Analyzing Location-Based Advertising for Vehicle Service Providers **Using Effective Resistances**

Haoran Yu, Ermin Wei, and Randall Berry

Department of Electrical and Computer Engineering Northwestern University, USA

June 2019 @ACM SIGMETRICS

Background

- Vehicle service providers have recently shown ads in vehicles.
- This talk: Understand how in-vehicle ads impacts service prices.

In-Vehicle Advertising: Example

Example 1 (Taxis): Curb Inc. installs tablets in taxis in 10 major cities in the U.S.

- Passengers can watch TV programs.
- Taxi companies can generate extra revenue by displaying ads.

In-Vehicle Advertising

Example 2 (Ride-Sharing Systems): VUGO Inc. installs tablets for Uber & Lyft drivers, displays ads based on origins & destinations, and shares ad revenue with drivers.

In-Vehicle Advertising

Example 3 (Bike-Sharing Systems): Mobike Inc. recently tested location-based advertising in Shanghai.

Problem

- First, we describe basic settings (e.g., traffic graph and prices).
- Second, we raise one key question about in-vehicle advertising.

Problem Description (Traffic Graph and Prices)

- We focus on a vehicle service provider who owns vehicles.
- Traffic graph (node: location, link: traffic demand)

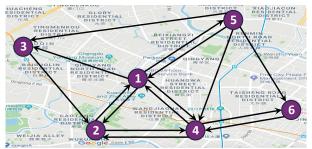
- Provider sets different vehicle service prices for different links. Let p_{ij} be the price for link (i, j) (i: origin; j: destination).
 - e.g., $p_{13} = 1/minute$.

BACKGROUND

Can be converted to \$/mile based on vehicle velocity.

Problem Description (Traffic Graph and Prices)

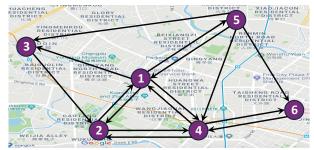
- We focus on a vehicle service provider who owns vehicles.
- Traffic graph (node: location, link: traffic demand)



- Provider sets different vehicle service prices for different links.
 - e.g., $p_{13} = 1/minute$.
 - Can be converted to \$/mile based on vehicle velocity.

Problem Description (Traffic Graph and Prices)

- We focus on a vehicle service provider who owns vehicles.
- Traffic graph (node: location, link: traffic demand)

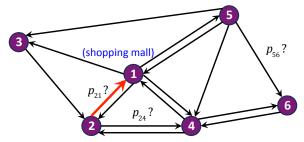


- Provider sets different vehicle service prices for different links. Let p_{ii} be the price for link (i, j) (i: origin; j: destination).
 - e.g., $p_{13} = 1/minute$.
 - Can be converted to \$/mile based on vehicle velocity.

Q: How Does Advertising Impact Prices in Network?

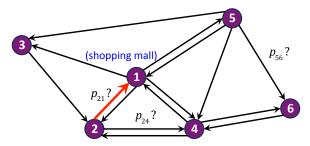
- How should the provider change its service prices?
 - Reduce p_{21} to increase the number of riders on (2, 1)?
 - Increase p_{24} to save vehicles on (2,4)?
 - How about *p*₅₆? Non-negligible impact?
- This talk: (i) Derive expressions of prices (e.g., p₂₁, p₂₄, p₅₆);
 (ii) Analyze advertising's impact on prices.

Q: How Does Advertising Impact Prices in Network?



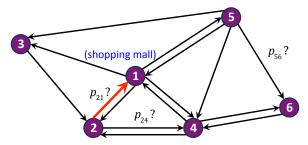
- How should the provider change its service prices?
 - Reduce p_{21} to increase the number of riders on (2, 1)?
 - Increase p_{24} to save vehicles on (2,4)?
 - How about p_{56} ? Non-negligible impact?
- This talk: (i) Derive expressions of prices (e.g., p₂₁, p₂₄, p₅₆);
 (ii) Analyze advertising's impact on prices.

