` τ1
ϕ−→ τ2 : ϕ

.

By the premise.

Case ∆ ` 1 : U.

By rule OK-Qual.

Case ∆ ` (+) : Πα1
+.Πα2

+.〈α1〉 t 〈α2〉.
By rule OK-Arr twice and rule OK-Qual.

Case ∆ ` (×) : Πα1
+.Πα2

+.〈α1〉 t 〈α2〉.
By rule OK-Arr twice and rule OK-Qual.

Case ∆ ` aref : Πα±.A.

By rule OK-Arr and rule OK-Qual.

Lemma 29 (Term types are well-kinded). If Γ; Σ B e : τ then there exists some ϕ
such that Γ ` τ : ϕ.

Proof. By induction on the typing derivation:

Case
Γ; Σ B e : τ ′′ Γ ` τ ′′ <:+ τ Γ ` τ : ϕ′

Γ; Σ B e : τ
.

Let ϕ = ϕ′.

Case
Γ1; Σ1 B e : τ ` Γ1,Γ2; Σ1,Σ2

Γ1,Γ2; Σ1,Σ2 B e : τ
.

By the induction hypothesis.

Case
x:τ ∈ Γ,Σ Γ ` τ : ϕ′ ` Γ; Σ

Γ; Σ B x : τ
.

Let ϕ = ϕ′.

Case
`:τ1 ∈ Σ · ` τ1 : ϕ1 ` Γ; Σ

Γ; Σ B ptr ` : aref τ1
.

Let ϕ = A.

Case
` (Γ; Σ), x:τ1  Γ′; Σ′ Γ′; Σ′ B e2 : τ2 Γ ` Σ � ϕ Γ ` τ1 : ϕ1

Γ; Σ B λx:τ1.e2 : τ1
ϕ′
−→ τ2

.

By the induction hypothesis Γ′ ` τ2 : ϕ2 for some ϕ2, and since the only
difference between Γ′ and Γ may be a variable binding, Γ ` τ2 : ϕ2 as well.
Then let ϕ = ϕ′.
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Case
Γ; Σ1 B e1 : τ1

ϕ′
−→ τ2 Γ; Σ2 B e2 : τ1

Γ; Σ1,Σ2 B e1 e2 : τ2
.

By the induction hypothesis, that

• Γ ` τ1
ϕ′
−→ τ2 : ϕ′,

and by inversion of rule K-Arr, there exist some ϕ1 and ϕ2 such that

• Γ ` τ1 : ϕ1 and
• Γ ` τ2 : ϕ2.

Then let ϕ = ϕ2.

Case
Γ, α:κ; Σ B v1 : τ1

Γ; Σ B Λα:κ.v1 : ∀α:κ.τ1
.

By the induction hypothesis,

• Γ, α:κ ` τ1 : ϕ1,

and by rule K-All,

• Γ ` ∀α:κ.τ1 : [A/α]ϕ1.

Then let ϕ = [A/α]ϕ1.

Case
Γ; Σ B e1 : ∀α:κ1.τ2 Γ ` τ1 : κ1

Γ; Σ B e1[τ1] : [τ1/α]τ2
.

By the induction hypothesis, there exists some ϕ2 such that

• Γ ` ∀α:κ1.τ2 : ϕ2.

Then by inversion of rule K-All,

• Γ, α:κ1 ` τ2 : ϕ1.

By lemma 14,

• [τ1/α]Γ ` [τ1/α]τ2 : [τ1/α]ϕ1.

Note that because α is bound without Γ in its scope, α is fresh for Γ, so [τ1/α]Γ =
Γ. Then let ϕ = [τ1/α]ϕ1.

Case
Γ; Σ B e1 : τ

U−→ τ

Γ; Σ B fix e1 : τ
.

By the induction hypothesis,

• Γ ` τ U−→ τ : U,
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and by inversion of rule K-Arr, there exists some ϕ such that

• Γ ` τ : ϕ.

Case
` Γ; Σ

Γ; Σ B 〈〉 : 1
.

Let ϕ = U.

Case
Γ; Σ B e1 : τ1 Γ ` τ2 : ϕ2

Γ; Σ B ι1 e1 : τ1 + τ2
.

By the induction hypothesis,

• Γ ` τ1 : ϕ1.

Then let ϕ = ϕ1 t ϕ2.

Case
Γ; Σ B e2 : τ2 Γ ` τ1 : ϕ1

Γ; Σ B ι2 e2 : τ1 + τ2
.

By symmetry from the previous case.

Case

Γ; Σ1 B e′ : τ1 + τ2
` (Γ; Σ2), x1:τ1  Γ1; Σ21 Γ1; Σ21 B e1 : τ
` (Γ; Σ2), x2:τ2  Γ2; Σ22 Γ2; Σ22 B e2 : τ

Γ; Σ1,Σ2 B case e′ of ι1 x1 → e2; ι2 x2 → e2 : τ
.

By the induction hypothesis, there exists some ϕ′ such that

• Γ1 ` τ : ϕ′.

Note that the only potential difference between Γ1 and Γ is x1:τ1, so let ϕ = ϕ′.

Case
Γ; Σ1 B v1 : τ1 Γ; Σ2 B v2 : τ2

Γ; Σ1,Σ2 B 〈v1, v2〉 : τ1 × τ2
.

By the induction hypothesis twice let ϕ1 and ϕ2 be the kinds of τ1 and τ2. Then
let ϕ = ϕ1 t ϕ2.

Case

Γ; Σ1 B e′ : τ1 × τ2
` (Γ; Σ2), x1:τ1, x2:τ2  Γ′; Σ′ Γ′; Σ′ B e1 : τ

Γ; Σ1,Σ2 B case e′ of 〈x1, x2〉 → e1 : τ
.

By the induction hypothesis, noting that Γ′ may differ Γ only in x1 and x2.

Case
Γ; Σ B e1 : τ1

Γ; Σ B new e1 : aref τ1
.

By the induction hypothesis; then let ϕ = A.
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Case
Γ; Σ1 B e1 : aref τ1 Γ; Σ2 B e2 : τ2

Γ; Σ1,Σ2 B swap e1 e2 : aref τ2 × τ1
.

By the induction hypothesis twice; then let ϕ = A.

Case
Γ; Σ B e1 : aref τ1

Γ; Σ B delete e1 : 1
.

Let ϕ = U.

A.2.4 Qualifier Soundness

Lemma 30 (Monotonicity of kinding). If ∆ ` τ1 <:+ τ2, ∆ ` τ1 : ϕ1, and ∆ ` τ2 : ϕ2,
then ∆ ` ϕ1 <: ϕ2.

Proof. First, we define theweak subkinding relation, an extension of the subkinding
relation that is insensitive to variance:

∆ |= ϕ1 v ϕ2

∆ ` ϕ1 / ϕ2

∆, α:〈α〉 ` κ1 <: κ2

∆ ` Παv1.κ1 / Παv2.κ2

It should be clear that the new relation is a preorder. If we partition weak subkinding
into a family of relations by arity, then the relation for arity 0 is a lattice isomorphic
to the arity-0 lattice for subkinding.

We now generalize the induction hypothesis as follows:

If ∆ ` τ1 <:+ τ2, ∆ ` τ1 : κ1, and ∆ ` τ2 : κ2, then ∆ ` κ1 / κ2.

Note that for qualifier expressions, subkinding and weak subkinding are identical,
which means that the generalized induction hypothesis implies the original lemma.

Now by induction on the subtyping derivation:

Case
τ1 ≡ τ2 ∆ ` τ1 : κ ∆ ` τ2 : κ

∆ ` τ1 <:+ τ2
.

By lemma 5, κ2 = κ = κ1; then by reflexivity of weak subkinding.

Case
∆ ` τ1 <:+ τ3 ∆ ` τ3 <:+ τ2 ∆ ` τ3 : κ3

∆ ` τ1 <:+ τ2
.

By the induction hypothesis twice,

• ∆ ` κ1 / κ3 and

• ∆ ` κ3 / κ2.

Then by transitivity of weak subkinding.
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Case
∆ ` τ2 <:+ τ1

∆ ` τ1 <:− τ2
.

Vacuous.

Case
∆, β:〈β〉 ` τ ′1 <:+ τ ′2
∆ ` λβ.τ ′1 <:+ λβ.τ ′2

.

By inversion of rule K-Abs, there are some κ′1 and v1 where κ1 = Πβv1.κ′1 such
that

• ∆, β:〈β〉 ` β ∈ τ ′1 l v1 and

• ∆, β:〈β〉 ` τ ′1 : κ′1.

Likewise, there are some κ′2 and v2 where κ2 = Πβv2.κ′2 such that

• ∆, β:〈β〉 ` β ∈ τ ′2 l v2 and

• ∆, β:〈β〉 ` τ ′2 : κ′2.

By the induction hypothesis,

• ∆, β:〈β〉 ` κ′1 / κ′2,

which is sufficient to show that

• ∆ ` Πβv1.κ′1 / Πβv2.κ′2.

Case

∆ ` τ11 : Πβv1.κ′1 ∆ ` τ21 : Πβv2.κ′2
∆ ` τ11 <:+ τ21 ∆ ` τ12 <:v1tv2 τ22

∆ ` τ11 τ12 <:+ τ21 τ22
.

By inversion of rule K-App twice, there are some ϕ1 and ϕ2 such that

• ∆ ` τ12 : ϕ1,

• ∆ ` τ22 : ϕ2,

• κ1 = [ϕ1/β]κ′1, and

• κ2 = [ϕ2/β]κ′2.

By the induction hypothesis,

• ∆ ` Πβv1.κ′1 / Πβv2.κ′2,

which means that

• ∆, β:〈β〉 ` κ′1 / κ′2.

Now by cases on v2:
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Case +.
That is, ∆ ` τ12 <:+ τ22. By the induction hypothesis,
• ∆ ` ϕ1 / ϕ2,

and thus,
• ∆ ` [ϕ1/β]κ′1 / [ϕ2/β]κ′2.

