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Abstract

Many situations arise in which an interested party’s utility is
dependent on the actions of an agent; e.g., a teacher is in-
terested in a student learning effectively and a firm is inter-
ested in a consumer’s behavior. We consider an environment
in which the interested party can provide incentives to affect
the agent’s actions but cannot otherwise enforce actions. In
value-based policy teaching, we situate this within the frame-
work of sequential decision tasks modeled by Markov Deci-
sion Processes, and seek to associate limited rewards with
states that induce the agent to follow a policy that maximizes
the total expected value of the interested party. We show
value-based policy teaching is NP-hard and provide a mixed
integer program formulation. Focusing in particular on en-
vironments in which the agent’s reward is unknown to the
interested party, we provide a method for active indirect elic-
itation wherein the agent’s reward function is inferred from
observations about its response to incentives. Experimental
results suggest that we can generally find the optimal incen-
tive provision in a small number of elicitation rounds.

Introduction
Many situations arise in which an interested party’s utility
depends on the actions of an agent. For example, a teacher
wants a student to develop good study habits. Parents want
their child to come home after school. A firm wants a con-
sumer to make purchases. Often, the behavior desired by the
interested party differs from the actual behavior of the agent.
The student may be careless on homeworks, the child may
go to the park and not come home, and the consumer may
not buy anything.

The interested party can often provide incentives to en-
courage desirable behavior. A teacher can offer a student
gold stars, sweets, or prizes as rewards for solving problems
correctly. Parents can motivate their child to come home by
allowing more TV time or providing money for a snack on
the way home. A firm can provide product discounts to en-
tice a consumer to make a purchase.

We view these incentive provision problems as problems
of policy teaching: given an agent behaving in an environ-
ment, how can an interested party provide incentives to in-
duce a desired behavior? We consider a setting in which the
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agent performs a sequence of observable actions, repeatedly
and relatively frequently. The interested party has measure-
ments of the agent’s behavior over time, and can modify the
environment by associating additional rewards with world
states or agent actions. The agent may choose to behave
differently in the modified environment, but the interested
party cannot otherwise impose actions upon the agent. Later
in the paper we situate the problem of policy teaching within
the general problem of environment design.

In value-based policy teaching, we adopt the framework
of sequential decision tasks modeled by Markov Decision
Processes (MDPs), and seek to provide incentives that in-
duce the agent to follow a policy that maximizes the total
expected value of the interested party, subject to constraints
on the total amount of incentives that can be provided. While
the problem of providing incentives to induce a particu-
lar policy can be solved with a linear program (Zhang and
Parkes 2008), the problem here is NP-hard. In general, the
interested party may find many agent policies desirable, of
which only a subset are teachable with limited incentives.
For example, a teacher may find many study methods desir-
able but would not know ahead of time which is the most
effective study method that a student can be motivated to
follow given a limited number of gold stars.

Computational challenges aside, the agent’s local rewards
(and thus its utility function) may also be unknown to the
interested party, further complicating the problem of pol-
icy teaching. A common approach to preference elicita-
tion is to ask the agent a series of direct queries about
his or her preferences, based on which bounds can be
placed on the agent’s utility function (Boutilier et al. 2005;
Chajewska, Koller, and Parr 2000; Wang and Boutilier
2003). The direct elicitation approach has been critiqued
over concerns of practicality, as certain types of queries
may be too difficult for an agent to answer and the process
may be error-prone (Chajewska, Koller, and Ormoneit 2001;
Gajos and Weld 2005). While we share these practical con-
cerns, we are also opposed to using direct elicitation for pol-
icy teaching because it is intrusive: given that the interested
party cannot impose actions upon the agent, there is little
reason to believe that the interested party can enforce partic-
ipation in a costly external elicitation process.

In this paper, we address both the computational and elic-
itation challenges in value-based policy teaching. On the



computational side, we provide a novel mixed integer pro-
gram (MIP) formulation that can be used to solve reason-
ably sized problem instances. For learning the agent’s pref-
erences, we provide an active indirect elicitation method
wherein the agent’s reward function is inferred from obser-
vations of the agent’s policy in response to incentives. Us-
ing this method, we construct an algorithm that uses lower
bounds on the value of the best teachable policy and the con-
straints of inverse reinforcement learning (Ng and Russell
2000) on induced policies to continually narrow the space of
possible agent rewards until the best teachable policy found
so far is guaranteed to be within some bound of the optimal
solution.