Q: How Does Advertising Impact Prices in Network?



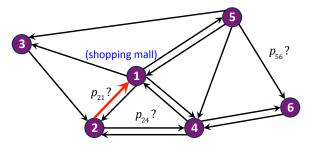
- How should the provider change its service prices?
 - Reduce p_{21} to increase the number of riders on (2, 1)?
 - Increase p_{24} to save vehicles on (2,4)?
 - How about p_{56} ? Non-negligible impact?
- This talk: (i) Derive expressions of prices (e.g., p_{21} , p_{24} , p_{56}); (ii) Analyze advertising's impact on prices.

Q: How Does Advertising Impact Prices in Network?



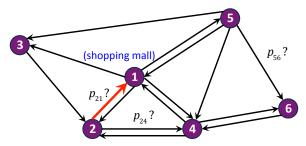
- How should the provider change its service prices?
 - Reduce p_{21} to increase the number of riders on (2, 1)?
 - Increase p_{24} to save vehicles on (2,4)?
 - How about p_{56} ? Non-negligible impact?
- This talk: (i) Derive expressions of prices (e.g., p_{21} , p_{24} , p_{56}); (ii) Analyze advertising's impact on prices.

Q: How Does Advertising Impact Prices in Network?



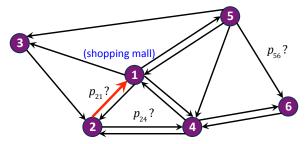
- How should the provider change its service prices?
 - Reduce p_{21} to increase the number of riders on (2, 1)?
 - Increase p_{24} to save vehicles on (2,4)?
 - How about p_{56} ? Non-negligible impact?
- This talk: (i) Derive expressions of prices (e.g., p₂₁, p₂₄, p₅₆);
 (ii) Analyze advertising's impact on prices.

Q: How Does Advertising Impact Prices in Network?



- How should the provider change its service prices?
 - Reduce p_{21} to increase the number of riders on (2, 1)?
 - Increase p_{24} to save vehicles on (2,4)?
 - How about p_{56} ? Non-negligible impact?
- This talk: (i) Derive expressions of prices (e.g., p_{21} , p_{24} , p_{56}); (ii) Analyze advertising's impact on prices.

Q: How Does Advertising Impact Prices in Network?



- How should the provider change its service prices?
 - Reduce p_{21} to increase the number of riders on (2, 1)?
 - Increase p_{24} to save vehicles on (2,4)?
 - How about p_{56} ? Non-negligible impact?
- This talk: (i) Derive expressions of prices (e.g., p₂₁, p₂₄, p₅₆);
 (ii) Analyze advertising's impact on prices.

Related Work

- Some prior work on advertising's impact on service prices:
 - Media service: [Kaiser and Wright 2006], [Peitz and Valletti 2008], [Godes *et al.* 2009], [Anderson and Jullien 2015]
 - Location-based service: [Yu et al. 2017]
 - Mobile app service: [Guo et al. 2018]
- Our work focuses on vehicle service.
 - There are multiple prices (each link in network has a price).
 - The advertising's impact is affected by the network topology.

Related Work

- Some prior work on advertising's impact on service prices:
 - Media service: [Kaiser and Wright 2006], [Peitz and Valletti 2008], [Godes et al. 2009], [Anderson and Jullien 2015]
 - Location-based service: [Yu et al. 2017]
 - Mobile app service: [Guo et al. 2018]
- Our work focuses on vehicle service.
 - There are multiple prices (each link in network has a price).
 - The advertising's impact is affected by the network topology.

Model

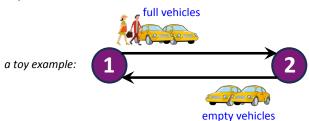
Formulate provider's pricing problem considering ad revenues.

