
A General Approach to Environment Design with One Agent

Haoqi Zhang, Yiling Chen, David Parkes

School of Engineering and Applied Sciences

Harvard University

Cambridge, MA 02138 USA

{hq, yiling, parkes}@eecs.harvard.edu

Abstract

The problem of environment design considers a set-
ting in which an interested party aims to influence
an agent’s decisions by making limited changes to
the agent’s environment. Zhang and Parkes [2008]

first introduced the environment design concept for
a specific problem in the Markov Decision Process
setting. In this paper, we present a general frame-
work for the formulation and solution of environ-
ment design problems with one agent. We consider
both the case in which the agent’s local decision
model is known and partially unknown to the in-
terested party, and illustrate the framework and re-
sults on a linear programming setting. For the lat-
ter problem, we formulate an active, indirect elic-
itation method and provide conditions for conver-
gence and logarithmic convergence. We relate to
the problem of inverse optimization and also offer
a game-theoretic interpretation of our methods.

1 Introduction

Many situations arise in which an interested party wants to
influence an agent’s behavior. A Web 2.0 site wants a user
to contribute content. A teacher wants a student to follow an
effective study behavior. A computer network operator wants
to change the flow of traffic or contribution of resources. In
the future, one can imagine the need to influence the behavior
of robots as they interact with humans.

We are interested in problems in which the best way to
modify the environment depends on information private to
an agent, and in which the interested party can make limited
changes to an agent’s environment to encourage desired be-
haviors without directly mandating particular behaviors. A
Web 2.0 site can tweak its user interface to ease the content
uploading process or promote the contribution of one kind of
content over another. A teacher can promote checking of an-
swers by a student by providing gold stars or other positive
reinforcements. A network operator can change latency or
bandwidth availability on links or otherwise change the way
that resources are allocated. One can place obstacles in an en-
vironment or change lighting conditions to perturb the plans
generated by robots.

We view these problems as different examples of environ-
ment design. In environment design, one assumes an agent
with a fixed way of making decisions and an interested party
that can influence the agent’s decisions via limited changes
to the agent’s environment. This is in contrast (and com-
plementary) to much of artificial intelligence research, where
the focus is on designing an agent that interacts with the en-
vironment. Environment design allows us to study settings
where the interested party cannot design the agent but is still
interested in its decisions, e.g. when the agent is human
with inherent preferences and decision-making processes, or
when the agent is a physical robot, whose hardware limits its
physical and computational capabilities. By making limited
changes to the environment, the interested party aims to align
the agent’s decisions under the modified environment with the
decisions desired by the interested party.

In this paper, we consider an environment with one agent
and one interested party. The agent makes decisions in the en-
vironment with respect to an agent function, which takes as
input model parameters reflecting the agent’s preferences and
capabilities and the environment. The interested party seeks
to affect the agent’s decisions via changes to the environment,
selected from a canonical set of changes that can depend on
the agent’s decisions and the environment. The goal of the
interested party may be to elicit particular decisions from the
agent, but can in general be expressed as a function of the
decisions, model parameters, environment, and the environ-
ment change. The interested party knows the agent function
and the environment, but in general does not know the model
parameters. The interested party can observe the agent’s de-
cisions and interact multiple times with the agent, but this is
the extent of the interested party’s power.

Zhang and Parkes [2008] first introduced the environment
design concept for a Markov Decision Process (MDP) do-
main, where they considered an interested party who can pro-
vide limited incentives to induce an agent to perform desired
policies. In this work, we (1) provide a general framework
for the formulation and solution of problems of environment
design, and (2) illustrate the framework on a linear program-
ming setting. We identify the different components of an en-
vironment design problem, and consider both the static case
in which the agent’s model parameters are known and the dy-
namic case in which they are partially unknown to the inter-
ested party. In the former case, we provide a general formula-



tion of the environment design problem and relate to the prob-
lem of inverse optimization [Ahuja and Orlin, 2001]. In the
latter case, we extend the active, indirect elicitation method
proposed by Zhang and Parkes [2008] and provide conditions
for convergence and logarithmic convergence. We conclude
with a game-theoretic interpretation of our methods.1

1.1 Related work

Prior work on inverse optimization [Ahuja and Orlin, 2001]

provides an answer for a special case of the static environ-
ment design problem where the goal of the interested party
is to find minimal changes to a linear cost vector of an opti-
mization problem so as to induce optimal decisions that co-
incide with specified target decisions. For the dynamic en-
vironment design problem, previous work provided an active
indirect elicitation framework in the MDP domain, and es-
tablished logarithmic convergence results for a simple goal
function [Zhang et al., 2009] and linear convergence results
for a more complex goal function [Zhang and Parkes, 2008].

