Union-Find (Cont.)

Analysis of union-by-rank with path-compression

Algorithm: find(i) with path compression

1. if array[i] ≤ 0, return i.
2. array[i] = find(array(i))
3. return array[i].

Def: the *rank* of a node, is its height without path-compression.

Note: store *negative rank* at root nodes.

Algorithm: union(i, j) by rank

1. $i' = \text{find}(i)$.
2. $j' = \text{find}(j)$.
3. if -array[i'] > -array[j'], array[j'] = i'.
4. if -array[i'] ≥ -array[j'], array[i'] = j'.
5. if -array[i'] = -array[j'], array[j']++.

Recall Def: $\log^* n$ = the number of logs you can take of n before you’re ≤ 1.

Example:

<table>
<thead>
<tr>
<th>$\log^* n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>65536</td>
</tr>
</tbody>
</table>

Claim: with path-compression and union-by-rank m union and find operations from creation costs $O(m \log^* n)$

Claim 0: # nodes with rank ≥ 1 (n') ≤ # of unions (m').

Proof: at most one node changes rank in union. induction.

Claim 1: node’s rank ≤ parent’s rank – 1

Proof:
- without path compression,
 1. rank = height.
 2. node height ≤ parent height – 1.
- with path compression, node only gets higher ranked parent.

Claim 2: a rank r node has at least 2^r descendents.

Proof: (induction on rank)

base case (rank 0): true.

inductive hypothesis (rank r) : claim holds for r.

inductive step (rank $r + 1$):
- to get rank $r + 1$, union two rank r nodes.
- I.H. implies both have ≥ 2^r descendents.
• total descendent ≥ \(2^{r+1}\).

Claim 3: at most \(n'/2^r\) nodes of rank \(r \geq 1\).

Proof:

• Claim 1
 ⇒ ranks strictly increasing
 ⇒ rank \(r\) nodes have no common descendents.

• Claim 0 & Claim 2
 ⇒ at most \(n'/2^r\) nodes of rank \(r\).

Amortized Analysis of Union-Find

Def: \(\text{rank-ceiling}(r) = \max\{r' : \log^* r' = \log^* r\}\).

Note: \(\text{rank-ceiling}(r) \leq 2^r\).

Accounting Method

• keep central account, and account at each non-root node.

• on \(\text{find}(i)\):
 - get paid \(\log^* n + 2\) (pocket).
 - must pay \$1 for each node \(j\) on path from \(i\) to root,
 * if \(j\) is root, \(j\)'s parent is root, pay \$1 from pocket.
 (happens twice)
 * else if \(\log^* (j\text{'s rank}) = \log^* (j\text{'s parent's rank})\),
 (*\) withdraw \$1 from node acct to pay.

 * else if \(\log^* (j\text{'s rank}) < \log^* (j\text{'s parent's rank})\),
 pay \$1 from pocket.
 (happens at most \(\log^* n\) times)

• on \(\text{union}(i, j)\): (make \(j\) child \(i\')
 - get paid \(3 \log^* n + 4\):
 * pay \(2 \log^* n + 4\) find of \(i\) and \(j\).
 * deposit \(\log^* n\) in central account.
 - (**\) withdraw \(j\text{'s ceiling-rank}(j\text{'s rank})\) from central account and deposit in \(j\text{'s account}\).

Example: if rank \(j = 25\), deposit 35536 in \(j\text{'s account}\).

Analysis

“no overdrawn accounts”

Claim: no overdraw from node acct's at (*)

Proof:

• how many times can node of rank \(r\) be charged?

• each time a node is charged, it gets a parent of higher rank.

• can happen at most ceiling-rank(\(r\)) times.

Claim: no overdraw from central acct at (**)

Proof:

• let \(k = \log^* n\),
 let \(r_0, \ldots, r_k\) be \(\{1,2,4,16,35536,\ldots\}\)

• total deposits: \(m' \log^* n\).
• # nodes with rank $\geq r + 1 \leq n'/2^r$
 $(\leq \sum_{i=r+1}^{\infty} n'/2^i = n'/2^r)$

• withdrawals for ranks $\{r_i + 1, \ldots, 2^r_j\} \leq$
 ceiling-rank(r)$n'/2^r \leq n'$.

• total withdrawals: $\leq \sum_{j=0}^{k} n' = n'k \leq$
 $m'\log^* n$.

□