Coopetition between LTE Unlicensed and Wi-Fi: A Reverse Auction with Allocative Externalities

Haoran Yu¹, George Iosifidis², Jianwei Huang¹, and Leandros Tassiulas²

¹Department of Information Engineering, The Chinese University of Hong Kong
²Dept. of Electrical Engineering, and the Yale Inst. for Network Science, Yale University
Background

- **Spectrum resources**
 - **Licensed spectrum**: network providers pay the government for licenses and use the spectrum *exclusively* (e.g., conventional LTE network)
 - **Unlicensed spectrum**: network providers *share* the spectrum without licenses (e.g., Wi-Fi network)

- **LTE unlicensed technology**
 - **Description**: operate the LTE network also in the *unlicensed spectrum*
 - **Reason**: limited *licensed spectrum* vs. explosive data growth
Key Challenge: Coexistence with Wi-Fi

Throughputs of LTE & Wi-Fi On Unlicensed Channel ©Nokia

- **Observations**
 1. LTE unlicensed has a **higher spectrum efficiency** than Wi-Fi;
 2. **Co-channel interference** decreases the throughputs of both networks, especially the throughput of Wi-Fi;
 3. Recent studies proposed **coexistence mechanisms** to achieve fair sharing between LTE and Wi-Fi, but cannot avoid inefficiency.

- **Problem:** How to avoid the throughput loss in LTE and Wi-Fi due to the co-channel interference between these two networks?
Why Not Avoid Interference Through Cooperation

Previous works studied LTE/Wi-Fi coexistence mechanisms (competition), and didn’t consider the cooperation between LTE and Wi-Fi.

Competition
LTE and AP share the same channel based on a coexistence mechanism (studied by previous works)

Cooperation:
LTE serves AP’s traffic in exchange for the exclusive use of the channel

Illustration for one AP case
Our LTE/Wi-Fi Coopetition Framework

- **Basic idea:** explore the potential benefits of cooperation before deciding whether to enter head-to-head competition.

- **Cooperation:** LTE exclusively uses the channel, and allocates some rate to AP’s traffic based on the agreement.

- **Competition:** LTE and AP share the channel based on a coexistence mechanism.

- **Challenge:** incomplete information complicates the coordination.
 - Each network’s (LTE or AP) throughput is its private information.

- **Mechanism:** Second-price reverse auction.
 - Will not reveal the private information of networks.
System Model

- We consider one LTE network and two APs (different channels)
 - Results can be generalized to the case with an arbitrary number of APs
- LTE network
 - R_{LTE}: throughput without interference
 - $\delta_{LTE} \in (0, 1)$: data rate discounting factor due to interference
 - R_{LTE} and δ_{LTE} can be either known or unknown to the APs
- AP k ($k = 1, 2$) occupies channel k
 - $r_k \in [r_{min}, r_{max}]$: throughput without interference, follows a general distribution with PDF $f(\cdot)$ and CDF $F(\cdot)$
 - $\eta^{AP} \in (0, 1)$: data rate discounting factor due to interference
 - r_k is AP k’s private information;
 $r_{min}, r_{max}, f(\cdot), F(\cdot), \text{ and } \eta^{AP}$ are common knowledge
Second-Price Reverse Auction

- **Key idea**
 - LTE is the buyer (auctioneer), and APs are the sellers (bidders)
 - APs “sell” the exclusive access rights of their channels to LTE
 - LTE’s “payment” is the allocated data rate to the winning AP

- **Auction procedures**
 - **Stage I**: LTE announces the reserve rate C, i.e., the maximum rate that LTE is willing to allocate to the winner
 - **Stage II**: AP k’s submits its bid $b_k \in [0, C] \cup \{ "N" \}$:
 - if $b_k \in [0, C]$: AP k sells its channel with an asking rate b_k
 - if $b_k = \{ "N" \}$: AP k does not want to sell its channel

![Diagram showing the process of a second-price reverse auction with LTE as the buyer and APs as sellers.](image-url)
Second-Price Reverse Auction

Auction outcome:

- When \(b_1 = b_2 = \{ "N" \} \), LTE randomly picks channel \(i \) (\(i = 1, 2 \)) with an equal probability and coexists with AP \(i \) (competition).
- Otherwise, the AP with the lower bid becomes the winner, and sells its channel to the LTE with the second lowest rate from \(\{ b_1, b_2, C \} \) (cooperation).