The environment design problem is similar in spirit to eco-
nomic problems studied in principal-agent theory [Bolton and
Dewatripont, 2005; Laffont and Martimort, 2001], which ad-
dresses the question of how a principal can provide incen-
tives in the form of contracts to align the interest of an agent
with that of the principal. But there are some fundamental
differences between our problem and that of principal-agent
theory. First, for the most part we assume that agent deci-
sions are observable, and thus do not consider the “moral
hazard” problem relating to hidden actions. Second, we con-
sider repeated interactions with the agent, which allows us
to overcome problems presented by the agent having private
information about his or her preferences. Finally, we study
problems in which the environment change is not limited to
monetary incentives, and are generally willing to take a more
indirect approach towards implementing desired outcomes.

In work on k-implementation, Monderer and Tennen-
holtz [2003] studied a problem in which an interested party
assigns positive monetary rewards to influence the actions
of agents in games. We can interpret k-implementation as
a static multi-agent environment design problem in which the
interested party has the power to assign unlimited rewards
to states and can use commitment to implement desirable
outcomes. The results in their paper are surprising in that
monetary offers need not always materialize when agents fol-
low desired behaviors, and may provide insights for studying
other multi-agent environment design problems.

The problem of environment design is also related to mech-
anism design problems,where an interested party aims to de-
sign rules of a game to achieve desired outcomes [Jackson,
2003]. The heart of the mechanism design problem is in elic-
iting private information from agents so that the center can
make correct system-wide decisions. This is in contrast to
environment design, where private information is indirectly
inferred from observing agents over repeated interactions and
the agents ultimately take actions, not the center.

1Most proofs are omitted in the interest of space and will be made
available in a longer version of the paper.

2 The Single-Agent Environment Design

Problem

An environment design problem consists of the following
components: an environment, an agent model, an environ-
ment change, an admissibility condition, an environment
transition function, and a goal function. Below we provide
definitions describing each of these components, and then
present a static and dynamic formulation of the problem.

2.1 Problem setup

We consider an agent that acts in an environment e ∈ E based
on its agent modelM = {θ, f}, which consists of the model
parameters θ ∈ I and the agent function f : I × E → 2X .
The model parameters represent the agent’s preferences and
capabilities, and the agent function takes the model parame-
ters and environment as input and identifies (perhaps multi-
ple, equivalent) decisions from the decision space X . Note
that while the agent may be indifferent among a set of deci-
sions, the interested party may have different values for deci-
sions in the set.

We make a couple of assumptions about the agent function
f . First, we assume that the agent fully perceives aspects of
the environment relevant to its decisions.2 Second, we as-
sume that f is fixed and known to the interested party. Third,
we assume the agent can compute f on any input it encoun-
ters, such that any computational limitations of the agent is
embedded within f . Lastly, we assume that the agent will
deterministically pick a single decision x ∈ f(θ, e) when f
returns a non-singleton set of decisions, with this tie-breaking
rule a priori unknown to the interested party.

We turn to consider the interested party’s problem. The in-
terested party knows the environment e, and can modify it via
an environment change ∆ ∈∆. Given a set X ∈ 2X of possi-
ble agent decisions, the admissible set admissiblee(X) ⊆ ∆
characterizes the space of allowable environment changes.
Admissibility conditions model the interested party’s design
costs and constraints, both of which may depend on the
agent’s decisions. We assume the admissible set contains a
null element Φ corresponding to no environment change.

The environment transition function F : E ×∆→ E takes
the current environment and an environment change and out-
puts the modified environment. We assume that the function
is deterministic and known to the interested party. The agent
then makes decisions in the modified environment, which en-
ters as input to the agent function.

Finally, we define the goal of the interested party. The goal
function G : X ×∆ × I × E → ℜ takes the agent decision
under the modified environment, the environment change, the
agent’s model parameters (a priori unknown in general), and
the environment and outputs the value to the interested party.
In addition to depending on the decision of the agent, the
goal may depend on: the environment change because the
interested party may care about the cost of the environment
change; the model parameters because the designer may be
altruistic, e.g., wish to maximize the value to the agent; and

2Alternatively, one can define f based on the agent’s perceptual
inputs as opposed to the environment. For sake of exposition we do
not explicitly model perception in this paper.



the environment because the interested party may value the
agent’s decisions differently in different environments. The
interested party aims to find an admissible ∆ such that the
agent’s elicited behavior in the modified environment maxi-
mizes the goal function G.3

For the rest of this paper, we will only consider goal func-
tions of the form G : X × ∆ → ℜ. A particular goal of
interest is eliciting a desired target decision xT , and this can
be represented by a single-configuration goal function, where
G(x, ∆) > 0 for target decision x = xT and is 0 otherwise.
Here the value of the goal function can vary with ∆, which
allows the interested party to represent preferences over dif-
ferent environment changes leading to the same desired de-
cision. A special case of the single-configuration goal func-
tion is the indicator goal function, for which G(x, ∆) = 1 for
x = xT and is 0 otherwise. This can be used to represent situ-
ations where the interested party only cares about the elicited
decisions and not the precise cost of the environment change.

