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ABSTRACT
This work addresses the problem of principal node selec-
tion during the tracking process in Wireless Sensor Networks
(WSNs). In a typical tracking scenario, the location of a
mobile unit is determined via collaborative trilateration by
the nodes that have the tracked object within their sensing
range. One of the participants in the trilateraion—the track-
ing principal—is in charge of transmitting the location and
time information to a designated sink. However, as the mov-
ing object changes its location, a new principal needs to be
determined and handed off the task of the subsequent sens-
ing, trilateration and transmission to the sink. We observe
that in many WSN applications in which sensing/sampling
needs to be combined with multihop transmission and, pos-
sibly, in-network aggregation, the typical processing is or-
ganized in synchronized intervals, called epochs. We pos-
tulate that taking the semantics of the epoch into consid-
eration is important when selecting tracking principals and
we present efficient algorithmic solutions towards this goal.
Our experiments demonstrate that the proposed approach
can yield significant reduction in the number of hand-offs
between consecutive tracking principals, when compared to
previous works.
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1. INTRODUCTION AND MOTIVATION
A large number of GIS applications rely on some form of
location based services (LBS) [21], for which the efficient
management of the location-in-time information pertaining
to mobile entities is of paramount importance. The man-
agement of such information, along with efficient query pro-
cessing techniques, is studied in the field of Moving Objects
Databases (MOD) [9], where one of the challenges is ob-
taining the data stream of the object’s whereabouts [7, 18].
While many vehicles are equipped with on-board devices [20]
to obtain GPS-based location information, in many settings
(e.g., limited GPS coverage in downtown areas or rural ar-
eas), location information needs to be determined using
other type of sensing equipment and/or inter-vehicle com-
munication [15].

Due to their ability to self-organize in a network along
with the sensing and computational capabilities of individ-
ual nodes, wireless sensor networks (WSNs) have been ex-
tensively studied and used in variety of GIS-related applica-
tion domains, including traffic management, environmental
monitoring, and emergency response [10,13,22]. One of the
canonical problems in WSN settings is the tracking of mobile
objects and its related issues, including improving the accu-
racy of the tracking process and trading off the quality of the
tracking information for energy savings [1,4,19,23,24,26,32].

We consider scenarios in which tracking is performed via the
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cluster-based tracking protocol, such as the one proposed
in [5]. A designated node, the cluster head, assumes the
role of tracking principal (or, simply, principal) and is in
charge of coordinating the tracking process and managing
tracking information, such as identity and location, of the
target moving object at a given time. The tracking principal
relies on range measurements from other cluster members to
determine the object’s location, via trilateration [27]. In ad-
dition to managing the collaborative trilateration computa-
tion and initiating the transmission towards the designated
sink-node, the current tracking principal has another im-
portant task. Namely, it participates in identifying the next
tracking principal, when necessary, and transfer to it any ac-
crued tracking information in order to continue coordinating
the tracking process in close proximity of the moving target.
Such transfers should be kept to a minimum, however, due
to the: (1) overhead associated to the accrued tracking infor-
mation that needs to be transferred and (2) delays incurred
in the process of forming a new cluster during which the
principal may lose track of the moving object.

At the heart of the motivation for our work is the observation
that many query-processing tasks in WSN settings are orga-
nized in discretely-synchronized time-intervals called epochs,
during which the (multi-hop) routing is combined with some
in-network aggregation [16]. Epochs typically consist of the
following phases (cf. Figure 1):
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Figure 1: Lifecycle of a tracking epoch

1. Request range measurements from certain cluster
members (e.g., via multicast)

2. Perform local range measurement

3. Collect range measurements from requested cluster
members

4. Estimate the object’s location via trilateration of the
acquired range measurements

5. Select the next tracking principal, if necessary, and
transfer tracking information to it

6. Idle/sleep for the remaining of the sampling epoch

The method of He and Hou [11] generates a sequence of prin-
cipal nodes such that the union of their respective sensing-
coverage disks completely covers the (expected) trajectory of
a moving target while maintaining a minimal area of inter-
section. However, it does so by assuming time-continuity
of the sampling process. For example, according to the
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Figure 2: Motivation

methodology presented in [11], the selection of tracking prin-
cipals will yield, as illustrated in Figure 2(a), the sequence
of nodes {sn1, sn2, sn3, sn4, sn5}.