Diagram:
- LTE Provider (auctioneer & buyer)
- AP1 (seller)
- AP2 (seller)
- Bid \(b_1 \in [0, C] \cup \{ "N" \} \)
- Bid \(b_2 \in [0, C] \cup \{ "N" \} \)
- Reserve Rate: \(C \geq 0 \)

Haoran Yu et al. Coopetition between LTE and Wi-Fi May 2016 8 / 15
Allocative Externalities in Our Auction

- Comparison with conventional auction
 - Conventional auction: if a bidder loses the auction, it does not care whether the other bidder wins the auction
 - Our auction: if an AP loses the auction, it is more willing to see the other AP winning rather than losing the auction

- Positive allocative externalities: the cooperation between LTE and an AP benefits the other AP

An Example Showing Allocative Externalities

Case A: AP2 wins the auction
Impact on AP1: AP1 **DOES NOT** interfere with LTE

If AP1 loses the auction

Case B: AP2 loses the auction
Impact on AP1: AP1 **MAY** interfere with LTE
Auction Analysis

- Two-Stage Structure
 Each network (LTE or AP) maximizes the data rate its users receive

<table>
<thead>
<tr>
<th>Stage I</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTE announces the reserve rate C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage II</th>
</tr>
</thead>
<tbody>
<tr>
<td>APs bid based on strategies $b(r_k, C)$</td>
</tr>
</tbody>
</table>

- Backward Induction
 - For Stage II, we characterize the APs’ unique symmetric equilibrium strategy $b^*(r_k, C)$ under the LTE’s reserve rate C in Stage I
 - For Stage I, we characterize the LTE’s optimal reserve rate C^* by anticipating APs’ equilibrium strategy $b^*(r_k, C)$ in Stage II
Stage II: APs’ Bidding $b^* (r_k, C)$ at Equilibrium

Results:

- $b^* (r_k, C)$ has **four different forms** based on the intervals of C
- As C increases, more AP types are willing to cooperate with LTE

APs bid “N” with prob. 1

some AP types bid C

some AP types bid “N”

some AP types bid C

some AP types bid “N”

APs’ Equilibrium Bidding Based on Different Intervals of C
Stage II: APs’ Bidding $b^*(r_k, C)$ at Equilibrium

Unique feature due to allocative externalities

- **Description:** When $C \in \left(\frac{1+\eta_{AP}}{2} r_{min}, r_{max}\right)$, some AP types bid C
- **Reason**
 - Worst situation for these AP types: no AP wins the auction \rightarrow bid from $[0, C]$ to guarantee the LTE can find someone to cooperate with
 - Best situation for these AP types: other AP wins the auction \rightarrow bid the highest value, i.e., C, from $[0, C]$ to reduce the chance of winning
Stage I: LTE’s Optimal Reserve Rate C^*

- **Analytical results**
 - set $C^* \leq (1+\eta_{AP})r_{min}/2$ to compete with APs
 - search C^* in $((1+\eta_{AP})r_{min}/2, R_{LTE})$ based on Golden Section method
 - search C^* in $((1+\eta_{AP})r_{min}/2, r_{max})$ based on Golden Section method

- **Numerical results:** the LTE chooses a large C^* when:
 1. the LTE has a large throughput (R_{LTE});
 2. the LTE is heavily affected by the interference (δ_{LTE});
 3. the APs are not heavily affected by the interference (η_{AP}).

LTE’s Optimal Reserve Rate Based on Different Intervals of R_{LTE}

- LTE can’t satisfy any AP
- LTE can satisfy APs with small bids
- LTE can satisfy any AP
Conclusion and Future Work

Conclusion
- Proposal of the LTE/Wi-Fi coopetition framework
- APs’ equilibrium analysis in an auction with allocative externalities
- Characterization of the LTE’s optimal reserve rate

Future work
- APs use different channels → can use the same channel
 - Need to consider the interference among APs
- One LTE provider → multiple LTE providers
 - Need to consider the externalities among LTE providers