AVL$^1$ Trees

EECS 214

November 9, 2015

$^1$Georgy Adelson-Velsky and Evgenii Landis
Take-aways

- What is the AVL property?
- How does AVL tree insertion maintain the property?
A basic binary tree

A binary tree, describing structure but not content:

; An [BinTree X] is one of:
;  -- (leaf)
;  -- (branch [BinTree X] X [BinTree X])
(define-struct leaf [])
(define-struct branch [left element right])

; A [BST X] is a [BinTree X]
; that satisfies the BST property
Problem!

Binary search is $O(\log n)$, right?
Problem!

Binary search is $O(\log n)$, right?

1

2
Problem!

Binary search is $O(\log n)$, right?
Binary search is $O(\log n)$, right?
Problem!

Binary search is $O(\log n)$, right?
Problem!

Binary search is $O(\log n)$, right?

Only if the tree is (sufficiently) balanced.
Solution

We need some balance.
Solution

We need some balance.

There is a variety of self-balancing trees...
Red-black trees

**Main idea:** Every node has an extra bit marking it “red” or “black”

**Local invariant:** No red node has red children

**Global invariant:** Equal number of black nodes from root to every leaf
2-3 trees

**Main idea:** 2-nodes have one element and two children; 3-nodes have two elements and three children

**Local invariant:** All subtrees of a node have the same height

**Global invariant:** Every leaf is at the same depth
2-4 trees

**Main idea:** Like 2-3 trees, but also has 4-nodes with three elements and four children.

**Local invariant:** All subtrees of a node have the same height

**Global invariant:** Every leaf is at the same depth
B-trees

**Main idea:** Generalization of 2-4 trees to $2-k$ trees

**Local invariant:** Like 2-4 trees, but allow some number of missing subtrees

**Global invariant:** Every leaf is at the same depth
Splay trees

Main idea: Cache recently accessed elements near the root of the tree

Local invariant: Need amortized analysis to talk about this

Global invariant: Paths are very likely to be $O(\log n)$
AVL trees

Main idea: Maintain a balance factor giving the difference between each node’s subtrees’ heights

Local invariant: Balance factor is at most 1

Global invariant: Tree is approximately height-balanced
Big theme!

We can ensure a global property by maintaining a local property.
AVL tree data definition

Each branch includes a balance factor of type B:

```
(define-struct leaf [])
(define-struct branch [balance left element right])
```

; A [PreAVLTree B X] is one of:
; -- (make-leaf)
; -- (make-branch B [PreAVLTree B X]
; X [PreAVLTree B X])
; satisfying the BST property

; An [AVLTree X] is [PreAVLTree [-1, 1] X]
; satisfying the AVL property as well
Defining the AVL property

The AVL property relies on balance factors, so it requires that balance factors be accurate.

*See function accurate-balances? in avl.rkt.*

Then we require that every balance factor be \(-1\), 0, or 1.

*See function avl-balances? in avl.rkt.*

```scheme
; avl? : [PreAVLTree Integer X] -> Boolean
; Is the tree actually an AVL tree?
(define (avl? tree)
  (and (bst? tree)
       (accurate-balances? tree)
       (avl-balances? tree)))
```
Maintaining the AVL property

Suppose we have an AVL tree:

```
  B
  /\ 0
A   C
```

(Convention: triangles represent equal-height subtrees.)
Maintaining the AVL property

Suppose we have an AVL tree:

(Convention: triangles represent equal-height subtrees.)

Right now the balance factor is 0. So if we insert into A or C and that subtree grows in height, it becomes −1 or 1.
Maintaining the AVL property

Right now the balance factor at B is 1. Suppose we insert into A. What happens to B’s balance factor?
Maintaining the AVL property

Right now the balance factor at B is 1. Suppose we insert into A. What happens to B’s balance factor?

- If no change in A’s height, then B’s balance doesn’t change
- If A’s height increases, then B’s balance is now 0
Maintaining the AVL property

Right now the balance factor at B is 1. Suppose we insert into C. What happens to B’s balance factor?
Maintaining the AVL property

Right now the balance factor at B is 1. Suppose we insert into C. What happens to B’s balance factor?

- If no change, then B’s balance doesn’t change
- If increase, then B’s balance becomes 2
Maintaining the AVL property

Right now the balance factor at B is 1. Suppose we insert into C. What happens to B’s balance factor?

- If no change, then B’s balance doesn’t change
- If increase, then B’s balance becomes 2—not okay!
Maintaining the AVL property

Right now the balance factor at B is 1. Likewise, suppose we insert into E. What happens to B’s balance factor?

- If no change, then B’s balance doesn’t change
- If increase, then B’s balance becomes 2—not okay!
Right-right case

If the height the right-right subtree (formerly E) increases, we get a situation like this:
Right-right case

If the height the right-right subtree (formerly E) increases, we get a situation like this:
Right-left case

If the height the right-right subtree (formerly C) increases, we get a situation like this:
Right-left case

If the height the right-right subtree (formerly C) increases, we get a situation like this:
Right-left case

If the height the right-right subtree (formerly C) increases, we get a situation like this:

```
B
 / 2
A       F
   / -1
  D      G
       / 0
  C     E
```

This is just the right-right case, which we know how to handle.
Take-aways

- What is the AVL property?
- How does AVL tree insertion maintain the property?