Model (Notations)

- Traffic network's parameters (constants)
 - $\theta_{ij} \ge 0$: number of users considering taking vehicle service on (i,j) in each time slot (e.g., one time slot = one minute).
 - $\xi_{ij} > 0$: travel time from *i* to *j* (measured by number of slots).
- Provider's decision variables
 - p_{ii} : service price for (i, j) (\$ per time slot).
 - Routing full vehicles (carrying users), empty vehicles (no users)
 - $q_{ij}^{\text{full}} \ge 0$: full vehicles' departure rate for (i, j).
 - $q_{ij}^{\text{empty}} \ge 0$: empty vehicles' departure rate for (i, j).

Model (Notations)

- Traffic network's parameters (constants)
 - $\theta_{ij} \ge 0$: number of users considering taking vehicle service on (i, j) in each time slot (e.g., one time slot = one minute).
 - $\xi_{ij} > 0$: travel time from i to j (measured by number of slots).
- Provider's decision variables
 - p_{ij} : service price for (i, j) (\$ per time slot).
 - Routing full vehicles (carrying users), empty vehicles (no users)
 - $q_{ij}^{\text{full}} \ge 0$: full vehicles' departure rate for (i, j).
 - $q_{ij}^{\text{empty}} \ge 0$: empty vehicles' departure rate for (i, j).



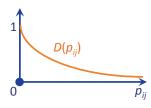
Model (Constraints)

BACKGROUND

• Demand constraint (decision variables are in blue)

$$q_{ij}^{\text{full}} \leq \theta_{ij} D\left(\mathbf{p}_{ij}\right), \forall i, j.$$

• $D(p_{ij})$: fraction of users accepting p_{ij} and taking vehicle service.



Parameter: θ_{ij} : number of users considering service per slot.

Decisions: q_{ii}^{full} : full vehicle routing; p_{ij} : vehicle service price.

Model (Constraints)

PROBLEM

Vehicle flow balance constraint

$$\sum_{j} \left(q_{ij}^{\text{full}} + q_{ij}^{\text{empty}} \right) = \sum_{j} \left(q_{ji}^{\text{full}} + q_{ji}^{\text{empty}} \right), \forall i.$$
rate of vehicles departing from i rate of vehicles arriving at i

This couples the provider's decisions for different links.

Objective (time-average profit from all links)

$$\max \sum_{(i,j)} \left(\underbrace{\xi_{ij}q_{ij}^{\text{full}}}_{\text{number of full vehicles running on } (p_{ij} + a_{ij} - c^{\text{full}}) - \xi_{ij}q_{ij}^{\text{empty}} c^{\text{empty}} \right)$$

- Some new parameters:

 - a_{ij} ≥ 0: ad revenue per full vehicle per time slot on (i, j).
 c^{full}, c^{empty} > 0: a (full/empty) vehicle's operation cost per slot.

Parameter: ξ_{ii} : travel time.

Problem Formulation

BACKGROUND

• The provider's problem:

$$\max \sum_{\text{each link }(i,j)} \left(\xi_{ij} q_{ij}^{\text{full}} \left(p_{ij} + a_{ij} - c^{\text{full}} \right) - \xi_{ij} q_{ij}^{\text{empty}} c^{\text{empty}} \right)$$

s.t. $q_{ij}^{\text{full}} \leq \theta_{ij} D(p_{ij}), \forall i, j, \text{(demand constraint)}$

$$\sum_{j} \left(q_{ij}^{ ext{full}} + q_{ij}^{ ext{empty}}
ight) = \sum_{j} \left(q_{ji}^{ ext{full}} + q_{ji}^{ ext{empty}}
ight), orall i, ext{(flow balance)}$$

var.
$$q_{ij}^{\text{full}}, q_{ij}^{\text{empty}} \geq 0, p_{ij}, \forall i, j.$$

- Question: What is $\frac{\partial p_{ij}^*}{\partial a_{xy}}$ (p_{ij}^* is optimal price; a_{xy} is ad revenue)?
 - Hard to directly compute p_{ii}^* : non-convex problem in general.
- Rest of talk
 - [Solution] design p_{ij}^{ϕ} and analyze $\frac{\partial p_{ij}^{\phi}}{\partial a_{xy}}$;
 - [Performance] study p_{ii}^{ϕ} 's optimality theoretically & numerically.
 - p_{ij}^{ϕ} achieves close-to-optimal profit $\Longrightarrow rac{\partial p_{ij}^{\phi}}{\partial a_{xy}}$ gives insights.

