Binomial Heaps and Queues

Binary heaps based queues may be improvable.

1. perform some operations faster?
2. binomial queue
 - $O(\log n)$ merge.
3. redundant binomial queue
 - $O(1)$ insert
 - $\Theta(\log n)$ delete-min, reduce-key.
4. Fibonacci heaps
 - $O(1)$ insert, reduce-key
 - $O(\log n)$ delete-min
 - Dijkstra’s shortest paths + fibonacci heap $\Rightarrow \Theta(n \log n + m)$.

Binomial Heaps

Def: a **binomial heaps** is a tree that satisfies

heap order: key at node is smaller than keys of children.
Def: a **binomial queue** is
- a list of binomial heaps.
- for each \(i \), at most one heap of size \(2^i \).

Algorithm: binomial heap merge
Input: \(H_1 \) and \(H_2 \), two \(n \) node binomial heaps.
- Make tree with greater root-key child of root of other tree.

Runtime: \(O(1) \)

Analogy:
- size \(n \) binomial queue \(\iff \) number \(n \)
- heap of size \(2^i \) in list \(\iff \) \(i \)th binary digit of \(n \) is 1

Example:

```
      0
     / \
   1   2
     / \
   3   4
     / \
   5
```

Algorithm: merge queue
Input: \(Q_1 \), \(Q_2 \)
1. treat queues like numbers
2. add numbers.

Runtime: \(\Theta(\log n) \)

Algorithm: insert
Input: queue \(Q \), key \(k \)
1. make \(k \) into single-node queue \(Q' \).
2. merge \(Q \) and \(Q' \).

Runtime: merge = \(\Theta(\log n) \)

Algorithm: delete-min
Input: \(Q \)
1. find heap with min key \(\Rightarrow H_i \), size \(2^i \)
2. remove heap \(H_i \) \(\Rightarrow Q' \)
3. delete root of \(H_i \) \(\Rightarrow i \) heaps sizes \(\{1, \ldots, i\} \)
4. treats heaps as queue \(Q'' \).
5. merge \(Q' \) and \(Q'' \).

Runtime: search + merge = \(\Theta(\log n) \)

Algorithm: reduce-key
Input: \(Q \), key \(k \), value \(v \).
1. find \((k', v) \) in queue (assume we have pointer)
2. reduce \(k' \) to \(k \) and percolate-up.

Runtime: percolate-up = \(\Theta(\log n) \).

Claim: from empty queue, \(n \) inserts costs \(\Theta(n) \).

Proof:
- merge \(\iff \) add
- insert \(\iff \) increment
- \(n \) increments from zero costs \(\Theta(n) \).

Algorithm: build-heap
Input: unordered list
1. initialize empty queue.
2. insert each object.
Redundant Binomial Queue

“Θ(1) worst-case insert”

Recall: redundant binary counter

- digits are 0, 1, or 2.
- regularity property: 0s and 2s alternate.

Def: a redundant binomial queue is

- a list of binomial heaps.
- for each i, at most two heaps of size 2^i.
- heaps (as digits) satisfy redundant counter regularity.

Claim: all queue operations can be implemented to maintain regularity.

Proof: all queue operations are like arithmetic operations

Claim: redundant binary counter has $Θ(1)$ insert, and $Θ(\log n)$ merge, delete-min, reduce-key.