Amortized Time
Last time

We never said how much a single union or find operation costs.

Instead, we said that m operations on n objects is $\mathcal{O}((m + n) \log^* n)$.
Last time

We never said how much a single union or find operation costs

Instead, we said that m operations on n objects is $O((m + n) \log^* n)$

This is because some long-running operations do maintenance that make other operations faster
Example: dynamic array
Dynamic Array ADT

Looks like: [3, 8, 2, 90, 5]

Signature:

```python
interface DYN_ARRAY[T]:
    def len(self) -> nat?
    def get(self, index: nat?) -> T
    def set(self, index: nat?, element: T) -> VoidC
    def push(self, element: T) -> VoidC
    def pop(self) -> T
```

Laws:

- \(\{ a = [v_0, \ldots, v_k] \} \ a\text{.}len() = k + 1 \)
- \(\{ a = [v_0, \ldots, v_k] \} \ a\text{.}get(i) = v_i \)
- \(\{ a = [v_0, \ldots, v_k] \} \ a\text{.}set(i, v) \{ a = [v_0, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_k] \} \)
- \(\{ a = [v_0, \ldots, v_k] \} \ a\text{.}push(v) \{ a = [v_0, \ldots, v_k, v] \} \)
- \(\{ a = [v_0, \ldots, v_k] \} \ a\text{.}pop() = v_k \{ a = [v_0, \ldots, v_{k-1}] \} \)
A naïve representation (1/2)

class DynArray[T] (DYN_ARRAY):
 let data: VecC[T]

 def __init__(self):
 self.data = []

 def len(self):
 self.data.len()

 def get(self, index):
 self.data[index]

 def set(self, index, element):
 self.data[index] = element

...
class DynArray[T] (DYN_ARRAY):
 ...

 def push(self, element):
 def each(i):
 if i < self.len():
 self.data[i]
 else:
 element
 self.data = [each(i) for i in self.len() + 1]

 def pop(self):
 let new_len = self.len() - 1
 let result = self.data[new_len]
 self.data = [self.data[i] for i in new_len]
 result
Naïve representation complexities

- get/set/size are $O(1)$
- push/pop are $O(n)!$
Naïve representation complexities

- get/set/size are $O(1)$
- push/pop are $O(n)!$

How long does it take to build an n–element array by pushes?
Naïve representation complexities

- *get/set/size* are $O(1)$
- *push/pop* are $O(n)$!

How long does it take to build an n–element array by pushes?

$$\sum_{i=1}^{n} O(i) = O(n^2)$$
A better idea: leave extra space in the array

data

size 5

3 8 2 9 5
This is a *dynamic array*

It’s called:

- `std::vector` in C++
- `ArrayList` in Java
- `list` in Python
class DynArray[T] (DYN_ARRAY):
 let data: VecC[OrC(T, False)]
 let size: nat?

 def __init__(self, initial_capacity: nat?):
 self.data = [False; initial_capacity]
 self.size = 0

 def len(self):
 self.size

 def capacity(self) -> nat?:
 self.data.len()
class DynArray[T] (DYN_ARRAY):
 ...

def get(self, index):
 self._bounds_check(index)
 self.data[index]

def set(self, index, element):
 self._bounds_check(index)
 self.data[index] = element
Implementation (2/4)

class DynArray[T] (DYN_ARRAY):
 ...

def get(self, index):
 self._bounds_check(index)
 self.data[index]

def set(self, index, element):
 self._bounds_check(index)
 self.data[index] = element

def _bounds_check(self, index):
 if index >= self.size:
 error('DynArray: out of bounds')

 ...

class DynArray[T] (DYN_ARRAY):
 ...

 def pop(self):
 self.size = self.size - 1
 let result = self.data[self.size]
 self.data[self.size] = False
 result

 ...

 ...
class DynArray[T] (DYN_ARRAY):
 ...

def push(self, element):
 self._ensure_capacity(self.size + 1)
 self.data[self.size] = element
 self.size = self.size + 1
class DynArray[T] (DYN_ARRAY):
 ...

def push(self, element):
 self._ensure_capacity(self.size + 1)
 self.data[self.size] = element
 self.size = self.size + 1

def _ensure_capacity(self, cap):
 if self.capacity() < cap:
 cap = max(cap, 2 * self.capacity())
 let new_data = [False; cap]
 for i, v in self.data:
 new_data[i] = v
 self.data = new_data
 ...

Time complexities

- \textit{get/set/size} are $O(1)$
- \textit{pop} is $O(1)$
- \textit{push} is $O(n)$ still

How long does it take to build an n-element array by \textit{push}es?