Inverse reinforcement learning (IRL) considers the prob-
lem of determining a set of rewards consistent with an ob-
served policy. But this is insufficient here, because the ac-
tual value of the underlying rewards matters in finding the
right adjustment via incentives. By iteratively modifying the
agent’s environment and observing new behaviors we are
able to make progress towards the optimal, teachable pol-
icy. We prove that the method will converge in a bounded
number of rounds, and also provide a two-sided slack max-
imization heuristic that can significantly reduce the number
of elicitation rounds in practice. Experimental results show
that elicitation converges in very few rounds and the method
scales to moderately sized instances with 20 states and 5 ac-
tions.

Related Work
Other works on preference elicitation have also taken the in-
direct approach of inferring preferences from observed be-
havior. Indeed, this is the essential idea of revealed prefer-
ence from microeconomic theory (Varian 2003). As noted
above, for MDPs, Ng and Russell (2000) introduced the
problem of IRL and showed that reward functions consistent
with an optimal policy can be expressed by a set of linear in-
equalities. Later works have extended IRL to a Bayesian
framework (Chajewska, Koller, and Ormoneit 2001; Ra-
machandran and Amir 2007), but techniques remained pas-
sive; they are applied to observed behaviors of an agent act-
ing in a particular environment (e.g., with respect to an un-
changing MDP), and are unconcerned with generating new
evidence from which to make further inferences about pref-
erences.

To our knowledge, neither the computational problem nor
the learning approach have been previously studied in the lit-
erature. In work on k-implementation, Monderer and Ten-
nenholtz (2003) studied a problem in which an interested
party assigns monetary rewards to influence the actions of
agents in games. But the setting there is in many ways dif-
ferent, as the focus is on single-shot games (no sequential
decisions) and the game is assumed known (no elicitation
problem). Furthermore, unlike our work here, the interested
party in k-implementation has the power to assign unlimited
rewards to states, and relies on this credibility to implement
desirable outcomes.

The problem of policy teaching is closely related to
principal-agency problems studied in economics, where a
principal (e.g., firm) provides incentives to align the inter-

est of the agent (e.g., employee) with that of the princi-
pal (Bolton and Dewatripont 2005; Laffront and Martimort
2001). But the focus in principal-agency theory is rather
different, dealing mainly with “moral hazard” problems of
hidden actions, and situated in the large part in simpler en-
vironments and in models for which the preferences of the
agent are known.1

Problem Definition
We model an agent performing a sequential decision task
with an infinite horizon MDP M = {S,A,R, P, γ}, where
S is the set of states, A is the set of possible actions, R :
S → R is the reward function, P : S×A×S → [0, 1] is the
transition function, and γ is the discount factor from (0, 1).
We assume finite state and action spaces, and consider agent
rewards bounded in absolute value by Rmax .

Given an MDP, the agent’s goal is to maximize the ex-
pected sum of discounted rewards. We consider the agent’s
decisions as a stationary policy π, such that π(s) is the ac-
tion the agent executes in state s. Given a policy π, the value
function V π(s) = R(s) + γ

∑
s′∈S P (s, π(s), s′)V π(s′)

is uniquely defined and captures the expected sum of dis-
counted rewards under π. Similarly, the Q function cap-
tures the value of taking an action a followed by pol-
icy π in future states, such that Qπ(s, a) = R(s) +
γ

∑
s′∈S P (s, a, s′)V π(s′). By Bellman optimality, an op-

timal policy π∗ chooses actions that maximize the Q func-
tion in every state, such that π∗(s) ∈ argmaxa∈AQπ

∗
(s, a)

(Puterman 1994). We assume the agent is capable of solving
the planning problem and performs with respect to π∗.

