
The BigDawg Architecture and Reference Implementation

Jennie Duggan
Northwestern U.

jennie@eecs.northwestern.edu

Aaron Elmore
U. of Chicago

aelmore@cs.uchicago.edu

Tim Kraska
Brown U.

tim_kraska@brown.edu

Sam Madden
M.I.T.

madden@csail.mit.edu

Tim Mattson
Intel Corp.

timothy.g.mattson@intel.com

Michael Stonebraker
M.I.T.

stonebraker@csail.mit.edu

ABSTRACT
This paper presents the reference implementation of a new archi-
tecture for future “Big Data” applications. Such applications re-
quire “big analytics” as one might expect, but they also require
real-time streaming support, real-time analytics, data visualization,
and cross-storage queries. We are guided by the principle “one size
does not fit all” [7], and we build on top of three storage engines,
each designed for specialized use cases. In addition, we demon-
strate novel support for querying across multiple storage engines as
well as pioneering solutions to data visualization. In the remainder
of this short paper, we describe the first of three BigDawg refer-
ence implementations, Bulldog. In the next two years we expect to
follow with Pitbull and Rottweiler releases.

1. INTRODUCTION
Intel created an Intel Science and Technology Center (ISTC) fo-

cused on “Big Data” in 2012. This center, with a hub at MIT and
spokes at five other universities, has built a big data architecture
and a reference implementation. We are guided by the following
tenets:
Tenet 1: One size does not fit all. It is clear that high performance
SQL analytics, real time decision support, OLTP, and complex an-
alytics will be optimized by different engines. Hence, Big Data
applications with complex heterogeneous data will utilize multiple
storage engines in a single application with three novel storage en-
gines in our current reference implementation.
Tenet 2: Real-time decision support is crucial. We expect an in-
creasing amount of data will stream into an application through an
Internet of Things (IOT) architecture, and one needs to act on this
data in real time. It serves no useful purpose, for example, to send a
hospital dischargee home with a monitoring device, if downstream
hardware and software is not capable of real-time response. Hence,
support for real time streaming data and real-time analytics is cru-
cial. In this paper, we describe a pioneering real-time system for
streaming data.
Tenet 3: The interface to big data applications will move from
today’s form-based interactions to a visualization focus. Histori-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

cally, visualization system loaded their data into main memory to
provide interactive responses to users gestures. Such “small vis”
cannot have a place in a big data stack. In this paper, we sketch our
ideas and preliminary code to deal with big vis.
Tenet 4: Any big data application will fundamentally deal with
data in multiple storage engines, whether it be to run analytics
that compare today (streaming system) with yesterday (data ware-
house) or to run complex analytics that combine patient metadata
(RDBMS) with time series data (array engine). We are developing
multi-database support and present our initial results in this paper.

To address these challenges, we are building a new database ar-
chitecture, that we call BigDawg, which is designed to support mul-
tiple storage backends with a unified querying, visualization, and
analytics interface on top. This paper describes our initial architec-
ture, which we call Bulldog.

To make sure our efforts are concrete, we are using Bulldog to
host a data set from the MIMIC II [6], and have built a demo ap-
plication using it to explore implications of the above tenets. In
Section 2 we briefly describe the MIMIC II data and in the remain-
ing sections our explorations on each of the four tenets above.

2. MIMIC II DATA
The MIMIC II data set is a publicly accessible data set on about

26,000 intensive care unit (ICU) admissions at Boston’s Beth Israel
Deaconess Hospital [6]. It contains waveform data (up to 125 Hz
measurements from bedside devices), patient metadata (name, age,
etc.), doctor’s and nurse’s notes (text), lab results (semi-structured
data) and prescriptions filled (semi-structured data). In a possible
production implementation, one would store all of this data, aug-
mented by streaming input from sensors. Hence, this system must
support a variety of data types, standard SQL analytics (how many
patients were given a particular drug), complex analytics (compute
the FFT of a patients waveform data and then compare it to “nor-
mal”), and text search (find patients who responded well to a par-
ticular drug or treatment).

3. MULTIPLE STORAGE ENGINES
The Bulldog implementation loads MIMIC II data in a mixture

of three storage engines. Text is stored in Accumulo [1], patient
metadata in Postgres and waveform data in SciDB [3]. Postgres
and SciDB are well known, while Accumulo is a key-value store,
popular in government circles, and favored by our implementation
partner, MIT Lincoln Labs. Future releases will incorporate ad-
ditional data models and storage engines. In particular, we plan
to integrate a prototype array engine, TileDB, a high-performance
functional engine, Tupleware, and a transactional stream process-
ing engine, S-Store.

4. REAL-TIME OPERATIONS
To support streaming operation, one can adopt either a stream-

processing point of view (and use an engine such as Aurora or
Storm) or a high performance OLTP strategy that uses a main mem-
ory DBMS such as VoltDB, MemSQL, or Hana. We take an OLTP
strategy and have built an engine S-Store that extends a main mem-
ory OLTP system (H-Store) with streaming primitives. Hence, we
expect waveform data from MIMIC II patients to enter BigDawg
through S-Store, with real-time processing and modification pro-
vided by stored procedures. Ultimately, the data ages out of S-
Store and is loaded in big “chunks” into SciDB, where historical
processing can be performed.