Problem Formulation

BACKGROUND

• The provider's problem:

$$\max \sum_{\text{each link }(i,j)} \left(\xi_{ij} q_{ij}^{\text{full}} \left(p_{ij} + a_{ij} - c^{\text{full}} \right) - \xi_{ij} q_{ij}^{\text{empty}} c^{\text{empty}} \right)$$

s.t. $q_{ij}^{\text{full}} \leq \theta_{ij} D(p_{ij}), \forall i, j, \text{(demand constraint)}$

$$\sum_{j} \left(q_{ij}^{ ext{full}} + q_{ij}^{ ext{empty}}
ight) = \sum_{j} \left(q_{ji}^{ ext{full}} + q_{ji}^{ ext{empty}}
ight), orall i, ext{(flow balance)}$$

var.
$$q_{ij}^{\text{full}}, q_{ij}^{\text{empty}} \geq 0, p_{ij}, \forall i, j.$$

- Question: What is $\frac{\partial p_{ij}^*}{\partial a_{xy}}$ (p_{ij}^* is optimal price; a_{xy} is ad revenue)?
 - Hard to directly compute p_{ij}^* : non-convex problem in general.
- Rest of talk
 - [Solution] design p_{ij}^{ϕ} and analyze $\frac{\partial p_{ij}^{\phi}}{\partial a_{xy}}$;
 - [Performance] study p_{ii}^{ϕ} 's optimality theoretically & numerically.
 - p_{ij}^{ϕ} achieves close-to-optimal profit $\Longrightarrow rac{\partial p_{ij}^{\phi}}{\partial a_{\mathrm{sy}}}$ gives insights.

Problem Formulation

BACKGROUND

• The provider's problem:

$$\max \sum_{\text{each link }(i,j)} \left(\xi_{ij} q_{ij}^{\text{full}} \left(p_{ij} + a_{ij} - c^{\text{full}} \right) - \xi_{ij} q_{ij}^{\text{empty}} c^{\text{empty}} \right)$$

s.t. $q_{ij}^{\text{full}} \leq \theta_{ij} D(p_{ij}), \forall i, j, \text{(demand constraint)}$

$$\sum_{j} \left(q_{ij}^{ ext{full}} + q_{ij}^{ ext{empty}}
ight) = \sum_{j} \left(q_{ji}^{ ext{full}} + q_{ji}^{ ext{empty}}
ight), orall i, ext{(flow balance)}$$

var.
$$q_{ij}^{\text{full}}, q_{ij}^{\text{empty}} \geq 0, p_{ij}, \forall i, j.$$

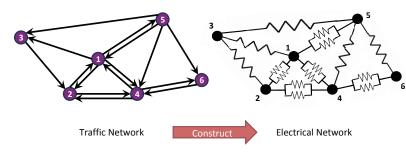
- Question: What is $\frac{\partial p_{ij}^*}{\partial a_{xy}}$ (p_{ij}^* is optimal price; a_{xy} is ad revenue)?
 - Hard to directly compute p_{ij}^* : non-convex problem in general.
- Rest of talk
 - [Solution] design p_{ij}^{ϕ} and analyze $\frac{\partial p_{ij}^{\phi}}{\partial a_{xy}}$;
 - [Performance] study p_{ii}^{ϕ} 's optimality theoretically & numerically.
 - p_{ij}^{ϕ} achieves close-to-optimal profit $\Longrightarrow rac{\partial p_{ij}^{\phi}}{\partial a_{xy}}$ gives insights.

Solution

- We propose an innovative design of p_{ii}^{ϕ} .
 - Vehicle networks are similar to electrical networks (e.g., keeping vehicle/current flow balance at each node).
 - We will borrow notions from electrical networks to design p_{ij}^{ϕ} .

