Economics of Public Wi-Fi Monetization and Advertising

Haoran Yu^{1,2}, Man Hon Cheung¹, Lin Gao^{1,3}, and Jianwei Huang¹

¹Department of Information Engineering, The Chinese University of Hong Kong ²Department of Electrical Engineering, Yale University

³School of Elec. and Info. Eng., Harbin Inst. of Technology Shenzhen Grad. School, China

Public Wi-Fi is everywhere

Background

Venues: largest public Wi-Fi providers

• Top 3: Retailers > Cafes & Restaurants > Hotels

Venues	Retails	Cafes & Restaurants	Hotels	Others	Total
Wi-Fi hotspots	5,763,907	4,259,351	397,905	1,808,234	12,229,397

Predicted Wi-Fi Ownership by Venue Type, 2018 ©WBA

Reasons to provide Wi-Fi

- Enhance customers' experiences
- Provide location-based services (*e.g.*, navigation, billing, social interaction)
- Question: It is costly to deploy and operate the public Wi-Fi networks. How do venues generate revenue?

First Approach: Ad Sponsored Wi-Fi Access

Users watches an ad (e.g., 30sec) and then connect Wi-Fi for a certain period (e.g., 30min)

play sponsored video (advertisement) and connect

First Approach: Ad Sponsored Wi-Fi Access

• Advertising platform (e.g., SOCIFI)

organizes a two-sided market between venues and advertisiers

- Example:
 - Starbucks (venue) displays Apple's (advertiser) ad to users in Wi-Fi;
 - $\star\,$ User watches the ad, and uses Wi-Fi for 30min for free
 - Apple pays Starbucks based on the ad display times;
 - Starbucks shares 30% revenue with SOCIFI (advertising platform)

First Approach: Ad Sponsored Wi-Fi Access

Illustration of ad sponsored Wi-Fi access

Second Approach: Premium Wi-Fi Access

Users directly pay the venue to use Wi-Fi

Public Wi-Fi Monetization Ecosystem

Understand each decision maker's optimal behavior

- Advertising platform: What is the ad revenue sharing proportion?
- Venue:
 - How much to charge advertisers for displaying ads?
 - How much to charge users for premium access?
- Each advertiser: How many ads to display at the venue?
- Each user: Which Wi-Fi access type to choose?

Haoran Yu et al.

Public Wi-Fi Monetization

System Model: Advertising Platform

Ad revenue sharing ratio $\delta \in [0, 1]$: the fraction of the ad revenue the venue needs to transfer to advertising platform.

System Model: Venue

Two decision variables:

- Wi-Fi price *p_f* (premium access): if a user chooses premium access, venue charges the user *p_f* per session;
- Advertising price p_a (ad sponsored access): if a user chooses ad sponsored access, venue charges the corresponding advertisers p_a per displayed ad.

System Model: Users

- Consider *N* users, and each user's type $\theta \sim U[0, \theta_{max}]$ describes its valuation for Wi-Fi access
- A user's access choice $d \in \{0, 1\}$:
 - d = 0 denotes the ad sponsored access;
 - d = 1 denotes the premium access.
- A type- θ user's payoff in one session is:

$$\Pi^{\text{user}}\left(\theta,d\right) = \begin{cases} \theta\left(1-\beta\right), & \text{if } d = 0 \text{ (ad sponsored access)}, \\ \theta - p_f, & \text{if } d = 1 \text{ (premium access)}, \end{cases}$$
(1)

where $\beta < 1$ captures the inconvenience of watching ads.

• The number of sessions that a user demands within the considered time period (*e.g.*, one week) follows the Poisson distribution with parameter $\lambda > 0$. Parameter λ describes users' visiting frequency at the venue.

System Model: Advertisers

- Consider *M* advertisers, and each advertiser's type $\sigma \sim U[0, \sigma_{max}]$ describes its popularity (the popularity decreases with σ).
- An advertiser's strategy $m \ge 0$: number of ads to display at the venue
- A type- σ advertiser's payoff

$$\Pi^{\text{advertiser}}(\sigma, m) = \underbrace{as(\sigma)N\varphi_a(p_f)\left(1 - e^{-\frac{m}{N\varphi_a(p_f)}}\right)}_{\text{Utility}} - \underbrace{p_am}_{\text{Payment}}$$
(2)