The environment enters as input into the agent function and
thus modifying the environment may influence the agent’s
decisions. Our base assumption is that the agent is myopic
with respect to environment changes, e.g. the agent follows
its agent function and does not reason about future changes
to the environment when making current decisions. This as-
sumption is restrictive in the dynamic formulation, where the
agent’s decisions influence future environment changes as the
interested party is learning about the model parameters. In
Section 4, we discuss conditions on the interested party’s
problem under which the assumption can be relaxed.

Before moving on, we consider as an example an interested
party who wishes to design the user interface of a Web 2.0
site. The table below illustrates the various components of
the problem under the environment design framework:

Environment a Web 2.0 site

Agent model parameters preferences over site modules;
time available to spend online

Agent function perform actions on site to max-
imize utility

Environment change adding, removing, and moving
modules in the user interface

Admissibility condition limit to changes within tem-
plate; keep main components

Env. transition function describes how the user inter-
face changes

Goal function values user being on the site
and contributing content

2.2 The Static Formulation

In the static formulation of the environment design problem,
the agent’s model parameters are assumed known to the in-
terested party. Since we already assume that the interested

3The interested party may have other preferences, for example
to induce desired decisions after few interactions. For simplicity,
we will not model these preferences explicitly but instead introduce
methods for quickly eliciting desired behaviors.

party knows the agent function and the environment, we can
think of the interested party’s problem as one of inverse opti-
mization [Ahuja and Orlin, 2001]. A key component of solv-
ing inverse problems is to characterize the space of inputs for
which the agent function outputs a particular (desirable) set
of decisions. We call this the inverse feasible space:

Definition 1. The model parameters θ and environment e are
inverse feasible with respect to an agent function f and de-
cisions x if and only if x ∈ f(θ, e). Let f−1(x) denote the
inverse feasible space, such that (θ, e) ∈ f−1(x) if and only
if x ∈ f(θ, e).

Given a characterization of the inverse feasible space, we
need to ensure that the environment change ∆ leads to a mod-
ified environment that together with the model parameters are
inverse feasible for the desired decision. However, this may
not be sufficient because in the case of multiple possible deci-
sions in the range of the agent function, the agent may not se-
lect the one desired by the interested party. To be certain that
the agent selects decisions desired by the interested party, our
formulation assumes that the agent selects the worst possible
decision for the interested party’s goal function:

Definition 2. Given an environment e, the static environment
design problem is an inverse optimization problem to find an
environment change ∆ that maximizes the interested party’s
goal function in the worst case:

max
∆,e′

min
xT

G(xT , ∆) (1a)

subject to: e′ = F(e, ∆) (1b)

(θ, e′) ∈ f−1(xT ) (1c)

∆ ∈ admissiblee(f(θ, e′)) (1d)

In the case that the agent function outputs singleton de-
cision sets, the objective of the optimization simplifies to
max∆,xT ,e′ G(xT , ∆).

The constraints ensure that e′ is the modified environment
(1b), that the model parameters and modified environment is
inverse feasible for some decisions xT (1c), and that the en-
vironment change is admissible with respect to the set of pos-
sible agent decisions (1d).

Whether or not this formulation is interesting depends on
its tractability, which depends on the particular model and the
form of the functions involved. For example, if the objective
and all constraints of the inverse problem are linear, we have a
linear program that can be solved using standard techniques,
assuming there is not an exponential number of constraints.
We return to this in Section 3.1.

2.3 The Dynamic Formulation

In the more interesting case, the agent’s model parameters
will initially be, at least partially, unknown to the interested
party. Since the agent function depends on both the envi-
ronment and the model parameters, an interested party can-
not effectively modulate the environment to induce desired
behavior without some knowledge of the model parameters.
To address this, we consider the active, indirect elicitation
paradigm of Zhang and Parkes [2008]. The interested party



has repeated interactions with the agent. In each interac-
tion, the interested party modifies the environment and ob-
serves the agent’s decisions in response to the modified en-
vironment. Each time the interested party changes the envi-
ronment, the agent’s modified decisions form an observation
that, given the agent function is known and fixed, provides
some evidence about the unknown model parameters.

We first define the space of possible model parameters con-
sistent with past observations of agent behavior. LetH denote
the history of past elicitation rounds, such that (xo, eo) ∈ H
denotes observed decisions xo in environment eo in round o.
Notice that the agent’s actual model parameters θ∗ satisfies
(θ∗, eo) ∈ f−1(xo) for all observations (xo, eo) ∈ H. From
this space, the interested party need only consider candidate
model parameters for which there exists environment changes
that may lead to higher values for the goal function. If no such
parameters exist, the interested party must have already found
the environment change that maximizes its goal function with
respect to the actual unknown model parameters.