5. BIG DATA VISUALIZATIONS
Although our demo application includes real time monitoring

and standard data operations, most of the user interface deals with
visualization. We envision four distinct interfaces:
Browsing: This is a pan/zoom interface whereby a user can browse
through the entire MIMIC II data set, drilling down on demand to
access more detailed information. This system must be able to effi-
ciently display top level data (an icon for each group of the 20,000
patient-days) and then drill down as needed. To provide interactive
response, it is imperative to prefetch data in anticipation of user
movements. We have built both a markov model (prefetch objects
in the direction the user is currently going) and a semantic model
(prefetch objects with a similar signature to the current one). A
user study has confirmed that a hybrid approach of the two tactics
provides best overall performance.
“Tell me something interesting”: Here, the user has a mountain
of data and is looking for “something interesting”. We have built
a system (SeeDB [8]) that runs analytics, looking for distinctive
patterns in the output as specified by the user. This screen runs
SeeDB and presents such results.
Complex analytics: This screen enables a non-programmer to run
a variety of complex analytics, such as linear regression, FFT, and
PCA on specified sets of patient waveform data.
Text analysis: Using this interface, a user may run complex key-
word searches such as “find me the patients that have at least three
doctor’s report saying ‘very sick’ and are taking a particular drug”.

Our approach is to build visualization interfaces using the Uni-
versity of Washington composition engine Vega [2]. In addition,
we will explore how client-side caching and prefetching can inter-
act with their server side counterparts.

6. CROSS-SYSTEM QUERYING
Data is stored in multiple storage engines and is exposed through

a streaming interface and a visualization system, as noted in Fig-
ure 1. Our goal is to provide “location transparency” so application
programmers do not need to know which storage engine is actually
used to run their queries. Ideally, programmers would use a single
“universal query language”. In practice, this may prove challeng-
ing owing to each storage engine being designed around a different
target problem space. Hence, we are investigating ways to support
location transparency across the intersecting subsets of the capabil-
ities of our engines. Both Myria [4] and D4M [5] are efforts in this
direction.

We diagram this architecture in Figure 1. In this system, we have
three storage engines (“S”, “A”, “R”), for the streaming, array, and
relational stores. BigDawg communicates to any number of storage
engines using shims that translate utterances to and from a common
intermediate BigDawg language.

BigDawg

Cast CastA

Shim

R

Shim

S

Shim

Visualization Applications

Streams

Figure 1: BigDawg / Bulldog Architecture

When queries across multiple systems are required, we will move
datasets or intermediate results from one system to another as needed.
In particular, when an object, such as an array, is queried using se-
mantics that differ from its native storage, a cast is needed to make
it clear when the semantics will change during query execution.
BigDawg queries select the system that will be responsible for ex-
ecuting different clauses in a query using a scope. To illustrate the
operation of a cast, consider the following relational filtering oper-
ation on an array A:

RELATIONAL(select * from CAST(A, relation) where v > 5);

The above cast notation provides a way to express cross-system
physical query plans. We are investigating higher-level declarative
systems that don’t require end-users to manually write plans with
cast operations, but that instead use cost-based estimation tech-
niques to determine where and when to perform casts. We are also
investigating techniques to make cross-system interfaces more effi-
cient than file-based import/export.

7. CONCLUSIONS
Bulldog is the 2015 reference implementation of BigDawg, con-

taining S-Store, Tupleware, TileDB as well as Postgres and SciDB.
It contains both D4M and Myria as integration systems, and mul-
tiple vis systems built using Vega. Some of the components are
available now, and the entire system will be available in Q3/2015,
along with a reference example using MIMIC II data.

8. REFERENCES
[1] Accumulo. https://accumulo.apache.org/.
[2] Vega. http://git.io/xKyrmQ.
[3] P. Cudré-Mauroux et al. A demonstration of SciDB: A

science-oriented dbms. PVLDB, 2(2):1534–1537, 2009.
[4] D. Halperin et al. Demonstration of the myria big data

management service. In International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT, USA,
June 22-27, 2014, pages 881–884, 2014.

[5] J. Kepner et al. Dynamic distributed dimensional data model
(d4m) database and computation system. In ICASSP, pages
5349–5352. IEEE, 2012.

[6] M. Saeed and others. Multiparameter Intelligent Monitoring
in Intensive Care II (MIMIC-II): A public-access intensive
care unit database. Critical Care Medicine, 39:952–960, May
2011.

[7] M. Stonebraker and U. Cetintemel. “One Size Fits All”: An
Idea Whose time has come and gone. In ICDE, pages 2–11,
2005.

[8] M. Vartak, S. Madden, A. Parameswaran, and N. Polyzotis.
Seedb: Automatically generating query visualizations. In
PVLDB, 2014.

