The Edit-Compile-Run Cycle

EECS 211
Winter 2019
So you’ve written a C program:

```c
#include <stdio.h>

int main()
{
    printf("Hello, EECS 211!\n");
}
```

What now?
Compilation

We need to translate our program from

- source code (e.g., C, human readable)

To

- machine code (machine executable).
What does machine code look like?

```
55
48 89 e5
48 83 ec 10
48 8d 3d 37 00 00 00
b0 00
e8 0e 00 00 00
31 c9
89 45 fc
89 c8
48 83 c4 10
5d
c3
```
What does machine code look like?

55
48 89 e5
48 83 ec 10
48 8d 3d 37 00 00 00
b0 00
e8 0e 00 00 00
31 c9
89 45 fc
89 c8
48 83 c4 10
5d
c3

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
leaq 55(%rip), %rdi
movb $0, %al
callq 14
xorl %ecx, %ecx
movl %eax, -4(%rbp)
movl %ecx, %eax
addq $16, %rsp
popq %rbp
retq
For the first few weeks of class, we are going to develop and test our programs under Unix.
Using Unix

For the first few weeks of class, we are going to develop and test our programs under Unix.

Unix A style of multi-user operating system invented 50 years ago. (Modern variants include Linux and Mac OS X.)
Using Unix

For the first few weeks of class, we are going to develop and test our programs under Unix.

Unix A style of multi-user operating system invented 50 years ago. (Modern variants include Linux and Mac OS X.)

shell The main program for controlling a Unix computer, using textual commands.
Using Unix

For the first few weeks of class, we are going to develop and test our programs under Unix.

Unix A style of multi-user operating system invented 50 years ago. (Modern variants include Linux and Mac OS X.)

shell The main program for controlling a Unix computer, using textual commands.

terminal A program (or historically, device) for displaying textual interactions, often remote, with a Unix computer.
Advantages of the Unix shell (1/2)

Compared to point-and-click, you can say more with less:

$ mkdir backup
$ cp *.docx backup
Advantages of the Unix shell (1/2)

Compared to point-and-click, you can say more with less:

$ mkdir backup
$ cp *.docx backup

$ mkdir thumbs
$ foreach i (*.png)
 convert -geometry 128x128 "$i" "thumbs/$i"
end
Advantages of the Unix shell (2/2)

You can automate repeated tasks by putting common sequences of commands in _shell scripts_:

```bash
#!/bin/sh

for dir in "*"; do
    ( 
        cd "$dir"
        mkdir -p thumbs
        for file in *.png; do
            convert -geometry 128x128 "$file" \
                "thumbs/$file"
        done
    )
done
```
Compilation in the Unix shell

```bash
$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$ ls
hello.c
$ cc hello.c -o hello
$ ls
hello hello.c
$ ./hello
Hello, EECS 211!
```

Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$
$
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$
Compiling in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$ ls

Hello, EECS 211!
Compilation in the Unix shell

```bash
$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$ ls
hello.c
$ ls
hello.c
$ cc hello.c -o hello
$ ls
hello hello.c
$ ./hello
Hello, EECS 211!
$ ```
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$ ls
hello.c
$ ls
hello.c
$ cc hello.c -o hello
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$ ls
hello.c
$ cc hello.c -o hello
$
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$ ls
hello.c
$ cc hello.c -o hello
$ ls
hello
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$ ls
hello.c
$ cc hello.c -o hello
$ ls
hello hello.c
$
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$ ls
hello.c
$ cc hello.c -o hello
$ ls
hello  hello.c
$ ./hello
Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211
$ emacs -nw hello.c
$ ls
hello.c
$ cc hello.c -o hello
$ ls
hello  hello.c
$ ./hello
Hello, EECS 211!
$
Build management

As programs get larger, builds get more complicated:

- More files to compile, in complex combinations
- Want to just recompile the changed files
- Different compilers/machines want different options and work differently

We'll use a software building system called Make to automate builds for us.
Build management

As programs get larger, builds get more complicated:

- More files to compile, in complex combinations
- Want to just recompile the changed files
- Different compilers/machines want different options and work differently

We’ll use a software building system called Make to automate builds for us.
Introduction to Make

Make is configured using a file called Makefile, which is a set of rules that say what you can build, what it’s built from, and how.
Introduction to Make

Make is configured using a file called Makefile, which is a set of rules that say what you can build, what it’s built from, and how.

The simplest possible Makefile:

```
hello: hello.c
 cc -o hello hello.c
```
Introduction to Make

Make is configured using a file called Makefile, which is a set of rules that say what you can build, what it’s built from, and how.

The simplest possible Makefile:

```
hello: hello.c
 cc -o hello hello.c
```

(Meaning: *To build hello from hello.c, run the command cc -o hello hello.c.*)
Introduction to Make

Make is configured using a file called Makefile, which is a set of rules that say what you can build, what it’s built from, and how.

The simplest possible Makefile:

```
hello: hello.c
 cc -o hello hello.c
```

(Meaning: To build hello from hello.c, run the command cc -o hello hello.c.)

Using Make:

```
$ make hello
```
Introduction to Make

Make is configured using a file called Makefile, which is a set of rules that say what you can build, what it’s built from, and how.

The simplest possible Makefile:

```
hello: hello.c
 cc -o hello hello.c
```

(Meaning: To build hello from hello.c, run the command cc -o hello hello.c.)

Using Make:

```
$ make hello
```
Introduction to Make

Make is configured using a file called Makefile, which is a set of rules that say what you can build, what it’s built from, and how.

The simplest possible Makefile:

    hello: hello.c
        cc -o hello hello.c

(Meaning: To build hello from hello.c, run the command cc -o hello hello.c.)

Using Make:

    $ make hello
    cc -o hello helloc
    $

Introduction to Make

Make is configured using a file called Makefile, which is a set of rules that say what you can build, what it’s built from, and how.

The simplest possible Makefile:

```makefile
hello: hello.c
 cc -o hello hello.c
```

(Meaning: To build hello from hello.c, run the command cc -o hello hello.c.)

Using Make:

```
$ make hello
cc -o hello hello.c
$ make hello
```
Introduction to Make

Make is configured using a file called Makefile, which is a set of rules that say what you can build, what it’s built from, and how.

The simplest possible Makefile:

```
hello: hello.c
 cc -o hello hello.c
```

(Meaning: To build hello from hello.c, run the command cc -o hello hello.c.)

Using Make:

```
$ make hello
cc -o hello hello
$ make hello
make: `build/hello' is up to date.
$
Cleaning up

$ cd$
$ rm -Rf eecs211$
$ mkdir eecs211$

$
Cleaning up

$ cd
Cleaning up

$ cd

$
Cleaning up

$ cd
$ rm -Rf eecs211
Cleaning up

$ cd
$ rm -Rf eecs211
$
Cleaning up

$ cd
$ rm -Rf eecs211
$ mkdir eecs211
Cleaning up

$ cd
$ rm -Rf eecs211
$ mkdir eecs211
$
Getting a Make project onto EECS

You can download an example Make project from the course website:

```
$ cd eecs211
$ wget URL211/lec/01compile.tgz
$ tar zxf 01compile.tgz
$ cd 01compile
$ ls
Makefile src
$ ls src
hello.c
```
Getting a Make project onto EECS

You can download an example Make project from the course website:

```sh
$ cd eecs211
```

Getting a Make project onto EECS

You can download an example Make project from the course website:

```
$ cd eeecs211
```

```
Getting a Make project onto EECS

You can download an example Make project from the course website:

$ cd eecs211
$ wget $URL211/lec/01compile.tgz

...
Getting a Make project onto EECS

You can download an example Make project from the course website:

```
$ cd eecs211
$ wget $URL211/lec/01compile.tgz
...
$
```

Getting a Make project onto EECS

You can download an example Make project from the course website:

```
$ cd eecs211
$ wget $URL211/lec/01compile.tgz
...
$ tar zxf 01compile.tgz
```
Getting a Make project onto EECS

You can download an example Make project from the course website:

```
$ cd eecs211
$ wget $URL211/lec/01compile.tgz
...
$ tar zxf 01compile.tgz
$
```
Getting a Make project onto EECS

You can download an example Make project from the course website:

$ cd eecs211
$ wget $URL211/lec/01compile.tgz
...
$ tar zxf 01compile.tgz
$ cd 01compile
Getting a Make project onto EECS

You can download an example Make project from the course website:

```bash
$ cd eecs211
$ wget $URL211/lec/01compile.tgz
...
$ tar zxf 01compile.tgz
$ cd 01compile
$`
Getting a Make project onto EECS

You can download an example Make project from the course website:

```
$ cd eecs211
$ wget $URL211/lec/01compile.tgz
...
$ tar zxf 01compile.tgz
$ cd 01compile
$ ls
```
Getting a Make project onto EECS

You can download an example Make project from the course website:

$ cd eecs211
$ wget $URL211/lec/01compile.tgz
...
$ tar zxf 01compile.tgz
$ cd 01compile
$ ls
Makefile src
$
Getting a Make project onto EECS

You can download an example Make project from the course website:

```
$ cd eecs211
$ wget $URL211/lec/01compile.tgz
...
$ tar zxf 01compile.tgz
$ cd 01compile
$ ls
Makefile src
$ ls src
```
Getting a Make project onto EECS

You can download an example Make project from the course website:

```bash
$ cd eecs211
$ wget $URL211/lec/01compile.tgz
...
$ tar zxf 01compile.tgz
$ cd 01compile
$ ls
Makefile  src
$ ls src
hello.c
$
Another Makefile

```bash
CFLAGS = -std=c11 -pedantic -Wall
all: build/hello
build/hello: src/hello.c
 mkdir -p build
 cc -o $@ $< $(CFLAGS)
clean:
 rm -Rf build
.PHONY: all clean
```

$
Another Makefile

$ cat Makefile
Another Makefile

$ cat Makefile
CFLAGS = -std=c11 -pedantic -Wall

all: build/hello

build/hello: src/hello.c
  mkdir -p build
  cc -o $@ $< $(CFLAGS)

clean:
  rm -Rf build

.PHONY: all clean
$
Building the project using Make

```bash
$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
build/hello
Hello, EECS 211!
sed -i 's/EECS 211/everyone/' src/hello.c
build/hello
Hello, everyone!
$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
build/hello
Hello, everyone!
```
Building the project using Make

$ make
Building the project using Make

$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$
Building the project using Make

```
$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
```
Building the project using Make

$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, EECS 211!
$
Building the project using Make

```
$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, EECS 211!
$ sed -i 's/EECS 211/everyone/' src/hello.c
```
Building the project using Make

$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, EECS 211!
$ sed -i 's/EECS 211/everyone/' src/hello.c
$
Building the project using Make

```
$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, EECS 211!
$ sed -i 's/EECS 211/everyone/' src/hello.c
$ build/hello
```
Building the project using Make

$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, EECS 211!

$ sed -i 's/EECS 211/everyone/' src/hello.c
$ build/hello
Hello, EECS 211!
$
Building the project using Make

$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, EECS 211!
$ sed -i 's/EECS 211/everyone/' src/hello.c
$ build/hello
Hello, EECS 211!
$ make
Building the project using Make

$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, EECS 211!
$ sed -i 's/EECS 211/everyone/' src/hello.c
$ build/hello
Hello, EECS 211!
$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$
Building the project using Make

$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, EECS 211!
$ sed -i 's/EECS 211/everyone/' src/hello.c
$ build/hello
Hello, EECS 211!
$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, everyone!
Building the project using Make

$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, EECS 211!
$ sed -i 's/EECS 211/everyone/' src/hello.c
$ build/hello
Hello, EECS 211!
$ make
mkdir -p build
cc -o build/hello src/hello.c -std=c11 -pedantic -Wall
$ build/hello
Hello, everyone!
$