Construction of Electrical Network

• Construct an electrical network based on traffic network.

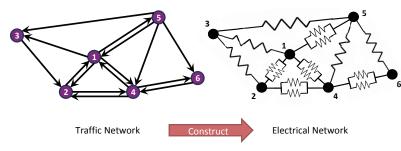


• link (i,j) \Longrightarrow a resistor with resistance $r_{ij} = \frac{\xi_{ij}}{\theta_{ii}}$.

Parameters: θ_{ij} : number of users considering service per slot; ξ_{ij} : travel time.

Construction of Electrical Network

• Construct an electrical network based on traffic network.

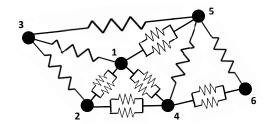


• link (i,j) \Longrightarrow a resistor with resistance $r_{ij} = \frac{\xi_{ij}}{\theta_{ii}}$.

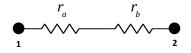
Parameters: θ_{ij} : number of users considering service per slot; ξ_{ij} : travel time.

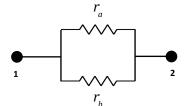
BACKGROUND

• Given an electrical network described by $\{r_{ij}\}_{i,j}$, we can compute *Effective Resistance* between any two nodes i and j.

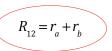


• Examples of computing *Effective Resistance*.





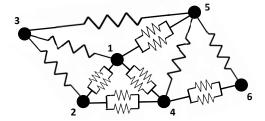
effective resistance between 1 and 2



$$R_{12} = \frac{r_a r_b}{r_a + r_b}$$

BACKGROUND

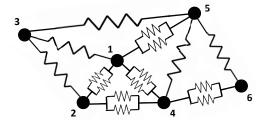
- Let $R_{ij}(\theta, \xi)$ denote the effective resistance between i and j (can be computed in polynomial time).
 - e.g., $R_{34}(\theta, \xi)$'s value depends on all resistors.



- $R_{ii}(\theta, \xi)$ internalizes the network topology's influence.
 - Intuition: small $R_{ij}(\theta, \xi) \iff$ easy to route vehicles from i to j.
- We design prices based on $\left\{R_{ij}\left(\boldsymbol{\theta},\boldsymbol{\xi}\right)\right\}_{i,i}$

BACKGROUND

- Let $R_{ij}(\theta, \xi)$ denote the effective resistance between i and j (can be computed in polynomial time).
 - e.g., $R_{34}(\theta, \xi)$'s value depends on all resistors.



- $R_{ii}(\theta, \xi)$ internalizes the network topology's influence.
 - Intuition: small $R_{ij}(\theta, \xi) \iff$ easy to route vehicles from i to j.
- ullet We design prices based on $\left\{R_{ij}\left(oldsymbol{ heta},oldsymbol{\xi}
 ight)
 ight\}_{i,j}$.

Our Resistance-Based Pricing

Resistance-Based Pricing

Let $\phi > 0$ be a control parameter. Our resistance-based price for (i,j) is given by

$$p_{ij}^{\phi} = \frac{1}{2} \underbrace{\left(\frac{1}{\phi} - a_{ij} + c^{\text{full}}\right)}_{\text{parameters of link (i,j)}} + \underbrace{\frac{1}{4\xi_{ij}} \sum_{x} \sum_{y} \underbrace{\frac{\rho_{ijxy} \left(\boldsymbol{\theta}, \boldsymbol{\xi}\right)}{\text{weight function}}}_{\text{weight function}} \underbrace{\theta_{xy} \left(\frac{1}{\phi} + a_{xy} - c^{\text{full}}\right)}_{\text{parameters of link (x,y)}},$$

where
$$\rho_{ijxy}(\boldsymbol{\theta}, \boldsymbol{\xi}) \triangleq R_{ix}(\boldsymbol{\theta}, \boldsymbol{\xi}) - R_{ix}(\boldsymbol{\theta}, \boldsymbol{\xi}) - R_{iy}(\boldsymbol{\theta}, \boldsymbol{\xi}) + R_{iy}(\boldsymbol{\theta}, \boldsymbol{\xi})$$
.