Case −.
By lemma 28, ∆ ` Πβv2.κ′2 . By inversion of rule OK-Arr, this means that
v2 = if β ∈ ftv(κ′2) then + else �. Since v2 = −, we know that β 6∈ ftv κ′2,
which means that [ϕ2/β]κ′2 = κ′2 = [ϕ1/β]κ′2. Thus,
• ∆ ` [ϕ1/β]κ′1 / [ϕ2/β]κ′2

by reflexivity.
Case ±.

That is, ∆ ` τ12 <:± τ22. The only rule that can reach that conclusion is
TSub-Eq, so by inversion, there exists some κ such that
• τ12 ≡ τ22,

• ∆ ` τ12 : κ, and
• ∆ ` τ22 : κ.

Then by lemma 5, κ = ϕ2, so
• ∆ ` τ12 : ϕ2,

and by reflexivity of weak subkinding,
• ∆ ` ϕ2 / ϕ2.

Thus,
• ∆ ` [ϕ2/β]κ′1 / [ϕ2/β]κ′2.

Case �.
By lemma 28, ∆ ` Πβv2.κ′2 . By inversion of rule OK-Arr, this means that
v2 = if β ∈ ftv(κ′2) then + else �. Since v2 = �, we know that β 6∈ ftv κ′2,
which means that [ϕ2/β]κ′2 = κ′2 = [ϕ1/β]κ′2. Thus,
• ∆ ` [ϕ1/β]κ′1 / [ϕ2/β]κ′2

by reflexivity.

Case
∆, β:κ′ ` τ ′1 <:+ τ ′2

∆ ` ∀β:κ′.τ ′1 <:+ ∀β:κ′.τ ′2
.

By inversion of rule K-All twice and the induction hypothesis.

Case
∆ ` τ11 <:− τ21 ∆ ` τ12 <:+ τ22 ∆ ` ϕ1 <: ϕ2

∆ ` τ11
ϕ1−→ τ12 <:+ τ21

ϕ2−→ τ22
.

By the premise that ∆ ` ϕ1 <: ϕ2, which is equivalent to ∆ ` ϕ1 / ϕ2.

67



A.2 Type Soundness A ADDITIONAL PROOFS

Lemma 31 (No hidden locations). If Γ; Σ B e : τ then locs e ⊆ dom Σ.

Proof. By induction on the typing derivation.

Corollary 32 (Kinding finds locations). Suppose that Γ; Σ B v : τ and Γ ` τ : ϕ
where dom Σ contains only locations. Then:

• If locs v 6= ∅ then ϕ = A.

• If ϕ = U then locs v = ∅.

Proof.

• Assume that locs v 6= ∅. By induction on the typing derivation Γ; Σ B v : τ :

Case
Γ; Σ B v : τ ′ Γ ` τ ′ <:+ τ Γ ` τ : ϕ

Γ; Σ B v : τ
.

By lemma 29, there is some ϕ′ such that Γ ` τ ′ : ϕ′, and by the induction
hypothesis, ϕ′ = A. By lemma 30, Γ ` ϕ′ <: ϕ.

Case
Γ; Σ B v : τ ` Γ,Γ′; Σ,Σ′

Γ,Γ′; Σ,Σ′ B v : τ
.

By the induction hypothesis.

Case
`:τ ∈ Σ · ` τ : ϕ ` Γ; Σ

Γ; Σ B ptr ` : aref τ
.

Then Γ ` aref τ : A.

Case
` (Γ; Σ), x:τ1  Γ′; Σ′ Γ′; Σ′ B e : τ2 Γ ` Σ � ϕ Γ ` τ1 : ϕ1

Γ; Σ B λx:τ1.e : τ1
ϕ−→ τ2

.

By lemma 31, locs v ⊆ dom Σ, and since locs v is not empty, by rule B-ConsL,
ϕ = A.

Case
Γ, α:κ; Σ B v′ : τ ∆ ` κ

Γ; Σ B Λα:κ.v′ : ∀α:κ.τ
.

By the induction hypothesis Γ ` τ : A, and ϕ = [A/α]A = A.

Case
` Γ; Σ

Γ; Σ B 〈〉 : 1
.

Vacuous.

Case
Γ; Σ B v′ : τ1 Γ ` τ2 : ϕ

Γ; Σ B ι1 v
′ : τ1 + τ2

.

By lemma 29, there is some ϕ1 such that Γ ` τ1 : ϕ1. If locs(ι1 v
′) 6= ∅ then

locs v′ 6= ∅. Then by the induction hypothesis ϕ1 = A, and by rule K-Sum
and rule K-App twice, ϕ = A.
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Case
Γ; Σ B v′ : τ2 Γ ` τ1 : ϕ

Γ; Σ B ι2 v
′ : τ1 + τ2

.

As in the previous case.

Case
Γ; Σ1 B v1 : τ1 Γ; Σ2 B v2 : τ2

Γ; Σ1,Σ2 B 〈v1, v2〉 : τ1 × τ2
.

By lemma 29, there are some ϕ1 and ϕ2 such that Γ ` τ1 : ϕ1 and Γ ` τ2 :
ϕ2.
If locs(〈v1, v2〉) 6= ∅ then locs v1 6= ∅ or locs v2 6= ∅:
Case locs v1 6= ∅.

By the induction hypothesis, ϕ1 = A, and by rule K-Prod and
rule K-App twice, ϕ = A.

Case locs v2 6= ∅.
By symmetry.

Otherwise.
The remaining cases do not apply to values.

• If ϕ = U then ϕ 6= A. Then by the contrapositive of the previous part, locs v =
∅.

A.2.5 Preservation

Lemma 33 (Substitution). If

• ` (Γ; Σ1), x:τ ′  Γ′; Σ′1,

• Γ′; Σ′1 B e : τ , and

• ·; Σ2 B v : τ ′, where

• the domain of Σ2 contains only locations,

then Γ; Σ1,Σ2 B [v/x]e : τ .

Proof. In several cases, we will need to know that ` Γ; Σ1,Σ2, typically in order to
use rule T-Weak. By lemma 26, we have ` Γ′; Σ′1 and ` ·; Σ2. By lemma 24, ` Γ; Σ1.
Then by inversion of rule Wf twice, lemma 7, weakening, and rule Wf, we have
` Γ; Σ1,Σ2.

Now by induction on the derivation of Γ′; Σ′1 B e : τ :

Case
Γ′; Σ′1 B e : τ ′′ Γ′ ` τ ′′ <:+ τ Γ′ ` τ : ϕ′

Γ′; Σ′1 B e : τ
.

By the induction hypothesis,

• Γ; Σ1,Σ2 B [v/x]e : τ ′′.
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By observation 21,

• Γ ` τ ′′ <:+ τ and
• Γ ` τ : ϕ′.

Then by rule T-Subsume.

Case
Γ′1; Σ′11 B e : τ ` Γ′1,Γ

′
2; Σ′11,Σ

′
12

Γ′1,Γ
′
2; Σ′11,Σ

′
12 B e : τ

.

We do not know whether x:τ ′ is in Γ′1, Γ′2, Σ′11, or Σ′12:

• If x:τ ′ ∈ Γ′1,Σ
′
11, then there exist some Γ1 and Σ11 such that

– ` (Γ1; Σ11), x:τ ′  Γ′1; Σ′11 and
– ` (Γ1,Γ

′
2; Σ11,Σ

′
12), x:τ ′  Γ′1,Γ

′
2; Σ′11,Σ

′
12.

Then by the induction hypothesis,
– Γ1; Σ11,Σ2 B [v/x]e : τ,

and by rule T-Weak,
– Γ1,Γ2; Σ11,Σ12,Σ2 B [v/x]e : τ.

• If x:τ ′ ∈ Γ′2,Σ
′
12, then by lemma 22, x 6∈ fv e. This means that [v/x]e = e,

so
– Γ′1; Σ′11 B [v/x]e : τ.

Then by rule T-Weak.

Case
y:τ ∈ Γ′,Σ′1 Γ′ ` τ : ϕ′ ` Γ′; Σ′1

Γ′; Σ′1 B y : τ
.

If x = y, then [v/x]y = v and τ = τ ′. Thus,

• Γ; Σ2 B [v/x]y : τ.

Then by rule T-Weak.

If x 6= y, then [v/x]y = y. Furthermore, this means that y:τ ∈ Γ,Σ1, since the
only difference between Γ,Σ1 and Γ′,Σ′1 is x:τ ′. Then by rule T-Var,

• Γ; Σ1 B [v/x]y : τ.

Then by rule T-Weak.

Case
`:τ1 ∈ Σ′1 · ` τ1 : ϕ1 ` Γ′; Σ′1

Γ′; Σ′1 B ptr ` : aref τ1
.

Since the only difference between Σ1 and Σ′1 may be x:τ ′, we know that `:τ1 ∈ Σ1.
Furthermore, [v/x](ptr `) = ptr `, so by rule T-Ptr,

• ·; Σ1 B ptr ` : aref τ1.
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Then by rule T-Weak.

Case

` (Γ′; Σ′1), y:τ1  Γ′′; Σ′′1
Γ′′; Σ′′1 B e2 : τ2 Γ′ ` Σ′1 � ϕ′1 Γ′ ` τ1 : ϕ1

Γ′; Σ′1 B λy:τ1.e2 : τ1
ϕ′
1−→ τ2

.

Note that Γ, Γ′, and Γ′′ differ only by variable bindings, so by observation 21,
we can use Γ in suitable judgments throughout.

By lemma 29, there exists some ϕ′ such that Γ ` τ ′ : ϕ′. If x:τ ′ ∈ Σ′1, then
by inversion of rule X-ConsA, there exists some ϕ such that Γ ` Σ1 � ϕ and
ϕ′1 = ϕ t ϕ′. Otherwise, Σ1 = Σ′1, so let ϕ = ϕ′1. In both cases,

• Γ ` ϕ <: ϕ′1 and

• Γ ` Σ1 � ϕ.