We define the notion of a consideration space:

Definition 3. For an environment e, history H, and value
bound G, the consideration space K(e,H,G) over variables
θ ∈ I, ∆ ∈∆, xT ∈ X , e′ ∈ E is given by:

e′ = F(e, ∆) (2a)

(θ, e′) ∈ f−1(xT ) (2b)

∆ ∈ admissiblee(f(θ, e′)) (2c)

(θ, eo) ∈ f−1(xo) ∀(xo, eo) ∈ H (2d)

G ≤ min
x∈f(θ,e′)

G(x, ∆) (2e)

Consider the problem of finding an environment change
that leads to agent decisions with value at least G to the in-

terested party. We pick candidate model parameters θ̂ and

a corresponding environment change ∆̂ from the considera-
tion space K(e,H,G). The agent responds to the modified
environment e′ based on its actual model parameters θ∗, and

outputs decision x′. If the goal value of x′ under ∆̂ is at least
G, we have solved the problem. Otherwise, it must be that
the candidate model parameters are not the actual model pa-
rameters, and that the added inverse feasibility constraint will
remove it from the consideration space. In this case we repeat
the process of choosing candidate model parameters and en-
vironment changes until the problem is solved. This method
is captured in the procedure ELICITATLEAST(G).

Given this method to find environment changes leading to
decisions that meet a value bound, we can find the environ-
ment change that maximizes the goal function with respect
to the agent’s actual model parameters via search. We as-
sume that the goal function is bounded above and below by
Gu and Gl, respectively, and use a binary search procedure
which calls ELICITATLEAST as a subroutine. The procedure
takes as input an optimality gap κ > 0, and terminates once
we have found an environment change that is provably within
κ of the best achievable value based on the actual agent pa-
rameters. The elicitation algorithm is given in Algorithm 1.

Let Gθ
max denote the solution to the static environment de-

sign problem with respect to the actual model parameters θ.

Algorithm 1 Binary Search Elicitation Algorithm

1: procedure BINARYSEARCHELICITATION(Gl,Gu, κ)
2: low← Gl + κ, high← Gu, ∆best = Φ, H ← ∅
3: while low < high do
4: mid← (low + high)/2
5: if ELICITATLEAST(mid) = FAILURE then
6: high← mid
7: else
8: (∆, x′)← ELICITATLEAST(mid)
9: low← G(x′, ∆) + κ; ∆best ← ∆

10: return ∆best

11: procedure ELICITATLEAST(G)
12: repeat

13: Choose θ̂ and ∆̂ from K(e,H,G)
14: if no such values exist then return FAILURE
15: else
16: Make environment change ∆̂; e′ ← F(e, ∆̂)
17: Observe x′ in e′; add (x′, e′) toH

18: until G(x′, ∆̂) ≥ G

19: return (∆̂, x′)

We have the following results about the elicitation algorithm:

Theorem 1. The binary search elicitation algorithm con-
verges to an environment change ∆ that leads to an agent
decision with goal value at least Gθ

max − κ for some chosen

κ > 0 in no more than ⌈log2⌈
Gu−Gl

κ ⌉⌉ + |I| rounds, for the
case that the model parameter space I is finite.

Theorem 1 follows from the fact that after each round, ei-
ther the value bound updates or some candidate model param-
eters are falsified and removed by the added inverse feasibil-

ity constraint. ⌈log2⌈
Gu−Gl

κ ⌉⌉ corresponds to the maximum
number of possible value bound updates in the binary search.

In the case of an uncountably infinite model parameter
space, we assume the model parameter space is contained

within a closed, bounded set in ℜ|θ|, where |θ| represents the
dimension of the parameter space. The space need not be
connected, and can consist of the union of disjoint nonempty
sets. We define the notion of an ǫ-robust output:

Definition 4. f(θ, e) is an ǫ-robust output for model param-
eter θ, environment e, and ǫ > 0 if for all x ∈ f(θ, e) and

q ∈ ℜ|θ| such that |qi| ≤
ǫ
2 for all i, x ∈ f(θ + q, e) if

(θ + q) ∈ I.

We can view the hypercube of length ǫ centered at θ as
a measure of the robustness of the agent’s decisions given
small changes in the model parameters.4 For any ǫ > 0, let
Gθ

ǫ denote the value of the solution to the static environment
design problem with the additional restriction that f(θ, e′) is
an ǫ-robust output for modified environment e′. If no solu-
tions exist under the restriction, Gθ

ǫ denotes the value of the
agent’s decisions under no environment change. We have the
following theorem:

4All mentions of hypercubes refer to an axis-aligned hypercube.
The choice of hypercubes is somewhat arbitrary; we could have in-
stead used balls. Computationally speaking, hypercubes are conve-
nient because they can be defined using a set of linear constraints.