Our Resistance-Based Pricing

Resistance-Based Pricing

Let $\phi > 0$ be a control parameter. Our resistance-based price for (i,j) is given by

$$p_{ij}^{\phi} = \frac{1}{2} \underbrace{\left(\frac{1}{\phi} - a_{ij} + c^{\text{full}}\right)}_{\text{parameters of link (i,j)}} + \underbrace{\frac{1}{4\xi_{ij}} \sum_{x} \sum_{y} \underbrace{\frac{\rho_{ijxy} \left(\boldsymbol{\theta}, \boldsymbol{\xi}\right)}{\text{weight function}}}_{\text{weight function}} \underbrace{\theta_{xy} \left(\frac{1}{\phi} + a_{xy} - c^{\text{full}}\right)}_{\text{parameters of link (x,y)}},$$

where
$$\rho_{ijxy}(\boldsymbol{\theta}, \boldsymbol{\xi}) \triangleq R_{jx}(\boldsymbol{\theta}, \boldsymbol{\xi}) - R_{ix}(\boldsymbol{\theta}, \boldsymbol{\xi}) - R_{jy}(\boldsymbol{\theta}, \boldsymbol{\xi}) + R_{iy}(\boldsymbol{\theta}, \boldsymbol{\xi}).$$

Advertising's Impact on Prices

• If $(x, y) \neq (i, j)$, we have

$$\frac{\partial p_{ij}^{\phi}}{\partial a_{xy}} = \frac{\theta_{xy}}{4\xi_{ii}} \left(R_{jx} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) - R_{ix} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) - R_{jy} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) + R_{iy} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) \right).$$

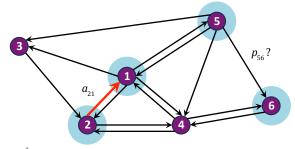
Come back to our example:

Advertising's Impact on Prices

• If $(x, y) \neq (i, j)$, we have

$$\frac{\partial p_{ij}^{\phi}}{\partial a_{xy}} = \frac{\theta_{xy}}{4\xi_{ij}} \left(R_{jx} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) - R_{ix} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) - R_{jy} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) + R_{iy} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) \right).$$

Come back to our example:



Sign of
$$\frac{\partial p_{56}^{\phi}}{\partial a_{21}}$$
 depends on $R_{62}(\boldsymbol{\theta},\boldsymbol{\xi}) - R_{52}(\boldsymbol{\theta},\boldsymbol{\xi}) - R_{61}(\boldsymbol{\theta},\boldsymbol{\xi}) + R_{51}(\boldsymbol{\theta},\boldsymbol{\xi})$.

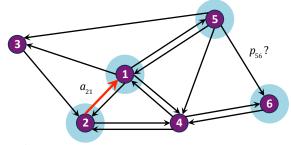
• Is p_{ii}^{ϕ} optimal or close-to-optimal?

Advertising's Impact on Prices

• If $(x, y) \neq (i, j)$, we have

$$\frac{\partial p_{ij}^{\phi}}{\partial a_{xy}} = \frac{\theta_{xy}}{4\xi_{ii}} \left(R_{jx} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) - R_{ix} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) - R_{jy} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) + R_{iy} \left(\boldsymbol{\theta}, \boldsymbol{\xi} \right) \right).$$

• Come back to our example:



Sign of $\frac{\partial p_{56}^{\phi}}{\partial q_{11}}$ depends on $R_{62}(\boldsymbol{\theta},\boldsymbol{\xi}) - R_{52}(\boldsymbol{\theta},\boldsymbol{\xi}) - R_{61}(\boldsymbol{\theta},\boldsymbol{\xi}) + R_{51}(\boldsymbol{\theta},\boldsymbol{\xi})$.

• Is p_{ii}^{ϕ} optimal or close-to-optimal?

