1 Reading.

Chapter 3.

2 Problems.

1. Prove that, for any constant c, if we resize an array based data structure from capacity n to capacity $n + c$ whenever it is full then the amortized runtime of each insert operation is $\Theta(n)$.

2. Prove by induction that $\sum_{i=0}^{k} c^i \leq c^{k+1}$ for any $c \geq 2$.

3. Write C++ or Java code to implement a deque (a double-ended-queue, pronounced as “deck”) that supports the following operations. The two ends of a deque are the top and a bottom.

 - `create()`: creates an empty deque.
 - `push(Object x)`: inserts x on the top end of the deque.
 - `pop()`: removes and returns top element of deque.
 - `inject(Object x)`: inserts x on the bottom of the deque.
 - `eject()`: removes and returns bottom element of deque.

 All operations must be worst-case or amortized $\Theta(1)$ time and your deque must be able to accommodate any number of elements. You may not use any classes from standard libraries.

4. Consider implementing a counter that supports `create`, `increment`, and `print` operations using the standard binary representation (i.e., in a binary array). Recall that in worst-case that increment of an n bit number takes $T(n) = \Theta(n)$.

 (a) How many bits are needed to represent the counter m increment operations after creation?

 (b) Prove that, starting from creation, m increment operations take $T(m) = \Theta(m)$.

 (c) Compare the increment runtime (using big-oh) of this binary counter to the counter implementation given in class using the redundant binary representation.

 (d) Suppose we also wish to support the `decrement` operation. Show that the worst-case amortized runtime of the increment and decrement operations is $\omega(1)$, i.e., they are not constant time.