- ► *a*: unit profit of showing the ad to a targeted user
- $s(\sigma)$: popularity of the advertiser (decrease with σ)
- $N\varphi_a(p_f)$: number of users choosing the ad sponsored access
- $\left(1-e^{-\frac{m}{N\varphi_a(p_f)}}\right)$: probability for a user to see the advertiser's ad (obtained via computation), and is concavely increasing in m
- *p_a*: advertising price (set by the venue)

Three-Stage Stackelberg Game

Solution: backward induction (Stage III
Stage II
Stage I)

one advertising platform

Stage III: Users' Optimal Access Choices

- Users' threshold policy: If $\theta < \theta_T (p_f)$, use ad sponsored access; If $\theta \ge \theta_T (p_f)$, use premium access.
- Threshold $\theta_T(p_f)$ is non-decreasing in p_f

Stage III: Advertisers' Optimal Advertising

• Advertisers' threshold policy:

If $0 \le \sigma \le \sigma_T(p_a)$, advertise, and number of ads decreases with σ ; If $\sigma_T(p_a) < \sigma \le \sigma_{max}$, do not advertise

Stage III: Advertisers' Optimal Advertising

If Wi-Fi price p_f increases (more users choose the sponsored access),

- threshold σ_T (p_a) does not change: the number of advertiser types that need to advertise does not change
- slope increases: the advertisers who originally advertise should display more ads

Stage II: Venue's Optimal Advertising Price

Venue's optimal advertising price p_a^* (limit case $M \to \infty$ and $\sigma_{\max} \to \infty$) (1) p_a^* is independent of the advertising platform's sharing ratio δ ; (2) p_a^* decreases with λ for small λ region (reason: limited ad spaces); (3) p_a^* is independent of λ for large λ region (reason: enough ad spaces).

Stage II: Venue's Optimal Wi-Fi Price

Define indicator
$$\Omega \triangleq \frac{\lambda \beta \theta_{\max}}{ag(\lambda, \gamma, \eta)}$$

- Parameters' meanings
 - λ : users' visiting frequency
 - β : users' payoff reduction due to watching ads
 - ▶ θ_{max} : users' maximum valuation on Wi-Fi access
 - ► a: unit profit for an advertiser of showing the ad to a targeted user
 - \blacktriangleright $\gamma:$ the venue's advertising concentration level
 - η : the expected number of advertisers that a user likes
- Intuition: a large Ω implies that the venue can earn more revenue by providing the premium access comparing to the ad sponsored access.

Stage II: Venue's Optimal Wi-Fi Price

- Indicator Ω: a large Ω implies that the venue can earn more revenue by providing premium access comparing to ad sponsored access
- Wi-Fi price p_f^* is non-increasing in Ω

Stage I: Advertising Platform's Optimal Sharing Policy

- Indicator Ω: a large Ω implies that the venue can earn more revenue by providing premium access comparing to ad sponsored access
 Chaving ratio δ*:
- Sharing ratio δ^* :
 - first decreases with Ω : attract venue to provide ad sponsored access;
 - second increases with Ω : directly extract more ad revenue from venue

Conclusion and Future Work

- Public Wi-Fi monetization problem
 - Five threshold strategies for decision makers

- Future work
 - QoS differentiation (e.g., premium access with QoS guarantee)
 - Influence of Wi-Fi capacity

THANK YOU

Network Communications and Economics Lab

http://ncel.ie.cuhk.edu.hk

Stage III: ADs' Advertising

AD's optimal advertising strategy

A type- σ AD's optimal advertising strategy is

$$m^{*}(\sigma, p_{f}, p_{a}) = \begin{cases} N\varphi_{a}(p_{f}) \left(\ln\left(\frac{a\gamma}{p_{a}}\right) - \gamma\sigma \right), & \text{if } 0 \leq \sigma \leq \sigma_{T}(p_{a}), \\ 0, & \text{if } \sigma_{T}(p_{a}) < \sigma \leq \sigma_{\max}, \end{cases}$$
(3)
where $\sigma_{T}(p_{a}) \triangleq \min\left\{ \frac{1}{\gamma} \ln\left(\frac{a\gamma}{p_{a}}\right), \sigma_{\max} \right\}$ is the *threshold AD type*.

(1) $\sigma_T(p_a)$ and $m^*(\sigma, p_f, p_a)$ decrease with p_a ; (2) $m^*(\sigma, p_f, p_a)$ decreases with type σ .

Stage III: Advertisers' Optimal Advertising

Threshold $\sigma_T(p_a)$ is non-increasing in advertising price p_a