Theorem 2. Consider the binary search elicitation algorithm
with the restriction that f(θ, e′) is an ǫ-robust output for some
ǫ > 0 added to the consideration space. Algorithm 1 con-
verges to an environment change ∆ that leads to an agent
decision with goal value at least Gθ

ǫ − κ for some chosen

κ > 0 in no more than ⌈log2⌈
Gu−Gl

κ ⌉⌉ + N rounds for the
case that the model parameter space I is contained within a
closed, bounded set in ℜ|θ|, where N is finite and represents
the maximum number of axis-aligned hypercubes with side
length ǫ that I can hold with the property that no hypercube
contains the center of another hypercube.

The intuition behind Theorem 2 is that the ǫ-robust out-
put condition ensures that a hypercube of points centered at

the candidate model parameters θ̂ is eliminated from future

consideration when θ̂ is falsified. Since the space of model
parameters is bounded, by a pigeonhole argument, the entire
space is covered after a finite number of iterations.

Theorems 1 and 2 guarantee convergence regardless of the

choice for θ̂ and ∆̂ from within a consideration space, and
complement heuristic algorithms that may lead to fast con-
vergence even in the absence of useful, provable bounds.5 Of
course, we are also interested in providing general conditions
for guaranteeing logarithmic convergence. Consider the fol-
lowing lemma:

Lemma 1. Assume that f(θ̂, e′) is an ǫ-robust output for

model parameters θ̂ and environment e′, and that θ̂ is fal-

sified by observed decisions x′ /∈ f(θ̂, e′). Let Θ represent
the space of model parameters consistent with K(e,H,G) for
some H containing (x′, e′) and value bound G. If Θ is con-
vex, there exists a separating hyperplane between a hyper-

cube with side length ǫ centered at θ̂ and Θ.

The hypercube of points around θ̂ and Θ are disjoint, and
the lemma follows from the separating hyperplane theorem.

For θ̂ falsified by observed decisions x′ in environment e′, let
P (x′, e′) denote such a separating hyperplane. Let P̄ (x′, e′)
denote a hyperplane that results from relaxing P (x′, e′) in
the direction perpendicular to P (x′, e′) until it is arbitrarily

close to θ̂. Let H̄(x′, e′) denote the halfspace without θ̂ de-
fined by P̄ (x′, e′). We define the relaxed consideration space
K̄(e,H,G) based on Definition 3, with the modification to

include θ ∈ H̄(xo, eo) instead of (θ, eo) ∈ f−1(xo) in con-
straint 2d. Base on this, we define a modified version of Al-
gorithm 1, denoted Algorithm 1∗, where: (i) line 13 of Al-
gorithm 1 uses K̄(e,H,G) instead of K(e,H,G), (ii) line 17

of Algorithm 1 only adds (x′, e′) to H if G(x′, ∆̂) < G, (iii)
ELICITATLEAST returns FAILURE if it has not returned af-
ter 1 + ⌈logb⌈(

R
ǫ )|θ|⌉⌉ iterations, where b = 1

1−(1/c) and c

is the base of the natural logarithm, and (iv) K̄(e,H,G) also
requires f(θ, e′) to be an ǫ-robust output for some ǫ > 0. We
have the following theorem:

Theorem 3. Assume that all points wthin a hypercube of
side length ǫ centered at the actual model parameters θ∗ are
in the model parameter space I, and that R is the minimal

5For example, Zhang and Parkes [2008] demonstrated fast con-
vergence in an MDP setting despite having only a linear bound.

side length of an axis-aligned hypercube in ℜ|θ| that contains
I. Furthermore, assume that a separation oracle is avail-
able to provide the separating hyperplane P (x′, e′) based
on observed decisions x′ in environment e′. Let Θt denote
the space of model parameters consistent with K̄(e,H,G) in

round t. If Θt is convex for all t, then picking θ̂ as the centroid
of Θt at each round t of Algorithm 1∗ leads to an agent deci-
sion with goal value at least Gθ

2ǫ − κ for some chosen κ > 0
in no more than ⌈log2⌈

Gu−Gl

κ ⌉⌉ (1+ ⌈logb⌈(
R
ǫ )|θ|⌉⌉) rounds.

Proof. (sketch) Consider two rounds t and t + 1 within the
same call to ELICITATLEAST(G). Let V t denote the vol-
ume of Θt at the start of round t. We need only consider
cases when the candidate model parameters are falsified by
an added halfspace H̄(x′, e′) because otherwise we have an
environment change and decisions that meet the value thresh-

old. Since we pick θ̂ as the centroid of Θt and that any half-
space containing the centroid of a convex set in ℜn contains
1/c of its volume [Grunbaum, 1960], adding H̄(x′, e′) en-
sures that V t+1 ≤ (1 − 1

c )V t. Furthermore, since P (x′, e′)

separates Θt+1 and a hypercube with side length ǫ centered at

θ̂, P̄ (x′, e′) must separate θ̂ and a hypercube with side length
ǫ centered at any θ ∈ Θt+1. It follows that if θ∗ ∈ Θt, all
points within a hypercube C of side length ǫ centered at θ∗

will not be eliminated by H̄(x′, e′).
Since Gθ

2ǫ is reachable by θ∗ for 2ǫ-robust output, it is also
reachable by all points in C for ǫ-robust output because the
hypercube with side length ǫ centered at each point in C is
contained within the hypercube with side length 2ǫ centered
at θ∗. In the case where G ≤ Gθ