Given an agent following a policy π, we represent
the interested party’s reward and value functions by G
and V πG respectively, such that V πG (s) = G(s) +
γ

∑
s′∈S P (s, π(s), s′)V πG (s′). The interested party can

provide incentives to the agent through an incentive func-
tion ∆. Given a start state start ,2 we define the notion of
admissibility:
Definition 1. An incentive function ∆ : S → R is admissi-
ble with respect to πT if it satisfies the following constraints:

V πT∆ (s) = ∆(s) + γPs,πT (s)V
πT
∆ ,∀s Incentive value.

V πT∆ (start) ≤ Dmax Limited spending.
0 ≤ ∆(s) ≤ ∆max ,∀s No punishments.

This notion of admissibility limits the expected incentive
provision to Dmax when the agent performs πT from the
start state. We assume the agent’s reward is state-wise quasi-
linear, such that after providing incentives the agent plans
with respect to R′ = R + ∆. Here we have also assumed
that the agent is myopically rational, in that given ∆, the
agent plans with respect toR+∆ and does not reason about
incentive provisions in future interactions with the interested
party.

1See Feldman et al. (2005) and Babaioff et al. (2006) for recent
work in computer science related to principal-agent problems on
networks.

2The use of a single start state is without loss of generality, since
it can be a dummy state whose transitions represent a distribution
over possible start states.



We aim to find an admissible ∆ that induces a policy that
maximizes the value of the interested party:
Definition 2. Given a policy π and M−R = {S,A, P, γ},
let R ∈ IRLπ denote the space of all reward functions R for
which π is optimal for the MDP M = {S,A,R, P, γ}.
Definition 3. Let OPT (R,Dmax ) denote the set of pairs
of incentive functions and teachable policies, such that
(∆, π′) ∈ OPT (R,Dmax ) if and only if ∆ is admissible
with respect to π′ given Dmax , and (R+ ∆) ∈ IRLπ

′
.

Definition 4. Value-based policy teaching with known re-
wards. Given an agent MDP M = {S,A,R, P, γ}, incen-
tive limit Dmax , and the interested party’s reward function
G, find (∆, π′) ∈ argmax( b∆,bπ)∈OPT(R,Dmax ) V

bπ
G (start).

Theorem 1. The value-based policy teaching problem with
known rewards is NP-hard.
Proof. We perform a reduction from KNAPSACK (Garey
and Johnson 1979). Given n items, we denote item i’s value
by vi and its weight by ci. With a maximum capacity C,
a solution to the knapsack problem finds the set of items
to take that maximizes total value and satisfies the capacity
constraint. For our reduction, we construct an agent MDP
with 2n + 2 states. The agent has a leave it action a0

and a take it action a1. Starting from state s0, the agent
transitions from state ski−1 to sji on action aj for an arbitrary
k, where the sequence of states visited represents the agent’s
decisions to take or leave each item. Once all decisions are
made (when state skn is visited for an arbitrary k), the agent
transitions to a terminal state st.

The agent carries the weight of the items, such that
R(s1

i ) = −ciγ−i. The interested party receives the value
of the items, such that G(s1

i ) = viγ
−i. Rewards are 0 in

all other states. Given an agent policy π, let T denote the
set of items the agent takes when following π from s0. It
follows that V π(s0) = −

∑
i∈T ci is the total weight and

V πG (s0) =
∑
i∈T vi is the total value of carried items. Un-

der reward R, the agent does not take any items; the inter-
ested party provides positive incentive ∆ to induce the agent
to carry items that maximize VG(s0) while satisfying the ca-
pacity constraint V∆(s0) ≤ C. Since ∆(s1

i ) = ciγ
−i is

sufficient for item i to be added to the knapsack and con-
tribute weight ci to V∆(s0), the ∆ that induces the policy
with the highest VG(s0) solves the knapsack problem.

Note that the problem in Definition 4 does not explicitly
factor in the cost of the provided incentives into the objec-
tive. This is in some sense without loss of generality, be-
cause an objective that maximizes expected reward net of
cost still leads to a NP-hard problem that can be solved with
the mixed integer programming approach we will present.3,4

3To incorporate cost, we rewrite the interested party’s reward as
G′ = G − ∆, such that maximizing the value with respect to G′

maximizes the expected payoff. Note that here ∆ (and thus G′) is
a variable. To establish NP-hardness, we use the same construction
as in Theorem 1, but let G(s1i ) = (vi + ci)γ

−i and G′(s1i ) =
(vi + ci)γ

−i −∆(s1i ). Since ∆(s1i ) = ciγ
−i is sufficient for item

i to be added to the knapsack, the maximizing VG′(s0) maximizes
the value of the knapsack.