We want to find an Σ′2 ⊆ Σ2 and a ϕ′2 such that

• Γ ` ϕ′2 <: ϕ′,

• Γ ` Σ′2 � ϕ′2, and

• ·; Σ′2 B v : τ ′.

Let us consider whether there exists some ` ∈ locs v:

• If so, then by corollary 32, ϕ′ = A. In order to type v, it must be that
` ∈ dom Σ2, which means that Γ ` Σ2 � A. Let Σ′2 = Σ2 and ϕ′2 = A.
Furthermore, since x:τ ′ ∈ Σ′1, by lemma 7, Γ ` Σ′1 � A. Then ϕ′1 = A, so

– Γ ` ϕ t ϕ′2 <: ϕ′1.

• If not, then since Σ2 contains only locations, ·; · B v : τ ′. Let Σ′2 = · and
ϕ′2 = U. Then ϕ t ϕ′2 = ϕ, so

– Γ ` ϕ t ϕ′2 <: ϕ′1.

Since Γ ` Σ1 � ϕ and Γ ` Σ′2 � ϕ′2, we have by lemma 7 that

• Γ ` Σ1,Σ
′
2 � ϕ t ϕ′2.

By lemma 23,

• ` (Γ; Σ1), x:τ ′, y:τ1  Γ′′; Σ′′1,

and since we identify environments up to permutation,

• ` (Γ; Σ1), y:τ1, x:τ ′  Γ′′; Σ′′1.

By the same lemma, let Γ′′′ and Σ′′′1 be such that
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• ` (Γ; Σ1), y:τ1  Γ′′′; Σ′′′1 and

• ` (Γ′′′; Σ′′′1 ), x:τ ′  Γ′′; Σ′′1.

By the induction hypothesis,

• Γ′′′; Σ′′′1 ,Σ
′
2 B [v/x]e2 : τ2.

Note that by sorting τ1 the same way as above, we get

• ` (Γ; Σ1,Σ
′
2), y:τ1  Γ′′′; Σ′′′1 ,Σ

′
2,

and by observation 21,

• Γ ` τ1 : ϕ1.

To summarize, we have

• ` (Γ; Σ1,Σ
′
2), y:τ1  Γ′′′; Σ′′′1 ,Σ

′
2,

• Γ′′′; Σ′′′1 ,Σ
′
2 B [v/x]e2 : τ2,

• Γ ` Σ1,Σ
′
2 � ϕ t ϕ′2, and

• Γ ` τ1 : ϕ1.

Then by rule T-Abs,

• Γ; Σ1,Σ
′
2 B λy:τ1.e1 : τ1

ϕtϕ′
2−−−→ τ2.

Since Γ ` ϕ t ϕ′2 <: ϕ′1, by rule K-Arr,

• Γ ` τ1
ϕtϕ′

2−−−→ τ2 <:+ τ1
ϕ′
1−→ τ2.

Noting that Σ′2 ⊆ Σ2, by rule T-Weak and rule T-Subsume,

• Γ; Σ1,Σ2 B λy:τ1.e1 : τ1
ϕ′
1−→ τ2.

Case
Γ′; Σ′11 B e1 : τ1

ϕ−→ τ Γ′; Σ′12 B e2 : τ1

Γ′; Σ′11,Σ
′
12 B e1 e2 : τ

.

Let Σ11 and Σ12 be Σ′11 and Σ′12, respectively, but without x:τ ′. We know that
x:τ ′ is in one of Γ′, Σ′11, or Σ′12:

Case x:τ ′ ∈ Γ′.
Then

• ` (Γ; Σ11), x:τ ′  Γ′; Σ11 and
• ` (Γ; Σ12), x:τ ′  Γ′; Σ12.

Furthermore, by lemma 26 and inversion of rule Wf,
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• Γ′ ` Γ′ � U.

By lemma 7, this means that
• Γ′ ` τ ′ : U.

By corollary 32, locs v = ∅. Since we know that Σ2 contains only locations,
none of it is relevant to v, so
• ·; · B v : τ ′.

Then by the induction hypothesis twice,
• Γ; Σ11 B [v/x]e1 : τ1

ϕ−→ τ and
• Γ; Σ12 B [v/x]e2 : τ1.

Then by rule T-App and rule T-Weak.
Case x:τ ′ ∈ Σ′11.

Then
• ` (Γ; Σ11), x:τ ′  Γ; Σ′11.

Then by the induction hypothesis,
• Γ; Σ11,Σ2 B [v/x]e1 : τ1

ϕ−→ τ2.

Furthermore, since x 6∈ dom(Γ′,Σ′12), we know that x 6∈ fv e2, so
• Σ12 = Σ′12,

• Γ = Γ′, and
• [v/x]e2 = e2.

Substituting those equalities into the appropriate premise, we get
• Γ; Σ12 B [v/x]e2 : τ1.

Then by rule T-App.
Case x:τ ′ ∈ Σ′12.

Then by symmetry with the previous case.

Case
Γ′, α:κ; Σ′1 B v1 : τ1

Γ′; Σ′1 B Λα:κ.v1 : ∀α:κ.τ1
.

Since ` (Γ; Σ1), x:τ ′  Γ′; Σ′1, we know that ` (Γ, α:κ; Σ1), x:τ ′  Γ′, α:κ; Σ′1.
Then by the induction hypothesis,

• Γ, α:κ; Σ1,Σ2 B [v/x]v1 : τ1.

Then by rule T-TAbs.

Case
Γ′; Σ′1 B e1 : ∀α:κ1.τ2 Γ′ ` τ1 : κ1

Γ′; Σ′1 B e1[τ1] : [τ1/α]τ2
.

By the induction hypothesis and observation 21,
• Γ; Σ1,Σ2 B [v/x]e1 : ∀α:κ1.τ2 and
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• Γ ` τ1 : κ1.

Then by rule T-TApp, noting that [v/x](e1[τ1]) = ([v/x]e1)[τ1].

Case
Γ′; Σ′1 B e1 : τ

U−→ τ

Γ′; Σ′1 B fix e1 : τ
.

By the induction hypothesis and rule T-Fix.

Case
` Γ′; Σ′1

Γ′; Σ′1 B 〈〉 : 1
.

By lemma 18 and rule T-Unit.

Case
Γ′; Σ′1 B e1 : τ1 Γ′ ` τ2 : ϕ2

Γ′; Σ′1 B ι1 e1 : τ1 + τ2
.

By the induction hypothesis, observation 21, and rule T-Inl.

Case
Γ′; Σ′1 B e2 : τ2 Γ′ ` τ1 : ϕ1

Γ′; Σ′1 B ι2 e2 : τ1 + τ2
.

By the induction hypothesis, observation 21, and rule T-Inr.

Case

Γ′; Σ′11 B e′ : τ1 + τ2
` (Γ′; Σ′12), x1:τ1  Γ′1; Σ′121 Γ′1; Σ′121 B e1 : τ
` (Γ′; Σ′12), x2:τ2  Γ′2; Σ′122 Γ′2; Σ′122 B e2 : τ

Γ′; Σ′11,Σ
′
12 B case e′ of ι1 x1 → e2; ι2 x2 → e2 : τ

.

Let Σ11 and Σ12 be Σ′11 and Σ′12, respectively, but without x:τ ′. By lemma 23,

• ` (Γ; Σ12), x:τ ′, x1:τ1  Γ′1; Σ′121 and

• ` (Γ; Σ12), x:τ ′, x2:τ2  Γ′2; Σ′122.

Then by the same lemma, let Γ′′1, Γ′′2, Σ′′121, and Σ′′122 be such that

• ` (Γ; Σ12), x1:τ1  Γ′′1; Σ′′121,

• ` (Γ; Σ12), x2:τ2  Γ′′2; Σ′′122,

• ` (Γ′′1; Σ′′121), x:τ ′  Γ′1; Σ′121, and

• ` (Γ′′2; Σ′′122), x:τ ′  Γ′2; Σ′122.

We know that x:τ ′ is in one of Γ′, Σ′11, or Σ′12:

Case x:τ ′ ∈ Γ′.
By lemma 26 and inversion of rule Wf,
• Γ′ ` Γ′ � U.

Then by lemma 7, this means that
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• Γ′ ` τ ′ : U.

By corollary 32, locs v = ∅. Since we know that Σ2 contains only locations,

• ·; · B v : τ ′.

By weakening,

• Γ′′1; · B v : τ ′ and
• Γ′′2; · B v : τ ′.

Then by the induction hypothesis three times,

• Γ; Σ11, · B [v/x]e : τ1 + τ2,

• Γ′′1; Σ′′121, · B [v/x]e1 : τ, and
• Γ′′2; Σ′′122, · B [v/x]e2 : τ.

By rule T-App,

• Γ; Σ11,Σ12 B [v/x](case e of ι1 x1 → e1; ι2 x2 → e2) : τ.

Then by rule T-Weak.

Case x:τ ′ ∈ Σ′11.
Then
• ` (Γ; Σ11), x:τ ′  Γ; Σ′11,

so by the induction hypothesis,

• Γ; Σ11,Σ2 B [v/x]e′ : τ1 + τ2.

Furthermore,
• Γ = Γ′, • Γ′1 = Γ′′1, • Γ′2 = Γ′′2,

• Σ12 = Σ′12, • Σ′121 = Σ′′121, and • Σ′122 = Σ′′122.

Since x:τ ∈ Σ′11, x 6∈ dom(Γ′,Σ′12), which means that x 6∈ dom(Γ′1,Σ
′
121)

and x 6∈ dom(Γ′2,Σ
′
122). This means that x 6∈ fv e1 and x 6∈ fv e2. Thus,

[v/x]e1 = e1 and [v/x]e2 = e2, which gives us

• Γ′′1; Σ′′121 B [v/x]e1 : τ and
• Γ′′2; Σ′′122 B [v/x]e2 : τ.

Then by rule T-Choose.

Case x:τ ′ ∈ Σ′12.
This means that Γ′ = Γ and Σ′11 = Σ11. Furthermore, x 6∈ dom(Γ′,Σ′11),
which means that x 6∈ fv e′. Thus, we know that [v/x]e′ = e′, so
• Γ; Σ11 B [v/x]e′ : τ1 + τ2.