Performance

- (Theoretical) If demand function D is linear and provider cannot route empty vehicles, p_{ii}^{ϕ} is optimal.
- (Experimental) If demand function D is exponential and provider can route empty vehicles, p_{ij}^{ϕ} is close-to-optimal.

Performance Evaluation (Theoretical)

Theorem

When the following three conditions hold:

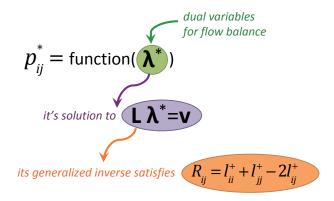
- (i) $D(p_{ii}) = \max\{1 \psi p_{ii}, 0\}$ for $\psi > 0$ (linear demand function),
- (ii) $c^{\text{empty}} \to \infty$.
- (iii) The auxiliary constraint $p_{ij} \leq \frac{1}{ib}$ is not binding,

the provider can achieve the maximum profit by choosing p_{ii}^{ψ} ,

$$q_{ij}^{\text{full}} = \theta_{ij} D\left(p_{ij}^{\psi}\right)$$
, and $q_{ij}^{\text{empty}} = 0$ for all i, j .

Performance Evaluation (Theoretical)

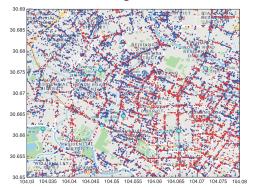
Key Idea of Proof: When conditions are satisfied,



Performance Evaluation (Experimental)

We consider non-linear $D(p_{ij})$ and finite c^{empty} in experiments.

- Real-world dataset (DiDi Chuxing GAIA Open Data Initiative)
 - Information of DiDi rides during November, 2016 in Chengdu. ¹



Pick-Up (Blue) and Drop-Off (Red) Dots During 7-9 am On Weekdays.

• We divide an area into 15 locations and derive θ and ξ .

¹DiDi Chuxing GAIA Open Data Initiative (https://gaia.didichuxing.com).

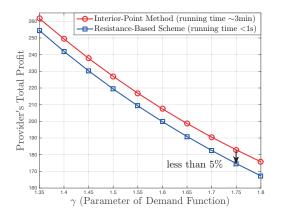
Performance Evaluation (Experimental)

- Other experiment settings
 - $D(p_{ii}) = e^{-\gamma p_{ij}}$ (verified by real data in [Fang et al. 2017]).
 - $_{\bullet}$ $c^{\text{full}} = c^{\text{empty}} = 0.4$
 - a_{ii} follows an exponential distribution with mean 0.15.
- Evaluated schemes
 - Our resistance-based scheme (complexity: polynomial in number of locations):
 - Choose p_{ii}^{ϕ} for all i, j (where $\phi = \frac{\gamma}{2}$);
 - Choose $q_{ij}^{\text{full}} = \theta_{ij} D\left(p_{ij}^{\phi}\right)$ for all i, j;
 - Choose q_{ii}^{empty} by solving an LP problem.
 - Interior-point method

 Background
 Problem
 Model
 Solution
 Performance
 Conclusion

 0000
 0000
 000000
 000000
 000000
 00

Performance Evaluation (Experimental)



Our resistance-based scheme achieves at least 95% of the profit achieved by the interior-point method.

Conclusion

Conclusion

- Use effective resistances (capturing network topology's influence) to design prices.
- Provide a simple and effective approach to measure location-based advertising's impact on network pricing.

Other results in our work

- Investigate the advertising's impact on users' payoffs.
- Study the provider's optimal advertiser selection strategy.

Future directions

- Consider driver-side design in ride-sharing systems.
- Consider time-variant traffic demand.

Conclusion

Conclusion

- Use effective resistances (capturing network topology's influence) to design prices.
- Provide a simple and effective approach to measure location-based advertising's impact on network pricing.

Other results in our work

- Investigate the advertising's impact on users' payoffs.
- Study the provider's optimal advertiser selection strategy.

Future directions

- Consider driver-side design in ride-sharing systems.
- Consider time-variant traffic demand.