However, given the discrete epoch-nature of the target sam-
pling, the coverage is needed only at discrete time-instants.
Figure 2(b) illustrates an alternative, shorter sequence of
4 principals {sn1, sn2, sn4, sn5} that yields effectively the
same observed coverage, leveraging upon the coverage gap
(bold lines) between two consecutive samples (bold dots).

Adopting the notation from He and Hou [11], let L denote

the length of the trajectory of a moving target, and let D̃
represent the effective range at which, with high probability
and in a manner in which certain levels of tracking accuracy
are satisfied, a candidate sensor node can be found with
respect to the current principal node. He and Hou give the
following lower bound on the average number of tracking
principals required:

⌈

L

1.1D̃

⌉

.

The goal of this work is to further improve upon this bound,
by taking into consideration the semantics of the sampling
epochs, relative to:

• ṽ – the expected object’s motion (velocity),

• I – the duration of the sampling epoch,

• NB(sni) – the set of available 1-hop neighbors of the
current tracking principal sni.
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Intuitively, we aim at employing a function:

ζ(snj ,NB(sni), ṽ, I)

to base upon the selection of the next principal, where snj ∈
NB(sni) is one of the 1-hop neighbors of sni.

This function will be used by the current tracking principal
to select the next tracking principal from among its neigh-
boring nodes. The function is actually a local heuristics
which captures the discrete nature of the sampling process
and, in addition, incorporates the fact that within a given
epoch there may be other temporal aspects, besides the sam-
pling itself, that need to be considered. Along these lines,
the main contributions of this work are as follows:

• We propose a new methodology for selecting the track-
ing principals that incorporates the discrete-timing as-
pects of the sampling epochs into the tracking process.

• We develop an efficient algorithm for implementing the
proposed methodology.

• We present extensive experimental evaluations of our
approach, demonstrating that it can yield a significant
reduction in the number of principal hand-offs during
the tracking process in WSN.

In the rest of this paper, Section 2 gives preliminary back-
ground. Our principal selection mechanism is presented in
Section 3, followed by the experimental observations in Sec-
tion 4. In Section 5, we position our work in the context of
related literature and in Section 6, we conclude and outline
directions for future work.

2. PRELIMINARIES
In this Section we describe the basic notations used in this
paper, and overview two previously proposed mechanisms
for principal-selection to which we compare our method.

Let SN = {sn1, sn2, . . . , snN} denote the set of nodes in
a given WSN. Each node snk knows its location (xk, yk)
via GPS or other techniques, e.g., beacons [17]. Nodes are
assumed to be static, know the locations of their one-hop
neighbors and are capable of detecting an object within the
range of sensing Rs, e.g., based on vibration, acoustics/echo,
etc. [12]. The network is assumed to be dense enough to
ensure communication coverage [28]. For a node sni ∈ SN ,
the set NB(sni) = {snj ∈ SN | ‖sni, snj‖ ≤ Rc}, specifies
the neighbors within its communication range Rc, where
‖sni, snj‖ represents the Euclidean distance between nodes.

For a moving object oi, Pk,oi
∈ SN denotes the tracking

principal at time tk. The trilateration-based (observed) lo-

cation of the moving object oi at time tk is denoted by L̂k,oi
.

In the sequel, for simplicity, we omit the oi subscript when
there is no ambiguity.

2.1 Closest Proximity Selection
The Closest Proximity based Selection (CPS) of a track-
ing principal is a naive approach, in which the subsequent
tracking principal Pk+1 at time tk+1 is selected based on its
proximity to the target’s currently detected location L̂k, i.e.:
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Figure 3: The Closest Proximity Leader Selection.
Node sn1 is the current tracking principal at time
tk and L̂k is the trilaterated location of the moving
target. Node sn2 is selected as the tracking principal
for the next sampling epoch tk+1 since it is physically
closer to L̂k than any other nodes in NB(sn1).