From our assumptions, we have ·; Σ2 B v : τ ′. By the induction hypothesis
twice,

• Γ′′1; Σ′′121,Σ2 B [v/x]e1 : τ and

75



A.2 Type Soundness A ADDITIONAL PROOFS

• Γ′′2; Σ′′122,Σ2 B [v/x]e2 : τ.

Note that
• ` (Γ; Σ12,Σ2), x1:τ1  Γ′′1; Σ′′121,Σ2 and
• ` (Γ; Σ12,Σ2), x2:τ2  Γ′′2; Σ′′122,Σ2.

Then by rule T-Choose.

Case
Γ′; Σ′11 B v1 : τ1 Γ′; Σ′12 B v2 : τ2

Γ′; Σ′11,Σ
′
12 B 〈v1, v2〉 : τ1 × τ2

.

As in the T-App case.

Case

Γ′; Σ′11 B e′ : τ1 × τ2
` (Γ′; Σ′12), x1:τ1, x2:τ2  Γ′′; Σ′′12 Γ′′; Σ′′12 B e1 : τ

Γ′; Σ′11,Σ
′
12 B case e′ of 〈x1, x2〉 → e1 : τ

.

As in the T-Choose case.

Case
Γ; Σ B e1 : τ1

Γ; Σ B new e1 : aref τ1
.

By the induction hypothesis and rule T-New.

Case
Γ; Σ1 B e1 : aref τ1 Γ; Σ2 B e2 : τ2

Γ; Σ1,Σ2 B swap e1 e2 : aref τ2 × τ1
.

As in the T-App case.

Case
Γ; Σ B e1 : aref τ1

Γ; Σ B delete e1 : 1
.

By the induction hypothesis and rule T-Delete.

Lemma 34 (Kinding weakening). If Γ1 ` τ : κ then Γ1,Γ2 ` τ : κ.

Proof. By induction on the kinding derivation.

Lemma 35 (Replacement). If ·; Σ B E[e] : τ then there exist some contexts Σ1 and
Σ2 and some type τ ′ such that

• ·; Σ1 B e : τ ′ and

• ·; Σ′1,Σ2 B E[e′] : τ for any e′ such that ·; Σ′1 B e′ : τ ′.

Proof. By induction on the structure of E:

Case [ ].

Let Σ1 = Σ and Σ2 = ·.

Case E ′ e2.

That is,
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• ·; Σ B E ′[e] e2 : τ.

By inversion of rule T-App,

• ·; Σ′1 B E ′[e] : τ2
ϕ−→ τ and

• ·; Σ′2 B e2 : τ2

for some Σ′1, Σ′2, ϕ, and τ2. By the induction hypothesis at E ′, there exist some
contexts Σ1 and Σ′12 and some type τ ′ such that

• ·; Σ1 B e : τ ′ and

• ·; Σ′1,Σ
′
12 B E ′[e′] : τ2

ϕ−→ τ.

Let Σ2 = Σ′12,Σ
′
2. Then by rule T-App,

• ·; Σ′1,Σ
′
12,Σ

′
2 B E ′[e′] e2 : τ.

Case v1E ′.

As in the previous case, mutatis mutandem.

Case E ′[τ2].

That is,

• ·; Σ B E ′[e][τ2] : [τ2/α]τ1

where τ = [τ2/α]τ1. By inversion of rule T-TApp,

• ·; Σ B E ′[e] : ∀α:κ.τ1 and

• · ` τ2 : κ.

By the induction hypothesis at E ′, there exist some contexts Σ1 and Σ2 and
some type τ ′ such that

• ·; Σ1 B e : τ ′′ and

• ·; Σ′1,Σ2 B E ′[e′] : ∀α:κ.τ1.

Then by rule T-TApp,

• ·; Σ′1,Σ2 B E ′[e′][τ2] : [τ2/α]τ1.

Case fix E ′.

As in the previous case.

Case ι1 E ′.

As in the previous case.
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Case ι2 E ′.

As in the previous case.

Case case E ′ of ι1 x1 → e1; ι2 x2 → e2.

As in the previous case.

Case 〈E ′, e2〉.
As in the E ′ e2 case.

Case 〈v1, E ′〉.
As in the v1E ′ case.

Case case E ′ of 〈x1, x2〉 → e1.

As in the E ′[τ ] case.

Case new E ′.

As in the E ′[τ ] case.

Case swap E ′ e2.

As in the E ′ e2 case.

Case swap v1E
′.

As in the v1E ′ case.

Case delete E ′.

As in the E ′[τ ] case.

Theorem 36 (Preservation). If B s; e : τ and s; e 7−→ s′; e′ then B s′; e′ : τ .

Proof. Without loss of generality, we consider only the rule R-Cxt case, s;E[e] 7−→
s′;E[e′], where s; e 7−→ s′; e′ not by rule R-Cxt. (All derivations may have exactly
one instance of rule R-Cxt at the root because the empty context is an evaluation
context and the composition of two evaluation contexts is an evaluation context.)

By inversion of rule Conf, there must be some Σ1 and Σ2 such that Σ1 B s : Σ1,Σ2

and ·; Σ2 B E[e] : τ . Then by lemma 35, there are some τ ′, Σ21, and Σ22 such that:

• ·; Σ21 B e : τ ′ and

• ·; Σ′21,Σ22 B E[e′′] : τ for any e′′ such that ·; Σ′21 B e′′ : τ ′.

In cases where s = s′, it is sufficient to show that ·; Σ21 B e′ : τ ′, which allows us
to replace e with e′ and reconstruct the same configuration typing. For cases where
s 6= s′, we will need to rederive the configuration typing using the new store.

We proceed by cases on the reduction relation, in each case inverting the typ-
ing relation. We need not consider the non–syntax-directed rules T-Subsume and
T-Weak:
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• If the final rule is T-Subsume, then there must be some τ ′′ such that ·; Σ21 B
e : τ ′′ and · ` τ ′′ <:+ τ ′. If we can show that τ ′′ is preserved, then we can
reapply rule T-Subsume to get τ ′.

• If the final rule is T-Weak, then we can push it upward in the derivation—and
thus ignore it—unless we are typing an abstraction, since rule T-Abs is the
only rule affected by unused elements in the affine environment.

Now by cases on the reduction relation:

Case s; (λx:τ2.e1) v2 7−→ s; [v2/x]e1.

By inversion of rule T-App, there exist some contexts Σ211 and Σ212 and some
qualifier expression ϕ such that

• ·; Σ211 B λx:τ2.e1 : τ2
ϕ−→ τ ′ and

• ·; Σ212 B v2 : τ2.

Without loss of generality, split Σ21 so that Σ211 contains the bare minimum to
type λx:τ2.e1, so that typing the abstraction does not require weakening.

By inversion of rule T-Abs,

• ` (·; Σ211), x:τ2  Γ′; Σ′211,

• Γ′; Σ′211 B e1 : τ ′,

• · ` Σ211 � ϕ, and

• · ` τ2 : ϕ2.

By lemma 33, ·; Σ211,Σ212 B [v2/x]e1 : τ ′.

Case s; (Λα:κ.v)[τ1] 7−→ s; [τ1/α]v.

By inversion of rule T-TApp, there exists some type τ2 such that

• · ` τ1 : κ and

• ·; Σ21 B Λα:κ.v : ∀α:κ.τ2

where τ ′ = [τ1/α]τ2. Then by inversion of rule T-TAbs,

• α:κ; Σ21 B v : τ2.

By lemma 20, ·; Σ21 B [τ1/α]v : [τ1/α]τ2.

Case s; fix v 7−→ s; v (fix v).

By inversion of rule T-Fix,

• ·; Σ21 B v : τ ′
U−→ τ ′.
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Because Σ21 came from the store typing of s, and a store typing does not
contain variable bindings, we can apply corollary 32 and strengthen to get
·; · B v : τ ′

U−→ τ ′. Then,

·; · B v : τ ′
U−→ τ ′

·; · B v : τ ′
U−→ τ ′

·; · B fix v : τ ′
T-Fix

·; · B v (fix v) : τ ′
T-App

` ·; Σ21

·; Σ21 B v (fix v) : τ ′
T-Weak.

Case s; case ι1 v of ι1 x1 → e1; ι2 x2 → e2 7−→ s; [v/x1]e1.

By inversion of rule T-Choose, there exist some contexts Σ211 and Σ212 and
some types τ1 and τ2 such that

• ·; Σ211 B ι2 v : τ1 + τ2,

• ` (·; Σ212), x1:τ1  Γ1; Σ2121,

• Γ1; Σ2121 B e1 : τ ′,

• ` (·; Σ212), x2:τ2  Γ2; Σ2122, and

• Γ2; Σ2122 B e2 : τ ′.

By inversion of rule T-Inl, ·; Σ211 B v : τ1.

By lemma 33, ·; Σ211,Σ212 B [v/x1]e1 : τ ′.

Case s; case ι2 v of ι1 x1 → e1; ι2 x2 → e2 7−→ s; [v/x2]e2.

As in the previous case.

Case s; case 〈v1, v2〉 of 〈x1, x2〉 → e 7−→ s; [v1/x1][v2/x2]e.

By inversion of rule T-Choose, there exist some contexts Σ211 and Σ212 and
some types τ1 and τ2 such that

• ·; Σ211 B 〈v1, v2〉 : τ1 × τ2,
• ` (·; Σ212), x1:τ1, x2:τ2  Γ′; Σ′212, and

• Γ′; Σ′212 B e1 : τ ′.

By inversion of rule T-Pair, there exist some contexts Σ2111 and Σ2112 such
that

• ·; Σ2111 B v1 : τ1 and

• ·; Σ2112 B v2 : τ2.