4The complexity of the problem with an objective that maxi-

MIP Formulation
The computational difficulty of value-based policy teaching
stems from the problem’s indirectness: the interested party
must provide limited incentives to induce an agent policy
that maximizes the value of the interested party. While both
the admissibility conditions and the interested party’s value
function are defined with respect to the agent’s induced pol-
icy π′, this policy is not known ahead of time but instead
is a variable in the optimization problem. To capture the
agent’s decisions explicitly, we introduce binary variables
Xsa to represent the agent’s optimal policy π′ with respect
to R + ∆, such that Xsa = 1 if and only if π′(s) = a. The
following constraints capture the interested party’s Q func-
tion QG and value function VG with respect to π′:

QG(s, a) = G(s) + γPs,aVG ∀s, a (1)

VG(s) =
∑

a
QG(s, a)Xsa ∀s (2)

Here VG(s) = QG(s, a) if and only if π′(s) = a. Con-
straint 2 is nonlinear, but we can rewrite it as a pair of linear
constraints using the big-M method:

VG(s) ≥ −Mgv(1−Xsa) +QG(s, a) ∀s, a (3)
VG(s) ≤Mgv(1−Xsa) +QG(s, a) ∀s, a (4)

Here Mgv is a large constant, which will be made tight.
When Xsa = 1, VG(s) ≥ QG(s, a) and VG(s) ≤ QG(s, a)
imply VG(s) = QG(s, a). When Xsa = 0, both constraints
are trivially satisfied by the large constant. We apply the
same technique for the value function corresponding to the
agent’s problem and that corresponding to the admissibility
requirement.

Theorem 2. The following mixed integer program solves the
value-based policy teaching problem with known rewards:

max
∆,V,Q,VG,QG,V∆,Q∆,X

VG(start) (5)

subject to:

Q(s, a) = R(s) + ∆(s) + γPs,aV ∀s, a (6)
V (s) ≥ Q(s, a) ∀s, a (7)
V (s) ≤Mv(1−Xsa) +Q(s, a) ∀s, a (8)

QG(s, a) = G(s) + γPs,aVG ∀s, a (9)
VG(s) ≥ −Mgv(1−Xsa) +QG(s, a) ∀s, a (10)
VG(s) ≤Mgv(1−Xsa) +QG(s, a) ∀s, a (11)

Q∆(s, a) = ∆(s) + γPs,aV∆ ∀s, a (12)
V∆(s) ≥ −M∆(1−Xsa) +Q∆(s, a) ∀s, a (13)
V∆(s) ≤M∆(1−Xsa) +Q∆(s, a) ∀s, a (14)

V∆(start) ≤ Dmax (15)
0 ≤ ∆(s) ≤ ∆max ∀s (16)∑

a
Xsa = 1 ∀s (17)

Xsa ∈ {0, 1} ∀s, a (18)

mizes expected payoff but with no limit on incentive provision is
an open problem.



where constants Mv = Mv −Mv and Mgv = Mgv −Mgv

are set such thatMv = (∆max +maxsR(s))/(1−γ),Mv =
minsR(s)/(1−γ),Mgv = maxsG(s)/(1−γ), andMgv =
minsG(s)/(1− γ). M∆ = ∆max/(1− γ).

Constraint 6 defines the agent’s Q functions in terms of
R and ∆. Constraints 7 and 8 ensure that the agent takes
the action with the highest Q value in each state. To see
this, consider the two possible values for Xsa. If Xsa = 1,
V (s) = Q(s, a). By Constraint 7, Q(s, a) = maxiQ(s, i).
If Xsa = 0, the constraints are satisfied because Mv ≥
maxV (s) − Q(s, a).5 Constraints 9, 10, and 11 capture
the interested party’s value for the induced policy. Simi-
larly, constraints 12–16 capture the admissibility conditions.
Constraints 17 and 18 ensure that exactly one action is cho-
sen for each state. The objective maximizes the interested
party’s value from the start state. All big-M constants have
been set tightly to ensure a valid but strong formulation.