2ǫ, this implies that C ⊆ Θt

for all t within the call to ELICITATLEAST(G). Since pick-

ing θ̂ from C leads to agent decisions with value at least G,
we will find an environment change meeting the value thresh-

old in some round k in which V k ≥ ǫ|θ|. In the case where
G > Gθ

2ǫ, we do not have to meet the value threshold be-
cause G is greater than the value the theorem ensures. Since

V t ≤ R|θ| for all t and H̄(x′, e′) cuts off a constant fraction
of the volume at each round, ELICITATLEAST will correctly

return after at most 1+⌈logb⌈(
R
ǫ )|θ|⌉⌉ iterations. Since the bi-

nary search ensures that we achieve goal value at least Gθ
2ǫ−κ

after at most ⌈log2⌈
Gu−Gl

κ ⌉⌉ calls to ELICITATLEAST, mul-
tiplying gives the desired bound.

Theorem 3 guarantees logarithmic convergence to deci-
sions with value at least Gθ

2ǫ, which depending on ǫ may
be less than the value Gθ

ǫ guaranteed by Theorem 2 for the
same problem. Notice if the relaxed consideration space is
convex for all goal values, then Θt is convex for all rounds
t. The theorem also requires a separation oracle to find the
separating hyperplane with the desired properties (the hyper-
plane always exists, by Lemma 1). When the space of model
parameters consistent with the relaxed consideration space is
characterized by linear constraints, efficient separation ora-
cles exist [Vanderbei, 2008]. We return to this in Section 3.2.

While choosing the centroid is computationally expensive,
we can estimate it by sampling in polynomial time and still
get the logarithmic convergence result above with arbitrarily
high probability [Bertsimas and Vempala, 2004].



3 Application: Linear Programming Model

In this section we focus on models that are computation-
ally tractable yet expressive enough to model real-world deci-
sion problems. Linear programming (LP) provides one such
model, which finds a diverse range of applications to deci-
sion making problems in networks, production and inventory
management, finance, resource allocation, and medicine. In a
linear program, an agent makes a set of decisions to minimize
a linear cost vector subject to a set of linear constraints. We
consider linear programs of the following form:

Definition 5. An agent with an LP-based agent function f
solves the following linear program (henceforth LP):

min
x

∑
j∈J (cj + ej)xj (3a)

∑
j∈J aijxj ≥ bi ∀i ∈ I (3b)

lj ≤ xj ≤ uj ∀j ∈ J (3c)

Here x is an |J | dimensional vector of decision variables.
The cost vector c+e models the agent’s dissatisfaction with
performing various tasks, and reflects both the agent’s inter-
nal costs c and external costs e from the environment. Con-
ceptually, we can think of the internal cost vector as abstractly
representing the agent’s preferences over decisions, whereas
the external cost vector represents quantities such as time,
distance, or monetary cost with measurable values that the
interested party may be able to affect. The model parameters
θ = (a,b, c, l,u) include the internal cost vector c, right-
hand side vector b, constraint matrix a, and upper and lower
bound vectors u and l. θ reflects the agent’s preferences (e.g.,
via the cost vector) and capabilities (e.g., via constraint coef-
ficients and right hand side values). Given θ and e, the agent
function identifies a set of values for the decision variables
that minimizes the objective subject to the constraints.

We consider an interested party who is able to influence
the agent’s cost vector by modifying the external cost vector
e. We let ∆ be a vector of external cost changes, such that
F(e, ∆) = e′ = e + ∆. In specifying admissibility condi-
tions on ∆, we wish to capture constraints an interested party
may face in changing the external cost vector. We let DL

j and

DU
j represent the bounds on per-dimension cost changes, and

let Dmin and Dmax represent bounds on the total budget.6

Consider the following definition:

Definition 6. Let admissibleLP (XT ) denote the set of ad-
missible external cost changes with respect to a set of target
decisions XT . ∆ ∈ admissibleLP (XT ) if:

DL
j ≤ ∆j ≤ DU

j ∀j ∈ J (4a)

Dmin ≤
∑

j ∆jx
j
T ≤ Dmax ∀xT ∈ XT (4b)

Note that the admissibility conditions are defined with re-
spect to induced agent decisions because the cost of the envi-
ronment change may depend on the agent’s decisions.

6Our admissibility definition allows for situations where the in-
terested party is not allowed to increase the cost (e.g., DU

j = 0

for all j), or change the cost along a particular dimension (e.g.
DL

k = DU
k = 0 for some k). This is often true in practice, where

the interested party can only affect cost parameters along some but
not all dimensions of the agent’s decision.