Now consider ` (·; Σ212), x1:τ1, x2:τ2  Γ′; Σ′212. This must be derived by either
rule X-ConsA or X-ConsU. By cases:
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Case X-ConsA.
Then ` (·; Σ212, x1:τ1), x2:τ2  Γ′; Σ′212. By lemma 33,
• ·; Σ2112,Σ212, x1:τ1 B [v2/x2]e1 : τ ′.

Since ` (·; Σ2112,Σ212), x1:τ1  ·; Σ2112,Σ212, x1:τ2, by lemma 33 again,

• ·; Σ2111,Σ2112,Σ212 B [v1/x1][v2/x2]e1 : τ ′.

Case X-ConsU.
Then ` (x1:τ1; Σ212), x2:τ2  Γ′; Σ′212, and by rule T-Weak,
• x1:τ1; Σ2112 B v2 : τ2.

By lemma 33,

• x1:τ1; Σ2112,Σ212 B [v2/x2]e1 : τ ′.

Since ` (·; Σ2112,Σ212), x1:τ1  x1:τ2; Σ2112,Σ212, by lemma 33 again,

• ·; Σ2111,Σ2112,Σ212 B [v1/x1][v2/x2]e1 : τ ′.

Case s; new v 7−→ s ] {` 7→ v}; ptr `.

By rule T-New, τ ′ = aref τ ′′, where ·; Σ21 B v : τ ′′. Then by rule S-Cons,

• Σ1,Σ21 B s ] {` 7→ v} : Σ1,Σ21,Σ22, `:τ
′′,

and by rule T-Ptr,

• ·; `:τ ′′ B ptr ` : aref τ ′′.

By lemma 35,

• ·; `:τ ′′,Σ22 B E[ptr `] : τ,

and by rule Conf,

• B s ] {` 7→ v};E[ptr `] : τ.

Case s1 ] {` 7→ v1}; swap (ptr `) v2 7−→ s1 ] {` 7→ v2}; 〈ptr `, v1〉.
By inversion of rules T-Swap and T-Ptr,

• ·; Σ′211, `:τ1 B ptr ` : aref τ1 and

• ·; Σ212 B v2 : τ2 where

• Σ21 = Σ′211, `:τ1,Σ212 and

• τ ′ = aref τ2 × τ1.

Since s = s1 ] {` 7→ v1}, we have that

• Σ1 B s1 ] {` 7→ v1} : Σ1,Σ
′
211,Σ212,Σ22, `:τ1.

By inversion of rule S-Cons,
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• Σ11 B s1 : Σ11,Σ12,Σ
′
211,Σ212,Σ22 and

• ·; Σ12 B v1 : τ1.

Then by rule S-Cons again,

• Σ11,Σ212 B s1 ] {` 7→ v2} : Σ11,Σ12,Σ
′
211,Σ212,Σ22, `:τ2.

By rule T-Ptr,

• ·; Σ′211, `:τ2 B ptr ` : aref τ2,

and by rule T-Pair,

• ·; Σ12,Σ
′
211, `:τ2 B 〈ptr `, v1〉 : aref τ2 × τ1.

By lemma 35,

• ·; Σ12,Σ22,Σ
′
211, `:τ2 B E[〈ptr `, v1〉] : τ,

and by rule Conf,

• B s1 ] {` 7→ v2};E[〈ptr `, v1〉] : τ.

Case s′ ] {` 7→ v}; delete (ptr `) 7−→ s′; 〈〉.
By inversion of rule T-Delete,
• ·; Σ21 B ptr ` : aref τ ′′

for some type τ ′′; by inversion of rule T-Ptr, `:τ ′′ ∈ Σ21. Without loss of
generality, let Σ′21, `:τ

′′ = Σ21.
Since s = s′ ] {` 7→ v}, we have that

• Σ1 B s′ ] {` 7→ v} : Σ1,Σ
′
21,Σ22, `:τ

′′.

Then by inversion of rule S-Cons, we have that

• Σ11 B s′ : Σ1,Σ
′
21,Σ22.

By rule T-Unit,

• ·; Σ12,Σ
′
21 B 〈〉 : 1,

by lemma 35,

• ·; Σ12,Σ
′
21,Σ22 B E[〈〉] : τ,

and finally

• B s′; 〈〉 : τ

by rule Conf.
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τ1 ≡→ τ2 (parallel reduction)

PR-Refl

τ ≡→ τ

PR-Arr
τ11 ≡→ τ21 τ12 ≡→ τ22

τ11
ϕ1−→ τ12 ≡→ τ21

ϕ2−→ τ22

PR-All
τ1 ≡→ τ2

∀α:κ.τ1 ≡→ ∀α:κ.τ2

PR-Abs
τ1 ≡→ τ2

λα.τ1 ≡→ λα.τ2

PR-App
τ11 ≡→ τ21 τ12 ≡→ τ22

τ11 τ12 ≡→ τ21 τ22

PR-Beta
τ11 ≡→ τ21 τ12 ≡→ τ22

(λα.τ11) τ12 ≡→ [τ22/α]τ21

Figure 16: One-step parallel type reduction

A.2.6 Type Equivalence and Parallel Reduction

This section follows Pierce’s soundness proof for Fω (2002, p. 454).

Definition 37 (Parallel type reduction). We define a one-step parallel reduction re-
lation on types (≡→) in figure 16. We will also use (←≡→), (

∗≡→), and (
∗←≡→) to denote

the symmetric, transitive, and symmetric-transitive closures of one-step parallel re-
duction, respectivly.

Unlike Pierce’s, our parallel reduction is coarser than type equivalence, because
rule PR-Arr allows relating arrows with different qualifiers.

Lemma 38 (Parallel type reduction contains type equivalence). If τ ≡ τ ′ then τ ←≡→
τ ′.

Proof. We give a derivation τ = τ0 ←≡→ τ1 ←≡→ · · · ←≡→ τk = τ ′, by induction on the
derivation of τ ≡ τ ′:

Case τ ≡ τ .

Let k = 0.

Case
τ ′ ≡ τ

τ ≡ τ ′
.

By the induction hypothesis, we have a derivation τ ′ = τ0 ←≡→ τ1 ←≡→ · · · ←≡→ τk =
τ . Then τ = τk ←≡→ τk−1 ←≡→ · · · ←≡→ τ0 = τ ′ is also a valid derivation.

Case
τ ≡ τ ′′ τ ′′ ≡ τ ′

τ ≡ τ ′
.

By the induction hypothesis we have a derivation connecting τ to τ ′′, and by
the induction hypothesis again, we have a derivation connecting τ ′′ to τ ′. Then
the concatenation os these two derivations is also a valid derivation.
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Case
τ11 ≡ τ21 τ12 ≡ τ22

τ11
ϕ−→ τ12 ≡ τ21

ϕ−→ τ22
.

By the induction hypothesis twice, we have derivations:

• τ11 = τ0 ←≡→ τ1 ←≡→ · · · ←≡→ τk = τ21 and
• τ12 = τ ′0 ←≡→ τ ′1 ←≡→ · · · ←≡→ τ ′k = τ22.

Then there is a derivation

• τ11
ϕ−→ τ12 = τ0

ϕ−→ τ12 ←≡→ τ1
ϕ−→ τ12 ←≡→ · · · ←≡→ τk

ϕ−→ τ12 = τ21
ϕ−→ τ12 = τ21

ϕ−→
τ ′0 ←≡→ τ21

ϕ−→ τ ′1 ←≡→ · · · ←≡→ τ21
ϕ−→ τ ′k = τ21

ϕ−→ τ22.

Case
τ ≡ τ ′

∀α:κ.τ ≡ ∀α:κ.τ ′
.

By the induction hypothesis twice, we have a derivation:

• τ = τ0 ←≡→ τ1 ←≡→ · · · ←≡→ τk = τ ′.

Then there is a derivation

• ∀α:κ.τ = ∀α:κ.τ0 ←≡→ ∀α:κ.τ1 ←≡→ · · · ←≡→ ∀α:κ.τk = ∀α:κ.τ ′.

Case
τ1 ≡ τ2

λα.τ1 ≡ λα.τ2
.

As in the previous case.

Case
τ11 ≡ τ21 τ12 ≡ τ22

τ11 τ12 ≡ τ21 τ22
.

As in the arrow type case.

Case (λα.τ1) τ2 ≡ [τ2/α]τ1.

Let k = 1, since (λα.τ1) τ2 ←≡→ [τ2/α]τ1.

Lemma 39 (Parallel type reduction contains subtyping). If ∆ ` τ <:v τ ′ then
τ ←≡→ τ ′.

Proof. By induction on the subtyping derivation:

Case
τ1 ≡ τ2 ∆ ` τ1 : κ ∆ ` τ2 : κ

∆ ` τ1 <:v τ2
.

By lemma 38.

Case
∆ ` τ1 <:v τ2 ∆ ` τ2 <:v τ3 ∆ ` τ2 : κ

∆ ` τ1 <:v τ3
.

By the induction hypothesis twice and transitivity.
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Case
∆ ` τ2 <:−v τ1

∆ ` τ1 <:v τ2
.

By the induction hypothesis and symmetry.

Case
∆, α:〈α〉 ` τ1 <:v τ2

∆ ` λα.τ1 <:v λα.τ2
.

By the induction hypothesis and rule PR-Abs.

Case

∆ ` τ11 : Παv1.κ1 ∆ ` τ21 : Παv2.κ2
∆ ` τ11 <:v τ21 ∆ ` τ12 <:v·(v1tv2) τ22

∆ ` τ11 τ12 <:v τ21 τ22
.

By the induction hypothesis twice and rule PR-App.

Case
∆, α:κ ` τ1 <:v τ2

∆ ` ∀α:κ.τ1 <:v ∀α:κ.τ2
.

By the induction hypothesis and rule PR-Abs.

Case
∆ ` τ11 <:−v τ21 ∆ ` τ12 <:v τ22 ∆ ` ϕ1 <: ϕ2

∆ ` τ11
ϕ1−→ τ12 <:v τ21

ϕ2−→ τ22
.

By the induction hypothesis twice and rule PR-Arr.

Lemma 40 (Parallel substitution and reduction). If τ1 ≡→ τ2 then [τ1/α]τ ≡→ [τ2/α]τ .