In practice, we may wish to avoid scenarios where multi-
ple optimal policies exist (i.e., there are ties) and the agent
may choose a policy other than the one that maximizes the
value of the interested party. To ensure that the desired pol-
icy is uniquely optimal, we can also define a slight variant
with a strictness condition on the induced policy by adding
the following constraint to the mixed integer program:

V (s)−Q(s, a) + εXsa ≥ ε ∀s, a (19)

where ε > 0 is a small constant that represents the mini-
mal slack between the Q value of the induced optimal ac-
tion (Xsa = 1) and any other actions. We can also de-
fine ε-strict equivalents for IRLπ and OPT , such that R ∈
IRLπε denotes the space of rewards that strictly induce π and
OPT ε(R,Dmax ) denotes the set of pairs of incentive func-
tions and strictly teachable policies.

Active Indirect Elicitation
Generally, the interested party will not know the agent’s re-
ward function. Here we make use of the notion of strictness
and require the interested party to find the optimal ε-strict
incentives.
Definition 5. Value-based policy teaching with unknown
agent reward. An agent follows an optimal policy π
with respect to an MDP M = {S,A,R, P, γ}. An in-
terested party with reward function G observes M−R =
{S,A, P, γ} and π but not R. Given incentive limit
Dmax and ε > 0, set ∆ and observe agent policy π′

such that (∆, π′) ∈ OPT (R,Dmax ) and V π
′

G (start) ≥
max( b∆,bπ)∈OPTε(R,Dmax )V

bπ
G (start).

Note that the value to the interested party is determined
by the observed agent policy π′. In this definition we are
allowing for non-strict incentive provisions under which the
observed agent policy is of greater value than the policy cor-
responding to the optimal ε-strict incentive provision.

5Since Mv is the sum of discounted rewards for staying in the
state with the highest possible reward and Mv is the sum of dis-
counted rewards for staying in the state with the lowest possible
reward, it must be that Mv ≥ maxV (s) and Mv ≤ minQ(s, a).
This implies that Mv ≥ maxV (s)−Q(s, a).

To begin, we can use the following theorem to classify all
reward functions consistent with the agent’s policy π:
Theorem 3. (Ng and Russell 2000) Given a policy π and
M−R = {S,A, P, γ}, R ∈ IRLπ satisfies:

(Pπ −Pa)(I− γPπ)−1R � 0 ∀a ∈ A (20)

While Theorem 3 finds the space of reward functions con-
sistent with the agent’s observed behavior, the constraints do
not locate the agent’s actual reward within this space. To find
the optimal incentive provision for the agent’s true reward,
it is necessary to narrow down this “IRL reward space.”

The method begins by making a guess R̂ at the agent’s
reward R by choosing any point within the IRL space of the
agent that has an associated admissible ∆̂ such that R̂ + ∆̂
strictly induces a policy π̂T with higher value to the inter-
ested party than the agent’s current policy. If our guess
is correct, we would expect providing the agent with ∆̂ to
strictly induce policy π̂T . If instead the agent performs a
policy π′ 6= π̂T , we know that R̂ must not be the agent’s
true reward R. Furthermore, we also know that R + ∆̂ in-
duces π′, providing additional information which may elim-
inate other points in the space of agent rewards. We obtain
an IRL constraint on R+ ∆̂ such that (R+ ∆̂) ∈ IRLπ

′
:

(Pπ′ −Pa)(I− γPπ′)−1(R + ∆̂) � 0 ∀a ∈ A (21)

We can repeat the process of guessing a reward in the
agent’s IRL space, providing incentives based on the hy-
pothesized reward, observing the induced policy, and adding
new constraints if the agent does not behave as expected.
But, what if the agent does behave as expected? Without
contrary evidence, adding an IRL constraintR+∆̂ ∈ IRLbπT
does not remove R̂ from the agent’s IRL space. While ∆̂ is
the optimal incentive provision for R̂, the optimal incentive
provision from the agent’s true reward may still induce a
policy with a higher value.

