Sorting

Algorithm: Insertion Sort
Input: unsorted list/array U

1. Initialize: $S = \emptyset$ (sorted)
2. while U not empty
 (a) remove x from U (arbitrary)
 (b) insert s into S in sorted order.

Claim: selection/insertion sort is correct.
Proof:
- invariant: S is always sorted.
- induction on $|S|$.

Algorithm: Selection Sort
Input: unsorted list/array U

1. Initialize: $S = \emptyset$ (sorted)
2. while U not empty
 (a) select (and remove) minimum x from U
 (b) append x to S.

Claim: selection/insertion sort is $\Theta(n^2)$.
Proof:
- in step i, insertion takes $\Theta(i)$;
 total = $\sum_i i = \Theta(n^2)$
- in step i, selection takes $\Theta(n - i)$;
 total = $\sum_i (n - i) = \Theta(n^2)$

In-place sorting

“Sort an array without any additional storage”

Idea: First part of array is sorted, second part unsorted.

Algorithm: In-place Selection Sort

```c
void selection_sort(int [] array, int n) {
    int i, j, min, temp;
    for (i=0; i<n; i++) {
        min = i;
        for (int j=i+1; j<n; j++)
            if (array[j] < array[min])
                min=j;
        temp = array[min];
        array[min] = array[i];
        array[i] = temp;
    }
}
```

Note:
• invariant: first i elements of array are sorted!
• append x: add x at position i, increment i.

Faster Sorting

Algorithm: Heap-sort

Input: unsorted list/array U

1. Initialize: $S = H = \text{build-heap}(U)$
2. while H not empty
 (a) $x = \text{delete-min}(U)$.
 (b) append x to S.

In-place Heap-sort

Recall:

```c
void build_max_heap(int *array,int n)
// Input: array[1..n]
// Output: array[1..n] is max-heap.

int delete_max(int *array, int n)
// Input: max-heap array[1..n]
// Output: max element,
// array[1..(n-1)] is max-heap.
```

Algorithm: In-place Heap-sort
Input: array[0..(n-1)]

```c
void selection_sort(int *array, int n)
{
    array--; // array[1]...array[n]
    build_max_heap(array,n);
    for (int i = n; i > 1; i--)
        array[i] = delete_max(array,i);
}
```

Claim: Heap-sort is correct.
Claim: Heap-sort runtime is $\Theta(n \log n)$.

Proof: build-heap is $\Theta(n)$; delete-min is $\Theta(\log n)$ (n times); Total = $\Theta(n \log n)$.

Merge-sort

Algorithm: Merge-sort
Input: unsorted list U

0. if $|U| \leq 1$, return U.
1. partition U into U' and U'' (equal size)
2. $S' = \text{Merge-sort}(U')$ and $S'' = \text{Merge-sort}(U'')$.
3. return Merge(S',S'').

Algorithm: Merge
Input: sorted lists S, T

0. if S empty, return T (and vice versa).
1. let $(x',S') = S$ and $(y',T') = T$
2. if $x' < y'$
 return $(x',\text{Merge}(S',T'))$.
3. else $(y' \leq x'$
 return $(y',\text{Merge}(S,T'))$.

Claim: Merge-sort is correct.

Proof: induction on $|U|$
Claim: Merge-sort runs in time $\Theta(n \log n)$.

Proof:

- let $T(n)$ be runtime on size n input.
- Base Case: $T(1) = 1$.
- Recursive Case: $T(n) = 2T(n/2) + n$
• Solve for $T(n)$

\[
T(n) = T(n/2) + n
\]

\[
= 2(2T(n/4) + n/2) + n
\]

\[
= 4T(n/4) + n + n
\]

\[
= 4(2T(n/8) + n/4) + n + n
\]

\[
= 8T(n/8) + n + n + n
\]

\[
\vdots
\]

\[
= nT(1) + n + n + \cdots + n
\]

\[
= n \log n
\]

- before query, k possible permutations
- after query, $\geq k/2$ possible permutations.

• best case: $\log(n!)$ queries
\[
(= \Omega(n \log n)).
\]

□

Lower Bounds

Claim: Any comparison-based sorting algorithm has $\Omega(n \log n)$ comparisons in worst-case.

Analogy:

- view as game between The Algorithm and Nature (a.k.a., The Adversary)
- Algorithm decides which elt’s to compare, Adversary chooses outcome of comparison.
- Note: The Adversary must be consistent (with some permutation).
- Any sorting algorithm eventually pins the adversary to a single permutation.

Proof: (Algorithm vs. Adversary)

- number of permutations $= n!$.
- for each query, Adversary chooses answer with most uncertainty:

Example:

- Consider (a, b, c)
- Many possible permutations: $a < b < c$ or $a < c < b$
 or $b < a < c$. . .
- Algorithm queries: “$a < b$?”
- Adversary answers: “yes” or “no”.
- if “yes”, algorithm can eliminate permutations with $a > b$.
- if “no”, algorithm can eliminate permutations with $b \leq a$.
- Algorithm must figure out which of remaining permutations is correct.