Proof. By induction on the structure of τ :

Case β.

If β = α then [τ1/α]β = τ1 and [τ2/α]β = τ2, so by the premise that τ1 ≡→ τ2.

If β 6= α then [τ1/α]β = [τ2/α]β = β, so by rule PR-Refl.

Case λβ.τ ′.

By the induction hypothesis, [τ1/α]τ ′ ≡→ [τ2/α]τ ′. Then by rule PR-Abs.

Case τ ′1 τ ′2.

By the induction hypothesis twice, [τ1/α]τ ′1 ≡→ [τ2/α]τ ′1 and [τ1/α]τ ′2 ≡→ [τ2/α]τ ′2.
Then by rule PR-App.

Case τ ′1
ϕ−→ τ ′2.

As in the previous case.
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Case ∀β:κ.τ ′.

By the induction hypothesis, [τ1/α]τ ′ ≡→ [τ2/α]τ ′. Then by rule PR-All.

Case 1.

Then [τ1/α]1 = [τ2/α]1 = 1, so by rule PR-Refl.

Case (+).

As in the previous case.

Case (×).

As in the previous case.

Case aref.

As in the previous case.

Lemma 41 (Type substitution on parallel reduction). If τ1 ≡→ τ2 and τ ′1 ≡→ τ ′2 then
[τ1/α]τ ′1 ≡→ [τ2/α]τ ′2.

Proof. By induction on the derivation of τ ′1 ≡→ τ ′2:

Case τ ′1 ≡→ τ ′1.

Then by lemma 40.

Case
τ11 ≡→ τ21 τ12 ≡→ τ22

τ11
ϕ1−→ τ12 ≡→ τ21

ϕ2−→ τ22
.

By the induction hypothesis twice,

• [τ1/α]τ11 ≡→ [τ2/α]τ21 and

• [τ1/α]τ12 ≡→ [τ2/α]τ22.

Then by rule PR-Arr.

Case
τ1 ≡→ τ2

∀α:κ.τ1 ≡→ ∀α:κ.τ2
.

By the induction hypothesis and rule PR-All.

Case
τ1 ≡→ τ2

λα.τ1 ≡→ λα.τ2
.

By the induction hypothesis and rule PR-Abs.
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Case
τ11 ≡→ τ21 τ12 ≡→ τ22

τ11 τ12 ≡→ τ21 τ22
.

By the induction hypothesis twice and rule PR-App.

Case
τ11 ≡→ τ21 τ12 ≡→ τ22

(λβ.τ11) τ12 ≡→ [τ22/β]τ21
.

By the induction hypothesis twice,

• [τ1/α]τ11 ≡→ [τ2/α]τ21 and

• [τ1/α]τ12 ≡→ [τ2/α]τ22.

By rule PR-Beta,

• (λβ. [τ1/α]τ11) [τ1/α]τ12 ≡→ [[τ2/α]τ22/β][τ2/α]τ21.

Note that (λβ. [τ1/α]τ11) [τ1/α]τ12 = [τ1/α]((λβ.τ11) τ12). Also, because β is
fresh for τ2, we know that [[τ2/α]τ22/β][τ2/α]τ21 = [τ2/α][τ22/β]τ21. Thus,

• [τ1/α]((λβ.τ11) τ12) ≡→ [τ2/α][τ22/β]τ21

as desired.

Lemma 42 (Single-step diamond property of parallel reduction). If τ ≡→ τ1 and
τ ≡→ τ2 then there exists some τ ′ such that τ1 ≡→ τ ′ and τ2 ≡→ τ ′:

τ
�(v�

τ1
�'

τ2
w�

τ ′

Proof. We start by considering cases involving rule PR-Refl, which always applies:

• If τ ≡→ τ1 by rule PR-Refl and τ ≡→ τ2 by some rule R (which may be
rule PR-Refl as well), then let τ ′ = τ2. Then τ1 ≡→ τ ′ by rule R and τ2 ≡→ τ ′

by rule PR-Refl.

• If τ ≡→ τ1 by some rule R and τ ≡→ τ2 by rule PR-Refl then by symmetry from
the previous case.

We now need only consider derivations that do not involve rule PR-Refl at the root.
By induction on the structure of τ :

Case β.

This only reduces by rule PR-Refl.
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Case λβ.τ ′′.

The only two rules that allow reduction of λβ.τ ′′ are rule PR-Abs and rule PR-Refl,
and we’ve already considered that latter. Thus, it must be that τ ≡→ τ1 and
τ ≡→ τ2 both by rule PR-Abs. Then by inversion, there must be some types τ ′1
and τ ′2 such that

• τ1 = λβ.τ ′1,

• τ2 = λβ.τ ′2,

• τ ′′ ≡→ τ ′1, and

• τ ′′ ≡→ τ ′2.

By the induction hypothesis, there exists some τ ′′′ such that

• τ ′1 ≡→ τ ′′′ and

• τ ′2 ≡→ τ ′′′.

Then let τ ′ = λβ.τ ′′′, and both τ1 and τ2 reduce to τ ′′′ by rule PR-Abs.

Case τ ′1 τ ′2.

Other that rule PR-Refl, there are two rules that might apply here in any
combination, PR-App and PR-Beta.

• If τ ≡→ τ1 and τ ≡→ τ2 both by rule PR-App, that is,

τ ′1 ≡→ τ11 τ ′2 ≡→ τ12

τ ′1 τ
′
2 ≡→ τ11 τ12

and
τ ′1 ≡→ τ21 τ ′2 ≡→ τ22

τ ′1 τ
′
2 ≡→ τ21 τ22

where τ1 = τ11 τ12 and τ2 = τ21 τ22.
By the induction hypothesis twice, there exist some types τ ′′1 and τ ′′2 such
that

– τ11 ≡→ τ ′′1 ,

– τ21 ≡→ τ ′′1 ,

– τ12 ≡→ τ ′′2 , and
– τ22 ≡→ τ ′′2 .

Then let τ ′ = τ ′′1 τ
′′
2 , and both τ1 and τ2 reduce to τ ′ by rule PR-App.

• If τ ≡→ τ1 by rule PR-App and τ ≡→ τ2 by rule PR-Beta, that is,

τ ′′1 ≡→ τ11 τ ′2 ≡→ τ12

(λα.τ ′′1 ) τ ′2 ≡→ (λα.τ11) τ12
and

τ ′′1 ≡→ τ21 τ ′2 ≡→ τ22

(λα.τ ′′1 ) τ ′2 ≡→ [τ22/α]τ21

where
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– τ ′1 = λα.τ ′′1 ,

– τ1 = (λα.τ11) τ12, and
– τ2 = [τ22/α]τ21.

By the induction hypothesis, twice, there exist some τ ′′′1 and τ ′′′2 such that

– τ11 ≡→ τ ′′′1 ,

– τ21 ≡→ τ ′′′1 ,

– τ12 ≡→ τ ′′′2 , and
– τ22 ≡→ τ ′′′2 .

Then by rule PR-Beta and lemma 41,

– (λα.τ11) τ12 ≡→ [τ ′′′2 /α]τ ′′′1 and
– [τ22/α]τ21 ≡→ [τ ′′′2 /α]τ ′′′1 .

• If τ ≡→ τ1 by rule PR-Beta and τ ≡→ τ2 by rule PR-App, then by symme-
try from the previous case.

• If τ ≡→ τ1 and τ ≡→ τ2 both by rule PR-Beta, that is,

τ ′′1 ≡→ τ11 τ ′2 ≡→ τ12

(λα.τ ′′1 ) τ ′2 ≡→ [τ12/α]τ11
and

τ ′′1 ≡→ τ21 τ ′2 ≡→ τ22

(λα.τ ′′1 ) τ ′2 ≡→ [τ22/α]τ21

where

– τ ′1 = λα.τ ′′1 ,

– τ1 = [τ12/α]τ11, and
– τ2 = [τ22/α]τ21.

By the induction hypothesis, twice, there exist some τ ′′′1 and τ ′′′2 such that

– τ11 ≡→ τ ′′′1 ,

– τ21 ≡→ τ ′′′1 ,

– τ12 ≡→ τ ′′′2 , and
– τ22 ≡→ τ ′′′2 .

Then by lemma 41 twice,

– [τ12/α]τ11 ≡→ [τ ′′′2 /α]τ ′′′1 and
– [τ22/α]τ21 ≡→ [τ ′′′2 /α]τ ′′′1 .

Case τ ′1
ϕ−→ τ ′2.

As in the both-by-PR-App part of the previous case, but using rule PR-Arr.

Case ∀β:κ.τ ′.

As in the PR-Abs case, but using rule PR-All.
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Case 1.

This only reduces by rule PR-Refl.

Case (+).

As in the previous case.

Case (×).

As in the previous case.

Case aref.

As in the previous case.

Lemma 43 (Parallel reduction confluence). If τ
∗≡→ τ1 and τ

∗≡→ τ2 then there exists
some τ ′ such that τ1

∗≡→ τ ′ and τ2
∗≡→ τ ′.

Proof. First by induction on length of the reduction sequence for τ
∗≡→ τ1:

Case τ
0≡→ τ1.

That is, τ = τ1. Then let τ ′ = τ2, because τ1
∗≡→ τ2.

Case τ ≡→ τ ′1
k≡→ τ1.

We would like to show that there exists some τ ′′ such that τ ′1
∗≡→ τ ′′ and τ2 ≡→ τ ′′.

By induction on length of the reduction sequence for τ
∗≡→ τ2:

Case τ
0≡→ τ2.

That is, τ = τ2. Then let τ ′′ = τ ′1, because τ ≡→ τ ′1 and τ ′1
∗≡→ τ ′1.

Case τ ≡→ τ ′2
j
≡→ τ2.

Because τ ≡→ τ ′1 and τ ≡→ τ ′2, there exists some τ ′12 such that τ ′1 ≡→ τ ′12 and
τ ′2 ≡→ τ ′12, by lemma 42.