We handle this issue by also keeping track of the most ef-
fective incentives provided so far. We initialize V max

G =
V πG (start) for initial agent policy π. Given an induced
policy π′ with respect to R + ∆̂, we calculate V π

′

G . If
V π
′

G (start) > V max
G , we update ∆best = ∆̂ and V max

G =
V π
′

G (start). In choosing R̂, we consider only rewards that
have a strict admissible mapping to a policy that would in-
duce VG(start) > V max

G . We denote the space of such
rewards as R ∈ R>V max

G
, which corresponds to satisfying

constraints 6 through 19 (whereR will be a variable in these
constraints) and also the following constraint:

VG(start) ≥ V max
G + κ (22)

for some constant κ > 0. In each elicitation round, we
find some R̂ that satisfies IRL constraints and is in the space
R>V max

G
and provide the agent with corresponding incentive

∆̂. Based on the agent’s response, R̂ is guaranteed to be
eliminated either by additional IRL constraints or by an up-
dated V max

G . If no R̂ satisfies IRL constraints and is in the
space R>V max

G
, we know there are no admissible incentives



Algorithm 1 Value-based active indirect elicitation
Require: agent policy π, interested party reward G

1: variables R, ∆; constraint set K = ∅
2: V max

G = V πG (start), ∆best = 0
3: Add R ∈ IRLπ , R ∈ R>V max

G
to K

4: loop
5: Find ∆̂, R̂ satisfying all constraints in K
6: if no such values exist then
7: return ∆best

8: else
9: Provide agent with incentive ∆̂

10: Observe π′ with respect to R′ = Rtrue + ∆̂.
11: if V π

′

G (start) > V max
G then

12: V max
G = V π

′

G (start), ∆best = ∆̂.
13: Modify R ∈ R>V max

G
in K

14: Add (R+ ∆̂) ∈ IRLπ
′

to K

from any possible agent rewards that can induce a better pol-
icy than that found so far and can end the elicitation process.

Algorithm 1 gives our elicitation method. In describing
the algorithm, the set of constraints in some round is denoted
by K and an instantiation of a variable R is denoted by R̂.

Theorem 4. Given ε > 0, Dmax , and κ > 0, Algorithm
1 terminates in a finite number of steps with an admissi-
ble ∆ that induces the agent to follow a policy π′ with
V π
′

G (start) ≥ max( b∆,bπ)∈OPTε(R,Dmax )V
bπ
G (start)− κ.

Proof sketch. Every iteration of Algorithm 1 finds R̂ and ∆̂
that strictly induce a policy π̂T with minimal slack at least ε.
If the agent performs a policy π′ 6= π̂T , the added IRL con-
straintR+∆̂ ∈ IRLπ

′
ensures that R̂ and all points within an

open hypercube with side length 2δ = ε(1 − γ)/γ centered
at R̂ are not the agent’s reward function. By a pigeonhole
argument, only a finite number of R̂ need to be eliminated
in this manner in order to cover the space of possible agent
rewards. Alternatively, if π′ = π̂T , V max

G increases by κ.
Since V max

G is bounded above by the value of the interested
party’s optimal policy, V max

G can only increase a finite num-
ber of times. Since Algorithm 1 will terminate when there
are no potential agent rewards that can achieve value of at
least V max

G + κ, we have the desired result.

Elicitation Objective Function
The elicitation method allows for any strategy to be used for
choosing some R̂ and ∆̂ that satisfy constraints K. Desir-
able elicitation strategies have objective functions that are
computationally tractable, find good solutions quickly, and
lead to few elicitation rounds. From the convergence proof,
we have seen that the size of the minimal slack around R̂+∆̂
places a bound on the volume of points around an eliminated
R̂ that are not the agent’s reward. Furthermore, if a large vol-
ume of these points lie within the agent’s current IRL space
(given by the intersection of all added IRL constraints up to
this iteration), we can significantly narrow the space.

s r p r
r r r r
r r r r
r r r h−→ a

(a) state space

→ → � ←
→ → ↑ ↓
→ → → ↓
→ → → �−→ •

(b) child’s policy

Figure 1: Child walking home domain

One heuristic approach is then to perform a two-sided
slack maximization: find R̂ with a large volume of points
around it that are both within the agent’s IRL space and can
be eliminated through the target mapping. We do this in two
steps. First, we pick a reward profile that maximizes the
minimal slack β across all slack on the agent’s initial policy
π and all induced policies π′ using the following objective
and associated constraints (and all existing constraints K):

max
β,α,R,∆,V,Q,VG,QG,V∆,Q∆,X

β − λ
∑
s

α(s) (23)

subject to:

((Pπ −Pa)(I− γPπ)−1R)[s] ≥ β ∀s, a

((Pπ′ −Pa)(I− γPπ′)−1(R + ∆̂))[s] ≥ β ∀s, a, π′

α(s) ≥ R(s) ∀s
α(s) ≥ −R(s) ∀s
β ≥ 0

constraints (6) – (22)

Here, λ ≥ 0 is a weighted penalty term on the size of re-
wards which allows us to express a preference for simpler
rewards and prevent the objective from picking large reward
guesses for the sake of increasing the slack β.

Based on R̂ found using the above objective, we solve
the MIP formulation from Theorem 2 with the additional
strictness condition to determine the maximal V̂G that can
be reached from R̂. We can then solve the following mixed
integer program to find an admissible ∆ that most strictly
induces a policy with value V̂G by maximizing the minimal
slack β across all slack on the target policy:

max
β,∆,V,Q,VG,QG,V∆,Q∆,X

β (24)

subject to:

V (s)−Q(s, a) +MvXsa ≥ β ∀s, a
VG(start) ≥ V̂G

constraints (6) – (19)

Experiments
The goal of our experiments is to evaluate the scalability of
the mixed integer program and the effectiveness of the elic-
itation method with various heuristics. The algorithm is im-
plemented in JAVA, using JOPT6 as an interface to CPLEX

6http://econcs.eecs.harvard.edu/jopt
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Figure 2: Elicitation rounds for various heuristics.

(version 10.1), which served as our back-end MIP solver.
Experiments were conducted on a local machine with a Pen-
tium IV 2.4Ghz processor and 2GB of RAM.

We simulate a domain in which a child is walking home
from school; see Figure 1(a). Starting at school (‘s’), the
child may walk in any compass direction within bounds or
choose to stay put. Figure 1(b) shows a child whose policy
is to go to the park and then stay there. While the child may
have positive rewards for getting home (at which point he
transitions into an absorbing state), he also enjoys the park,
dislikes the road, and discounts future rewards. The parents
are willing to provide limited incentives to induce the child
to come home, preferably without a stop at the park.

We model the problem as an MDP and randomly gen-
erate instances on which to perform our experiments. We
consider three separate instance generators, corresponding
to smooth (same reward for all road states), bumpy (random
reward over road states), and completely random (uniformly
distributed reward for all states). For smooth and bumpy in-
stances, the child’s reward is sampled uniformly at random
from [0.5, 1.5] for the park state and from [1, 2] for the home
state, whereas the parent’s reward is sampled uniformly at
random from [-1.5, -0.5] for the park state and from [2, 4]
for the home state. The incentive limit Dmax of the inter-
ested party is set such that second-best policies (e.g., visit the
park and then come home) are teachable but first-best poli-
cies (e.g., come home without visiting the park) are rarely
teachable. The discount factor γ, minimal slack ε, and value
tolerance κ are fixed at 0.7, 0.01, and 0.01, respectively.

To evaluate the elicitation algorithm, we consider four
heuristics that correspond to first choosing R̂ to either maxi-
mize the agent-side slack (using MIP 23) or to maximize VG
across all rewards in the agent’s IRL space, and then choos-
ing whether to maximize the target-side slack (using MIP
24) after finding the maximal VG with respect to R̂ or to ig-
nore this step. We continue the elicitation process until the
process converges (i.e., when the highest VG with respect
to the unknown agent reward is found and proved to be the
best possible solution), or if the number of rounds reaches
50. All results are averaged over 10 instances.

Figure 2 shows the elicitation results. The two-sided max
slack heuristic performed best, averaging less than 7 rounds
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Figure 3: MIP solve time for increasing problem sizes.

for all problem sizes. Maximizing VG and then the target
slack was also effective, both via the large volumes of points
eliminated through the target slack and because elicitation
converges as soon as the best mapping is found. Maximiz-
ing VG alone performed poorly on smaller instances, mostly
due to its inability to induce a good policy and eliminate
large volumes early (which it was able to do on the larger
instances). All heuristics that we considered averaged under
15 rounds for even the larger problem instances, demonstrat-
ing the broad effectiveness of the elicitation method.