3.1 Solving the Static LP Formulation

We first consider the static case in which the interested party
knows the model parameters and the external cost vector. The
following linear constraints characterize the inverse feasible
space of cost vectors for which a decision is optimal:

Theorem 4. [Ahuja and Orlin, 2001] Consider decision xT

that is feasible for LP. Let f−1
LP(xT ) denote the space of

parameter/environment pairs for which xT is optimal. For
θ = (a,b, c, l,u), (θ, e) ∈ f−1

LP(xT ) if and only if:
∑

i∈B aijπi + λj = cj + ej ∀j ∈ L (5a)
∑

i∈B aijπi − φj = cj + ej ∀j ∈ U (5b)
∑

i∈B aijπi = cj + ej ∀j ∈ F (5c)

πi ≥ 0 ∀i ∈ I (5d)

λj , φj ≥ 0 ∀j ∈ J (5e)

where B = {i ∈ I :
∑

j∈J aijxj = bi}, L = {j ∈ J : xj
T =

lj}, U = {j ∈ J : xj
T = uj}, F = {j ∈ J : lj < xj

T < uj},
and πi, λj , φj represent the dual variables of LP.

We restrict our attention to single configuration goal func-
tions with desired target decision xT . Since only xT provides
positive value for the interested party and we aim to maxi-
mize the goal function in the worst case, we can restrict our
attention to external cost changes ∆ for which xT is uniquely
optimal with respect to θ and e + ∆. Intuitively, a solution is
unique for a linear program if the solution is robust to small
changes to the ‘slope’ of the objective. More formally:

Theorem 5. [Mangasarian, 1979] An optimal solution x of
LP is unique if and only if for each q in ℜ|J| there exists an
ǫ > 0 such that x remains a solution of the perturbed linear
program with cost vector c + e + ǫq.

Theorem 5 is difficult to apply directly because the unique-
ness condition is specified based on an infinite number of per-
turbed LPs. We show it is sufficient that the solution remains
optimal for perturbations along each coordinate directions:

Lemma 2. Let vj
ǫ denote a |J |-dimensional vector with

ǫ|J|
2 + k in the j-th coordinate and 0 elsewhere for some

ǫ > 0 and arbitrarily small k > 0. If (θ, e′) ∈ f−1
LP(xT ) and

(θ, e′+vj
ǫ), (θ, e

′−vj
ǫ) ∈ f−1

LP(xT ) for all j ∈ J , decision xT

is uniquely optimal for LP with cost vector c + e′. Further-
more, xT is uniquely optimal for LP with any cost vectors
within a hypercube with side length ǫ centered at c + e′.

We formulate the static LP environment design problem:

Theorem 6. For any single-configuration goal function G
with desired decisions xT that can be expressed via a linear
objective (with a polynomial number of corresponding lin-
ear constraints), the static environment design problem can
be solved in polynomial time with respect to the size of LP
using the following linear program for some small ǫ > 0:

max
∆
G(xT , ∆) (6a)

(θ, e + ∆) ∈ f−1
LP(xT ) (6b)

(θ, e + ∆ + vj
ǫ) ∈ f−1

LP(xT ) ∀j ∈ J (6c)

(θ, e + ∆− vj
ǫ) ∈ f−1

LP(xT ) ∀j ∈ J (6d)

∆ ∈ admissibleLP ({xT }) (6e)



Many useful single configuration goal functions such as
minimizing the total cost change with respect to the L1 or
L∞ norms can be expressed as linear objectives and hence
have tractable static environment design problems.

3.2 Solving the Dynamic LP Formulation

In the dynamic case, the agent’s internal cost vector c is ini-
tially unknown to the interested party. We adopt Algorithm 1∗

for this setting; here we (i) let ELICITATLEAST return FAIL-

URE after 1 + ⌈logb⌈(
R
ǫ )|J|⌉⌉ iterations (since |J | is the di-

mension of c), (ii) add constraints 6c and 6d to K̄(e,H,G)
instead of requiring ǫ-robust output, and (iii) for falsified
cost vector ĉ, find P (x′, e′) based on Θ and the set Sĉ =
{ĉ+

∑
j∈J (α+

j −α−
j )vj

ǫ|
∑

j∈J α+
j +α−

j ≤ 1, α−
j , α+

j ≥ 0}.

Theorem 7. Assume that the actual internal cost vector c∗

and points in Sc∗ are in the internal cost vector space Ic, and
that R is the minimal side length of an axis-aligned hypercube
inℜ|J| that contains Ic. Let GLP

ǫ denote the value of the solu-
tion to the LP in Theorem 6 with respect to c∗ and some ǫ > 0
if a solution exists, and the goal value with no environment
change otherwise. Assume the interested party has a linear
single configuration goal function, and consider Algorithm
1∗ for the LP setting. Let Θt denote the space of internal cost
vectors consistent with K̄(e,H,G) in round t. Then picking ĉ
as the centroid of Θt at each round t leads to an agent deci-
sion with goal value at least GLP

2ǫ − κ for some chosen κ > 0
in no more than ⌈log2⌈

Gu−Gl

κ ⌉⌉ (1+⌈logb⌈(
R
ǫ )|J|⌉⌉) rounds.