$n \sum_{i=0}^{n-1} O(i) = O(n^2)$
Time complexities

- \textit{get/set/size} are $O(1)$
- \textit{pop} is $O(1)$
- \textit{push} is $O(n)$ still

How long does it take to build an n–element array by \textit{pushes}?
Time complexities

- \textit{get/set/size} are $\mathcal{O}(1)$
- \textit{pop} is $\mathcal{O}(1)$
- \textit{push} is $\mathcal{O}(n)$ still

How long does it take to build an n–element array by pushes?

$$\sum_{i=0}^{n} \mathcal{O}(i) = \mathcal{O}(n^2)?$$
The peculiar thing about *push*

- Most of the time it’s cheap
- Only occasionally do we need to grow (which is expensive):
Cumulative time
Cumulative time

It’s linear!
Dynamic array aggregate analysis

Suppose we create a new array and push n times. How can we show linear time?

Let c_i be the cost of the ith insertion:

\[c_i = \begin{cases} i & \text{if } i - 1 \text{ is a power of 2} \\ 1 & \text{otherwise} \end{cases} \]

\begin{align*}
 s_i & = 1 \ 2 \ 4 \ 4 \ 8 \ 8 \ 8 \ 8 \ 16 \ 16 \\
 c_i & = 1 \ 2 \ 3 \ 1 \ 5 \ 1 \ 1 \ 1 \ 9 \ 1
\end{align*}
Dynamic array aggregate analysis

Suppose we create a new array and push n times. How can we show linear time?

Let c_i be the cost of the ith insertion:

$$c_i = \begin{cases}
 i & \text{if } i - 1 \text{ is a power of 2} \\
 1 & \text{otherwise}
\end{cases}$$
Dynamic array aggregate analysis

Suppose we create a new array and push \(n \) times. How can we show linear time?

Let \(c_i \) be the cost of the \(i \)th insertion:

\[
c_i = \begin{cases}
i & \text{if } i - 1 \text{ is a power of 2} \\
1 & \text{otherwise}
\end{cases}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>(c_i)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
Adding it up

Let $d_i = c_i - 1$ (the doubling cost)
Adding it up

Let $d_i = c_i - 1$ (the doubling cost)

Then,

$$
\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} (1 + d_i)
= n + \sum_{i=1}^{n} d_i
= n + \sum_{i=0}^{\log_2 n} 2^i
= n + (n + \frac{n}{2} + \frac{n}{4} + \cdots)
\leq 3n
$$
Example: banker’s queue (FIFO)
class BankersQueue[T] (QUEUE):
 let front
 let back
 # Interpretation: the queue is the elements of
 # `front` in pop order followed by `back` in reverse

def __init__(self, Stack: FunC[STACK!]):
 self.front = Stack()
 self.back = Stack()

def len(self):
 self.front.len() + self.back.len()

def empty?(self):
 self.front.empty?() and self.back.empty?()
class BankersQueue[T] (QUEUE):
 ...

def enqueue(self, element):
 self.back.push(element)
class BankersQueue[T] (QUEUE):
 ...

 def enqueue(self, element):
 self.back.push(element)

 def dequeue(self):
 if self.front.empty?():
 if self.back.empty?():
 error('BankersQueue.dequeue: empty')
 while not self.back.empty?():
 self.front.push(self.back.pop())
 self.front.pop()
Banker’s queue analysis (physicist style)

We assign a “potential” to each data structure state:

$$\Phi(q) = q\text{.back}\text{.len()}$$

Note that the potential of a new queue is 0, and the potential is never negative.
We assign a “potential” to each data structure state:

$$\Phi(q) = q\cdot \text{back}.\text{len}()$$

Note that the potential of a new queue is 0, and the potential is never negative.

Then the amortized cost of an operation is

$$c + \Phi(q') - \Phi(q)$$

where c is the actual cost, q is the state before, and q' is the state after.
Actual costs

Actual cost of enqueue operation: 1
Actual costs

Actual cost of enqueue operation: 1

Actual cost of cheap dequeue operation (when front isn’t empty): 1
Actual costs

Actual cost of enqueue operation: 1

Actual cost of cheap dequeue operation (when front isn’t empty): 1

Actual cost of expensive dequeue operation (with reversal) is the cost of the reversal (the number of elements reversed) plus the cost of a cheap dequeue: $n + 1$
Amortized cost of enqueue

- Actual cost of enqueue is 1
- Increases the length of the back by 1, hence \(\Phi(q') - \Phi(q) = 1 \)

So amortized cost is 1 + 1 = 2
Amortized cost of cheap dequeue

- Actual cost of cheap dequeue is 1
- No change in potential

So amortized cost is 1
Let n be $q.\text{back}.\text{len()}$, the length of the back stack. Then:

- Actual cost is $n + 1$
- $\Phi(q) = n$ (before reversal)
- $\Phi(q') = 0$ (after reversal)

So amortized cost is $n + 1 + 0 - n = 1$.
Banker’s queue operation worst-case time complexities

<table>
<thead>
<tr>
<th>operation</th>
<th>single operation</th>
<th>amortized</th>
</tr>
</thead>
<tbody>
<tr>
<td>enqueue</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>dequeue</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
</tbody>
</table>
Next time: random binary search trees