Intro: What Is a Data Structure?

EECS 214, Fall 2017
One definition

A scheme for organizing data to use it efficiently
Data structure goals

- Correctness (does what it promises)
- Efficient use of resources:
 - Time (for operations)
 - Space (memory)
 - Power
Example: array set

How long does it take to find an element? How long to add one?

14 2 65 23 26 80 45
Example: array set

How long does it take to find an element? How long to add one?

What if we sort it?
Characterizing data structures

- Almost always comes with an *algorithm*
 - (an effective procedure to a class of problems)
- Usually implements an *abstract data type*
 - (a set of operations with rules about their behavior)
Example abstract data type: stack

- Operations: push, pop, peek
- Implementations:
 - Linked list: cons, rest, first
 - Array?
Example abstract data type: set

- Operations: empty?, member?, insert, union, intersect, size
- Implementations:
 - Linked list
 - Array
 - Binary search tree
 - Hash table
Related things that aren’t really data structures

- File/serialization/interchange formats (e.g., JSON, XML)
- Databases (though they often use very fancy data structures)
Concrete data structures

- struct
- array
- linked list (single, double, circular)
- ring buffer
- binary search tree
- adjacency list and adjacency matrix
- binary heap
- union-find
- hash table
- Bloom filter
- dynamic array
- AVL and red-black trees
Concrete data structures

- struct
- array
- linked list (single, double, circular)
- ring buffer
- binary search tree
- adjacency list and adjacency matrix
- binary heap
- union-find
- hash table
- Bloom filter
- dynamic array
- AVL and red-black trees
Other concepts

- Abstract data types
- Asymptotic analysis (big-O notation)
 - Worst case
 - Average case
 - Amortized worst case
- Hashing
Administrivia
Course staff

Instructor: **Jesse Tov**

- Email: jesse@eecs.northwestern.edu
- Office: Ford 2-215
- Office hours: Gladly by appointment
Course staff

Instructor: Jesse Tov

- Email: jesse@eecs.northwestern.edu
- Office: Ford 2-215
- Office hours: Gladly by appointment

Undergrad TAs:

- Daniel Zhu
- Ellie Tyger
- Emma McDonnell
- Jared Schifrien
- Matt Cheung
- Nathan Lindquist
- Sameena Khan
- Scott Renshaw
- Vickie Li
Prerequisites

One of:

- EECS 111 and 211
- EECS 230
- or something equivalent
Course structure

- Lectures will be mostly theoretical
- Homework is programming
- Exams cover both
Grading

- Five programming assignments worth 10% each
- Two in-class exams worth 25% each
- The map from numbers to letter grades is at my discretion
Exams

No final! Two in-class exams:

- 1st: Tuesday, October 24th
- 2nd: Thursday, November 30th
Homework

Five programming assignments:

- Four done with a partner
- Language: DSSL2 (Data Structures Student Language 2)

Graded by automated testing (which can be picky) and TAs (pickier still)

No late work accepted
Resources

In person:

- TAs
- Instructor

Online:

- http://users.eecs.northwestern.edu/~jesse/course/eecs214/
- Piazza board

Books (optional):

- CLRS (Corman, Leiserson, Rivest, Stein): algorithms
Stealing
Stealing

- Only turn in code you wrote (or consult instructor)
 - (but you can share tests in this class)
- Avoid poisoning (seeing something you shouldn’t)
- Accessory to the crime is as culpable as the criminal
- (Your responsibility to protect your work)
How to avoid stealing

- Start early
- Don’t look at others’ homework
- Don’t post homework code on Piazza
- If you aren’t sure, ask course staff
Why not steal?

- You’ll be reported to Dean Burghardt,
Why not steal?

- You’ll be reported to Dean Burghardt,
- you’ll no longer be welcome in this class, and
Why not steal?

- You’ll be reported to Dean Burghardt,
- you’ll no longer be welcome in this class, and
- MOST IMPORTANTLY, you won’t learn.
Next time: Boxes and arrows