Theorem 7 follows from applying Theorem 3 to this set-
ting. Notice that K̄(e,H,G) in the LP setting for single
configuration goal functions is a convex polytope character-
ized by linear constraints. This implies that Θt is convex
and allows one to find a separating hyperplane between this
set and Sĉ by solving a linear program (e.g., see Theorem

10.4 of [Vanderbei, 2008]). Since picking θ̂ and ∆̂ from
K̄(e,H,G) need only require solving an LP, Algorithm 1∗

can be computed in polynomial time.

4 A Game-theoretic Interpretation

Our formulations and results can be interpreted as equilibria
of simple games. We can view the static formulation as an ex-
tensive form game in which the interested party first chooses
an environment change ∆ and the agent then makes decisions
in the modified environment. From this perspective, the agent
function is a best response correspondence to the environment
and model parameters. We can view the interested party’s en-
vironment change based on Definition 2 and the agent’s re-
sponse as strategies that form a subgame perfect Nash equi-
librium of this game. Similarly, we can view the dynamic
formulation as a repeated game whose stage extensive-form
game is as in the static case. Here a myopic agent will still
best respond with its agent function. For an interested party
following the elicitation strategy, the agent’s best response
leads to maximizing the interested party’s goal.

If the agent were forward looking, the game-theoretic anal-
ysis becomes more complicated because the agent may prefer
certain environments than others and seek to influence the in-
terested party’s choice of environment changes. In the special

case that the interested party has an indicator goal function
and any environment change is preferred to the current en-
vironment, the agent may still try to influence the interested
party’s choices but will want to make sure that the interested
party does not give up on eliciting decisions so that environ-
ment changes will continue to be provided. It can be shown
that the agent’s best response leads to the desired decisions if
the agent is sufficiently patient (e.g., see [Zhang et al., 2009]).

5 Conclusion

We formulated a general problem of environment design
for a single agent and provided an algorithm with logarith-
mic convergence results for the dynamic case in which an
agent’s model parameters are initially unknown to the inter-
ested party. We developed polynomial time solutions for an
application to environment design with linear-programming
based agent functions. Future work should continue to ex-
plore game-theoretic aspects of environment design, extend
to richer goal functions, consider partial observations, allow
for multiple agents, and provide other specific applications of
modifying agent environments to achieve design goals.

Acknowledgements

The first author acknowledges support from an NDSEG fel-
lowship. The authors gratefully acknowledge useful feedback
from anonymous reviewers on an earlier version of the paper.

References
[Ahuja and Orlin, 2001] Ravindra K. Ahuja and James B. Orlin. In-

verse optimization. Operations Research, 49:771–783, 2001.

[Bertsimas and Vempala, 2004] Dimitris Bertsimas and Santosh
Vempala. Solving convex programs by random walks. J. ACM,
51(4):540–556, 2004.

[Bolton and Dewatripont, 2005] Patrick Bolton and Mathias Dewa-
tripont. Contract Theory. MIT Press, 2005.

[Grunbaum, 1960] Branko Grunbaum. Partitions of mass-
distributions and of convex bodies by hyperplanes. Pacific Jour-
nal of Mathematics, 10(4):1257–1261, 1960.

[Jackson, 2003] Matthew O. Jackson. Mechanism theory. In Ul-
rich Derigs, editor, The Encyclopedia of Life Support Systems.
EOLSS Publishers, 2003.

[Laffont and Martimort, 2001] Jean-Jacques Laffont and David
Martimort. The Theory of Incentives: The Principal-Agent
Model. Princeton University Press, 2001.

[Mangasarian, 1979] O. L. Mangasarian. Uniqueness of solution
in linear programming. Linear algebra and its applications,
25:151–162, 1979.

[Monderer and Tennenholtz, 2003] Dov Monderer and Moshe Ten-
nenholtz. k-implementation. In EC ’03: Proc. 4th ACM confer-
ence on Electronic Commerce, pages 19–28, 2003.

[Vanderbei, 2008] Robert J. Vanderbei. Linear programming :
foundations and extensions. Springer, 3rd edition, 2008.

[Zhang and Parkes, 2008] Haoqi Zhang and David Parkes. Value-
based policy teaching with active indirect elicitation. In Proc.
23rd National Conference on Artificial Intelligence, 2008.

[Zhang et al., 2009] Haoqi Zhang, David Parkes, and Yiling Chen.
Policy teaching through reward function learning. In Proc. 10th
ACM Conference on Electronic Commerce (EC’09), 2009.