Figure 3 shows the MIP solve times on a logarithmic
scale. Problems with 16 states were solved in approximately
20 seconds and problems with 20 states in 4–7 minutes. This
growth in solve time for the MIP formulations appears to be
exponential in the number of states, but this is perhaps un-
surprising when we consider that the set of policies increases
exponentially in the number of states, e.g. with up to 520

target policies to naively check by straightforward enumer-
ation. For the different types of instances, we find that the
running time correlates with the ease to find the optimal tar-
get policy; e.g., target policies of random instances tend to
find states near the start state with a large reward for the in-
terested party.

For unknown agent rewards we can expect to achieve im-
proved computational performance with tighter bounds on
Rmax because the “big-M” constraints in the MIP formula-
tion depend heavily on Rmax . (In the current experiments
we set Rmax to twice of the largest reward possible in the
domain.) Nevertheless, an exploration of this is left to fu-
ture work, along with addressing scalability to larger in-
stances for example through identifying tighter alternative
MIP formulations or through decompositions that identify
useful problem structure.

Discussion: Environment Design
We view this work as the first step in a broader agenda of
environment design. In environment design, an interested
party (or multiple interested parties) act to modify an envi-
ronment to induce desirable behaviors of one or more agents.
The basic tenet of environment design is that it is indirect:
rather than collect preference information and then enforce
an outcome as in mechanism design (Jackson 2003), in envi-



ronment design one observes agent behaviors and then mod-
ulates an environment (likely at a cost) through constraints,
incentives and affordances to promote useful behaviors.

To be a little more specific, we can list a few interesting
research directions for future work:

• Multiple interested parties. Each interested party is able
to modify a portion of the complete environment, and has
its own objectives for influencing one or more agents’ de-
cisions. For example, what if different stakeholders, e.g.
representing profit centers within an organization, have
conflicting goals in terms of promoting behaviors of the
users of a content network?

• Multi-agent policy teaching. Just as an interested party
may wish to influence the behavior of a particular agent,
it may also wish to influence the joint behavior of a group
of agents. One possible approach is to consider the joint
agent policy as meeting some equilibrium condition, and
find a space of rewards consistent with the joint behav-
ior. One can then perform elicitation to narrow this space
to find an incentive provision that induces an equilibrium
behavior desired by the interested party.

• Learning agents. If we relax the assumption that agents
are planners, we enter the problem space of reinforcement
learning (RL), where agents are adjusting towards an op-
timal local policy. One goal considered in the RL liter-
ature is reward shaping, where one attempts to speed up
the learning of an agent by providing additional rewards
in the process (Ng, Harada, and Russell 1999). Could this
be adapted to settings with unknown agent rewards?

• A Bayesian framework. A Bayesian framework would
allow us to more precisely represent uncertainty about an
agent’s preferences. Bayesian extensions for IRL have
been considered in the literature (Chajewska, Koller, and
Ormoneit 2001; Ramachandran and Amir 2007), and may
be applicable to the environment design setting.

• Alternative design levers. Incentive provision is one of
many possible ways to modify an agent’s environment.
One may change the physical or virtual landscape, e.g., by
building a door where a wall existed or designing hyper-
links. Such changes alter the agent’s model of the world,
leading to different behaviors. How the general paradigm
of policy teaching can be extended to include alternate
design levers presents an interesting problem for future
research.

Conclusions
Problems of providing incentives to induce desirable behav-
ior arise in education, commerce, and multi-agent systems.
In this paper, we introduced the problem of value-based
policy teaching and solved this via a novel MIP formula-
tion. When the agent’s reward is unknown, we propose an
active indirect elicitation method that converges to the op-
timal incentive provision in a small number of elicitation
rounds. Directions for future work include extending the
policy teaching framework, improving the scalability of our
formulation, and building a general framework to capture
the relations among environment, preferences, and behavior.

There is also the question of allowing for strategic agents,
which is not handled in the current work.
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