Now we have that τ ′2 ≡→ τ ′12 and τ ′2
j
≡→ τ2. Since that reduction sequence is

shorter than the current case, we can apply the inner induction hypothesis,
by which there exists some τ ′′ such that τ ′12

∗≡→ τ ′′ and τ2 ≡→ τ ′′. By
transitivity, τ ′1 ≡→ τ ′12

∗≡→ τ ′′.

Then by the outer induction hypothesis, there exists some τ ′ such that τ1
∗≡→ τ ′

and τ ′′
∗≡→ τ ′. Since τ ≡→ τ ′1 and τ2 ≡→ τ ′′, we therefore have:

• τ ≡→ τ ′1
∗≡→ τ1

∗≡→ τ ′ and

• τ ∗≡→ τ2 ≡→ τ ′′
∗≡→ τ ′.

90



A ADDITIONAL PROOFS A.2 Type Soundness

Lemma 44 (Parallel reduction closure confluence). If τ
∗←≡→ τ ′ then there exists some

type τ ′′ such that τ
∗≡→ τ ′′ and τ ′

∗≡→ τ ′′.

Proof. By induction on the derivation of τ
∗←≡→ τ ′:

Case τ
0←≡→ τ ′.

Let τ ′′ = τ = τ ′.

Case τ ≡→ τ1
k←≡→ τ ′.

By the induction hypothesis, there exists some τ ′′ such that τ1
∗≡→ τ ′′ and τ ′

∗≡→
τ ′′. Then τ ≡→ τ1

∗≡→ τ ′′ as well.

τ *4 τ1 jt
k *4

∗
�"

τ ′

∗
}�

τ ′′

Case τ ←≡ τ1
k←≡→ τ ′.

By the induction hypothesis, there exists some τ ′′1 such that τ1
∗≡→ τ ′′1 and τ ′

∗≡→
τ ′′1 . Then by lemma 43, there exists some τ ′′ such that τ

∗≡→ τ ′′ and τ ′′1
∗≡→ τ ′′.

Then τ ′
∗≡→ τ ′′1

∗≡→ τ ′′ as well.

τ

∗

�

τ1jt jt k *4

∗
�!

τ ′

∗
}�

τ ′′ τ ′1∗
jt

Corollary 45 (Subtyping confluence). If ∆ ` τ1 <:v τ2 then there exists some τ ′

such that τ1
∗≡→ τ ′ and τ2

∗≡→ τ ′.

Proof. By lemma 39 and lemma 44.

A.2.7 Progress

Definition 46 (Faulty expressions). We define the faulty expressions with respect
to store s inductively as follows:
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Qs ::= faulty expressions
| v[τ ] where v 6≈ Λα:κ.v′

| v v′ where v 6≈ λx:τ.e
| case v of ι1 x1 → e1; ι2 x2 → e2 where v 6∈ {ι1 v1, ι2 v2}
| case v of 〈x1, x2〉 → e where v 6≈ 〈v1, v2〉
| swap v v′ where v 6≈ ptr `
| delete v where v 6≈ ptr `
| swap (ptr `) v′ where ` 6∈ dom s
| delete (ptr `) where ` 6∈ dom s
| E[Qs]

We say that a configuration s; e is faulty when e is faulty with respect to s.

Lemma 47 (Uniform evaluation). For all configurations with closed term e, either
the configuration takes a step, e is a value, or the configuration is faulty.

Proof. In each case, we will show one of:

(Q) e is faulty with respect to s,

(V) e is a value, or

(R) there is a configuration s′; e′ such that s; e 7−→ s′; e′.

By induction on e:

Case x.

Not closed, so it contradicts the antecedant.

Case λx:τ.e1.

Then (V).

Case e1 e2.

Let E1 = [] e2. By the induction hypothesis at e1, one of:

Case (Q).
Then E1[e1] is faulty as well, so (Q).

Case (V).
Let v1 = e1 and E2 = v1 [ ]. By the induction hypothesis at e2, one of:
Case (Q).

Then E2[e2] is faulty as well, so (Q).
Case (V).

Let v2 = e2. Then by cases on v1:
Case λx:τ.e11.

Then s; (λx:τ.e11) v2 7−→ s; [v2/x]e11 by rule R-β, so (R).
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Otherwise.
If v1 is not an abstraction, then (Q).

Case (R).
That is, s; e2 7−→ s′; e′2. Then s;E2[e2] 7−→ s′;E2[e

′
2], so (R).

Case (R).
That is, s; e1 7−→ s′; e′1. Then s;E1[e1] 7−→ s′;E1[e

′
1], so (R).

Case Λα:κ.v1.

Then (V).

Case e1[τ ].

Let E1 = [][τ ]. By the induction hypothesis at e1, one of:

Case (Q).
Then E1[e1] is faulty as well, so (Q).

Case (V).
Let v1 = e1. Then by cases on v1:
Case Λα:κ.v11.

Then s; (Λα:κ.v11)[τ ] 7−→ s; [τ/α]v11 by rule R-β, so (R).
Otherwise.

If v1 is not a type abstraction, then (Q).
Case (R).

That is, s; e1 7−→ s′; e′1. Then s;E1[e1] 7−→ s′;E1[e
′
1], so (R).

Case fix e1.

Let E = fix [ ]. By the induction hypothesis at e1, one of:

Case (Q).
Then E[e1] is faulty as well, so (Q).

Case (V).
Let v1 = e1. Then by rule R-Fix s; fix v1 7−→ s; v1 (fix v1), so (R).

Case (R).
That is, s; e1 7−→ s′; e′1. Then s;E[e1] 7−→ s′;E1[e

′
1], so (R).

Case 〈〉.
Then (V).

Case ι1 e1.

Let E = ι1 [ ]. By the induction hypothesis at e1, one of:
Case (Q).

Then E[e1] is faulty as well, so (Q).
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Case (V).
Let v1 = e1. Then ι1 v1 is a value, so (V).

Case (R).
That is, s; e1 7−→ s′; e′1. Then s;E[e1] 7−→ s′;E1[e

′
1], so (R).

Case ι2 e2.

As in the previous case.

Case case e′ of ι1 x1 → e1; ι2 x2 → e2.

Let E = case [ ] of ι1 x1 → e1; ι2 x2 → e2. Then by the induction hypothesis at
e′, one of:

Case (Q).
Then E1[e1] is faulty as well, so (Q).

Case (V).
Let v′ = e′. Then by cases on v′:

Case ι1 v′1.
Then s; case ι1 v

′
1 of ι1 x1 → e1; ι2 x2 → e2 7−→ s; [v′1/x1]e1 by rule R-ChooseL,

so (R).
Case ι2 v′2.

Likewise, but by rule R-ChooseR, (R).
Otherwise.

If v′ is not a sum injection, then (Q).

Case (R).
That is, s; e1 7−→ s′; e′1. Then s;E1[e1] 7−→ s′;E1[e

′
1], so (R).

Case 〈e1, e2〉.
As in the application case, with one change: If both e1 and e2 are values, then
(V).

Case case e′ of 〈x1, x2〉 → e1.

Let E = case [ ] of 〈x1, x2〉 → e1. Then by the induction hypothesis at e′, one of:

Case (Q).
Then E1[e1] is faulty as well, so (Q).

Case (V).
Let v′ = e′. Then by cases on v′:
Case 〈v1, v2〉.

Then s; case 〈v1, v2〉 of 〈x1, x2〉 → e1 7−→ s; [v1/x1][v2/x2]e1 by rule R-Unpair,
so (R).

94



A ADDITIONAL PROOFS A.2 Type Soundness

Otherwise.
If v′ is not a pair, then (Q).

Case (R).
That is, s; e1 7−→ s′; e′1. Then s;E1[e1] 7−→ s′;E1[e

′
1], so (R).

Case new e1.

Let E = new [ ]. By the induction hypothesis at e1, one of:

Case (Q).
Then E[e1] is faulty as well, so (Q).

Case (V).
Let v1 = e1. Then by rule R-New s; new v1 7−→ s ] {` 7→ v1}; ptr `, so
(R).

Case (R).
That is, s; e1 7−→ s′; e′1. Then s;E[e1] 7−→ s′;E1[e

′
1], so (R).

Case swap e1 e2.

As in the application case, except when both e1 and e2 are values. Call them
v1 and v2. Then by cases on v1:

Case ptr `.
If ` ∈ dom s, then let s′]{` 7→ v} = s, and s′]{` 7→ v}; swap (ptr `) v2 7−→
s′ ] {` 7→ v2}; 〈ptr `, v〉 by rule R-Swap, so (R). Otherwise, (Q).

Otherwise.
If v1 is not a store location, then (Q).

Case delete e1.

Let E = delete [ ]. By the induction hypothesis at e1, one of:

Case (Q).
Then E[e1] is faulty as well, so (Q).

Case (V).
Let v1 = e1. Then by cases on v1:
Case ptr `.

If ` ∈ dom s, then let s′]{` 7→ v2} = s, and s′]{` 7→ v2}; delete (ptr `) 7−→
s′; 〈〉 by rule R-Delete, so (R). Otherwise, (Q).

Otherwise.
If v1 is not a store location, then (Q).
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Case (R).
That is, s; e1 7−→ s′; e′1. Then s;E[e1] 7−→ s′;E1[e

′
1], so (R).

Case ptr `.

Then (V).

Definition 48 (Concrete types). Let T be the set of types and Kj be the set of kinds
of arity j. We define the six sets of concrete types as follows:

Carr = {τ1
ϕ−→ τ2 | τ1, τ2 ∈ T , ϕ ∈ K0}

Call = {∀α:κ.τ1 | j ∈ N, κ ∈ Kj, τ1 ∈ T }
Cunit = {1}
Csum = {τ1 + τ2 | τ1, τ2 ∈ T }
Cprod = {τ1 × τ2 | τ1, τ2 ∈ T }
Cref = {aref τ1 | τ1 ∈ T }

We now define each Ti as the set of types that can reduce to each to each Ci:

Ti = {τ | τ ∈ T , τ ′ ∈ Ci, τ
∗≡→ τ ′}

Lemma 49 (Concrete closure). If τ ∈ Ci and τ
∗≡→ τ ′ then τ ′ ∈ Ci.

