1. Simplify the following expressions if possible. [Points: \underline{12}/12]

(a) $O(n^2 + 500n)$.
(b) $O(n \log n + n^{1.01})$.
(c) $O(3n^3 - 2n^2 + n)$.
(d) $O(\sqrt{n} + \log n)$.
(e) $O(1 + 1/n)$.
(f) $O(\log(n^2))$.

2. The Mergesort algorithm described in class works as follows on an unordered list U of n numbers:

- If $n = 1$, return U (it is already sorted).
- Break U into two lists U_1 and U_2 (of roughly the same length).
- Recursively sort: $S_1 =$ Mergesort(U_1) and $S_2 =$ Mergesort(U_2).
- Output merger: $S =$ Merge(S_1, S_2)

Answer the following questions: [Points: \underline{2}/2]

(a) Give the recurrence relationship that describes the runtime of Mergesort.
(b) Give the runtime of Mergesort using big-oh notation.

3. Define 3-Mergesort to break the list into three sublists of length roughly $n/3$, recursively sort these sublists, and then 3-Merge them together. [Points: \underline{8}/8]

(a) Give an algorithm for 3-Merge.
(b) Give the runtime for 3-Merge using big-oh notation.
(c) Give the recurrence relationship that describes the runtime of 3-Mergesort.
(d) Give the runtime for 3-Mergesort using big-oh notation.

4. Define k-Mergesort to break the list into k sublists of length roughly n/k, recursively sort these sublists, and then k-Merge them together. [Points: \underline{6}/6]

(a) Assume that k-Merge (on lists of size n/k) can be implemented in $\Theta(n \log k)$ and give the recurrence relationship for the runtime of k-Mergesort.
(b) Give the runtime for k-Mergesort using big-oh notation.
(c) Give an algorithm for k-Merge that runs in $O(n \log k)$ time. (Hint: use priority queues.)
5. You are given a graph \(G(V, E)\) with edge costs \(c(e)\) for \(e \in E\). You may assume that the edge costs \(c(\cdot)\) are distinct. Let \(T \subseteq E\) be the minimum spanning tree. Consider what happens to the tree if we change the cost of an edge \(e'\). Formally, the new edge costs are \(c'(\cdot)\) given by \(c'(e') \neq c(e')\) and \(c'(e) = c(e)\) if \(e \neq e'\). You may assume that the edge costs \(c'(\cdot)\) are each distinct. Let \(T'\) be the minimum spanning tree with respect to costs \(c'(\cdot)\). [Points: __/10]

(a) Consider decreasing the cost of an edge in \(T\) (i.e., \(e' \in T\) and \(c'(e') < c(e')\)). Is \(T' = T\) always?
(b) Consider increasing the cost of an edge in \(T\) (i.e., \(e' \in T\) and \(c'(e') > c(e')\)). Is \(T' = T\) always?
(c) Consider decreasing the cost of an edge not in \(T\) (i.e., \(e' \notin T\) and \(c'(e') < c(e')\)). Is \(T' = T\) always? If not, give an illustrative example that shows why and give a simple algorithm for computing \(T'\) from \(T\) without solving the MST problem over from scratch.
(d) Consider increasing the cost of an edge not in \(T\) (i.e., \(e' \notin T\) and \(c'(e') > c(e')\)). Is \(T' = T\) always? If not, give an illustrative example that shows why and give a simple algorithm for computing \(T'\) from \(T\) without solving the MST problem over from scratch.

6. You've just started consulting for a startup company, DigiDyne, that is doing dynamic pricing of digital music downloads. They are considering two business models. In the subscription model customers are asked to pay a fixed price \(p\) and can download as many songs as they please. In the a-la-carte model a customer is asked to pay a fixed price \(q\) per song. The price for \(d\) downloads in the a-la-carte model is \(d \cdot q\).

DigiDyne has done some market research that suggests that each consumer behaves in the following way. Consumer \(i\) wishes to download \(d_i\) songs and pay at most \(v_i\) for the privilege. If the total price consumer \(i\) is asked to pay for \(d_i\) downloads is at most \(v_i\), they will pay the asked price. If the total price consumer \(i\) is asked to pay is more than \(v_i\), they will not pay for any service (Perhaps they will use a competing service instead). Thus, the input to DigiDyne's pricing problem is completely specified by two \(n\)-dimensional vectors, \(\mathbf{v} = (v_1, \ldots, v_n)\) and \(\mathbf{d} = (d_1, \ldots, d_n)\). [Points: __/8]

Example:

- \(S = \{1, 2, 3\}\), \(\mathbf{v} = (4, 5, 6)\), \(\mathbf{d} = (1, 2, 3)\).
- For subscription price \(p = 5\): consumers 2 and 3 buy \((v_2\) and \(v_3\) are greater than \(p = 5\)), consumer 1 does not buy \((v_1 < p = 5)\). The total revenue is 10.
- For a-la-carte price \(q = 3\): consumer 1 buys \((v_1/d_1 \geq q = 3)\), consumers 2 and 3 do not buy \((v_2/d_2\) and \(v_3/d_3 < q = 3)\). The total revenue is 9 (consumer 1 buys one song for \(q = 3\), and consumer 2 buys two songs for \(2q = 6\)).

(a) Show that neither of these business models is always better than the other. To do so, give an input \((\mathbf{v}, \mathbf{d})\) where the revenue from the optimal subscription price, \(p^*\), is less than the revenue from the optimal a-la-carte price, \(q^*\). Then given an input \((\mathbf{v}', \mathbf{d}')\) where the revenue from the optimal subscription price, \(p^*\), is more than the revenue from the optimal a-la-carte price, \(q^*\).
(b) Give an algorithm that on input \((\mathbf{v}, \mathbf{d})\) computes the a-la-carte price, \(q^*\), with the highest total revenue. What is the runtime of your algorithm?