Proof. By induction on the length of the reduction sequence and cases on τ :

Case τ1
ϕ−→ τ2.

The only rules that apply are rule PR-Refl and rule PR-Arr, neither of which
changes the shape of the type.

Case ∀α:κ.τ1.

The only rules that apply are rule PR-Refl and rule PR-All, neither of which
changes the shape of the type.

Case 1.

The only rule that applies is rule PR-Refl, which does not change the shape
of the type.

Case (+) τ1 τ2.

The only rules that apply are rule PR-Refl and rule PR-App, which may
change τ1 and τ2 but cannot change (+).
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Case (×) τ1 τ2.

The only rules that apply are rule PR-Refl and rule PR-App, which may
change τ1 and τ2 but cannot change (×).

Case aref τ1.

The only rules that apply are rule PR-Refl and rule PR-App, which may
change τ1 but cannot change aref.

Corollary 50 (Partition of types). If τ ∈ Ti and τ ∈ Tj then i = j.

Proof. Type τ must reduce to types in both Ci and Cj, which by lemma 43 must in
turn reduce to some common type τ ′. By lemma 49, τ ′ is in both Ci and Cj, and since
the six sets of concrete types are mutually disjoint, those must be the same set.

Ti 3 τ ∈ Tj
∗

�&

∗

x�
Ci 3 τ1

∗

�&

τ2 ∈ Cj
∗

x�
Ci 3 τ ′ ∈ Cj

Corollary 51 (Subtyping preserves form). If ∆ ` τ1 <:v τ2 and τ2 ∈ Ti then τ1 ∈ Ti.

Proof. By the definition of Ti, there exists some τ ′2 ∈ Ci such that τ2
∗≡→ τ ′2. By

corollary 45, there exists some τ ′ such that τ2
∗≡→ τ ′ and τ1

∗≡→ τ ′. By lemma 43, there
exists some τ such that τ ′

∗≡→ τ and τ ′2
∗≡→ τ .

τ1
<:v

∗

�&

τ2

∗

�

∗ *4 τ ′2 ∈ Ci
∗

�

τ ′
∗ *4 τ ∈ Ci

Since τ ′2 ∈ Ci, by lemma 49, τ ∈ Ci as well. Since τ1
∗≡→ τ , then by the definition of Ti,

τ1 ∈ Ti.
Lemma 52 (Canonical forms). The concrete type of a value dictates its form. Sup-
pose that ·; Σ B v : τ .

If τ is . . . , then v is . . . .
τ1

ϕ−→ τ2 ∈ Carr λx:τ ′.e for some x, τ ′ and e
∀α:κ.τ ′ ∈ Call Λα:κ.v′ for some value v′

1 ∈ Cunit 〈〉
τ1 + τ2 ∈ Csum ι1 v

′ or ι2 v′ for some value v′
τ1 × τ2 ∈ Cprod 〈v1, v2〉 for some values v1 and v2
aref τ ′ ∈ Cref ptr ` for some location `
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Proof. We generalize the induction hypothesis to use the sets Ti in place of each set
Ci. Since the Ti are disjoint, by corollary 50, finding that a type is in one of the sets
means we don’t need to consider the others.

By induction on the typing derivation:

Case
Γ; Σ B v : τ ′ Γ ` τ ′ <:+ τ Γ ` τ : ϕ

Γ; Σ B v : τ
.

If τ ∈ Tj, then by corollary 51, τ ′ ∈ Tj as well. Then by the induction hypoth-
esis, v has the right form.

Case
Γ; Σ B v : τ ` Γ,Γ′; Σ,Σ′

Γ,Γ′; Σ,Σ′ B v : τ
.

By the induction hypothesis.

Case
`:τ ′ ∈ Σ · ` τ ′ : ϕ ` Γ; Σ

Γ; Σ B ptr ` : aref τ ′
.

Then aref τ ′ ∈ Cref ⊂ Tref, and ptr ` has the right form.

Case
` (Γ; Σ), x:τ1  Γ′; Σ′ Γ′; Σ′ B e : τ2 Γ ` Σ � ϕ Γ ` τ1 : ϕ1

Γ; Σ B λx:τ1.e : τ1
ϕ−→ τ2

.

Then τ1
ϕ−→ τ2 ∈ Carr ⊂ Tarr, and λx:τ1.e has the right form.

Case
Γ, α:κ; Σ B v′ : τ ′

Γ; Σ B Λα:κ.v′ : ∀α:κ.τ ′
.

Then ∀α:κ.τ ′ ∈ Call ⊂ Tall, and Λα:κ.v′ has the right form.

Case
` Γ; Σ

Γ; Σ B 〈〉 : 1
.

Then 1 ∈ Cunit ⊂ Tunit, and 〈〉 has the right form.

Case
Γ; Σ B v′ : τ1 Γ ` τ2 : ϕ

Γ; Σ B ι1 v
′ : τ1 + τ2

.

Then τ1 + τ2 ∈ Csum ⊂ Tsum, and ι1 v′ has the right form.

Case
Γ; Σ B v′ : τ2 Γ ` τ1 : ϕ

Γ; Σ B ι2 v
′ : τ1 + τ2

.

Then τ1 + τ2 ∈ Csum ⊂ Tsum, and ι2 v′ has the right form.

Case
Γ; Σ1 B v1 : τ1 Γ; Σ2 B v2 : τ2

Γ; Σ1,Σ2 B 〈v1, v2〉 : τ1 × τ2
.

Then τ1 × τ2 ∈ Cprod ⊂ Tprod, and 〈v1, v2〉 has the right form.
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Otherwise.

The remaining rules to not apply to values.

Lemma 53 (Faulty expressions). If term e is faulty with respect to store s, then there
is no τ such that B s; e : τ .

Proof by contradiction. Suppose that B s; e : τ ′ and that e is faulty with respect to
s. By inversion of rule Conf, there exist some contexts Σ1 and Σ2 such that

• Σ1 B s : Σ1,Σ2 and

• ·; Σ2 B e : τ ′.

It may end with some amount of subsumption and weakening, but prior to that there
must be an instance of the appropriate syntax-directed rule for e, yielding

• ·; Σ21 B e : τ

for some Σ21 and τ .
Since e is faulty, let Qs = e. We generalize the induction hypothesis over τ and

proceed by induction on the structure of Qs:

Case v[τ2] where v 6≈ Λα′:κ′.v′.

By inversion of rule T-TApp, there are some α1, κ1, and τ1 such that

• ·; Σ21 B v : ∀α1:κ1.τ1.

By lemma 52, v must therefore have the form Λα1:κ1.v1, which contradicts the
side-condition that v 6≈ Λα′:κ′.v′.

Case v v′ where v 6≈ λx′′:τ ′′.e′′.

By inversion of rule T-App, there are some τ1, τ2, and ϕ1 such that

• ·; Σ21 B v : τ1
ϕ−→ τ2.

By lemma 52, v must therefore have the form λx1:τ1.e1, which contradicts the
side-condition.

Case case v of ι1 x1 → e1; ι2 x2 → e2 where v 6∈ {ι1 v′1, ι2 v′2}.
By inversion of rule T-Choose, there are some τ1 and τ2 such that

• ·; Σ21 B v : τ1 + τ2.

By lemma 52, v must therefore have either the form ι1 v1 or the form ι2 v1,
both of which contradict the side-condition.
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Case case v of 〈x1, x2〉 → e′ where v 6≈ 〈v′1, v′2〉.
By inversion of rule T-Unpair, there are some τ1 and τ2 such that

• ·; Σ21 B v : τ1 × τ2.

By lemma 52, v must therefore have the form 〈v1, v2〉, which contradicts the
side-condition.

Case swap v v′ where v 6≈ ptr `′.

By inversion of rule T-Swap, there is some τ1 such that

• ·; Σ21 B v : aref τ1.

By lemma 52, v must therefore have the form ptr `, which contradicts the side-
condition.

Case delete v where v 6≈ ptr `′.

As in the previous case, but using rule T-Delete instead of rule T-Swap.

Case swap (ptr `) v′ where ` 6∈ dom s.

By inversion of rule T-Swap, there is some τ1 such that

• ·; Σ21 B ptr ` : aref τ1,

and by inversion of rule T-Ptr,

• `:τ1 ∈ Σ21.

Since Σ2 = Σ21,Σ22, this means that

• `:τ1 ∈ Σ2.

Recall that Σ1 B s : Σ1,Σ2. Without loss of generality, because contexts are
identified up to permutation, let Σ′2, `:τ1 = Σ2. In other words,

• Σ1 B s : Σ1,Σ
′
2, `:τ1.

By S-Cons, this can only be the case if s = s′ ] {` 7→ v′} for some s′ and v′,
which contradicts the side condition that ` 6∈ dom s.

Case delete (ptr `) where ` 6∈ dom s.

As in the previous case, but using rule T-Delete instead of rule T-Swap.

Case E[e1] where e1 6≈ Qs
1.

By lemma 35, there are some typing contexts Σ211 and Σ212 and some type τ1
such that
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• ·; Σ211 B e1 : τ1.

By weakening,

• ·; Σ21 B e1 : τ1,

and by the induction hypothesis at e1 with τ1, this cannot be so.

Theorem 54 (Progress). If B s; e : τ then either e is a value, or there exist some s′
and e′ such that s; e 7−→ s′; e′.

Proof. Since B s; e : τ , by lemma 53, s; e is not faulty. Furthermore, since it types,
e must be closed. Then by lemma 47, either e is a value or the configuration takes a
step.

A.2.8 Type Soundness

Main Theorem 55 (Type soundness). If ` e : τ then either e diverges or there
exists some value v and store s such that {}; e ∗7−→ s; v and B s; v : τ .

Proof. By theorem 54 (Progress), theorem 36 (Preservation), and induction on the
length of the reduction sequence.
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