Pk+1 = argminj(‖snj , L̂k‖), where snj ∈ NB(Pk).

Figure 3 illustrates the CPS methodology. While this se-
lection mechanism performs poorly for reducing the number
of required principals, it has the potential advantage of in-
creased robustness (cf. Section 4).

2.2 Relay Area Based Selection
The Relay Area Based (RAB) principal selection methodol-
ogy proposed by He and Hou [11] targets the lower bound of
the required sequence of principal nodes for target tracking.
Unlike CPS, RAB is a predictive approach, in the sense that
the selection of the principal is based both on the current
location L̂k of the target, and its predicted velocity. The
RAB method determines an annular sector, called relay-
area, where the next principal node should ideally reside,
as illustrated in Figure 4. The relay area is determined by
three tunable parameters:
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Figure 4: The Relay Area Based leader selection
(RAB). When target oi approaches the limits of the
sensing area (Lk) of the current principal Pk = sn1,
based on velocity information, node sn5 is selected
as the next principal Pk+1, which is located within
the relay area.
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• w – width of the annular sector-area;

• ϕ – angle of the annular sector; and

• D̃ – the radius of the outer-circle of the annular sector.

The relay-area is iteratively expanded until it will comprise
at least one sensor node, which will be subsequently selected
as the next tracking principal.

3. TRACKING PRINCIPAL SELECTION
WITH SAMPLING LOOK-AHEAD

We now present our method for the selection of tracking
principals. We introduce the concept of effective coverage
with epoch-awareness, and subsequently explaining our pro-
posed technique, which leverages upon it.

3.1 Spatio-Temporal Coverage
As an object moves, its trajectory intersects the sens-
ing/coverage area of a given node throughout a particular
time-interval; we refer to such spatial intersection segments
and the corresponding time-interval as the spatio-temporal
coverage of a given node with respect to the mobile object.

Let [t−k , t+k ] denote the interval of active tracking within the
k-th epoch, just after a particular node, say, snj , has been
selected as a tracking principal. The time-instant tk in the k-
th epoch when the actual sampling is performed must satisfy
t−k ≤ tk ≤ t+k . In other words, t−k is the first time-instant,
after the (k − 1)-th epoch, in which snj samples under the
new role of selected principal. We note that it is not neces-
sarily the case that a tracking principal needs to be changed
with every new epoch. In the example of Figure 5, node snj

is a tracking principle in two consecutive epochs.

Segment AD in Figure 5, represents the ”nominal” coverage
of the node snj , however, its actual coverage consists only
of the samples that are within segment CD (denoted as Lk

and Lk+1). Hence, the time-portion of the coverage where
object’s trajectory corresponds to segment AC represents a
blind coverage for all practical purposes. Understanding the
role of the blind coverage is one of the contributions of this
work. The time interval of the spatial-temporal coverage
of a given node snj for a certain object’s trajectory can be
divided into the following components:

• a priori blind coverage, denoted as T−

c , is the inter-
val during which the mobile target is within the sens-
ing range of snj , but snj has not yet been selected as
tracking principal (e.g., segment AB in Figure 5).

• a posteriori blind coverage, denoted as T+
c , consists of

the interval between the time instant at which snj has
been activated as a tracking principal, up to the first
location-sampling (e.g., segment BC in Figure 5).

• effective coverage, denoted as T e
c , is the remaining por-

tion of the moving object’s trajectory being tracked by
snj (e.g., CD in Figure 5).

We note that the blind coverage components are of relevance
during the ”hand-off” process, where a new node is being
selected as the next tracking principal. The complete time-
interval of the spatio-temporal coverage of a given principal
node can be specified as:

Tc = T−

c + T+
c + T e

c ≤ 2Rs/v̂max,
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Figure 5: Blind vs. effective coverage

where v̂max denotes the object’s expected maximal speed.

While the RAB method aims at increasing T e
c by maximiz-

ing the nominal coverage Tc (and implicitly reducing the a
priori blind coverage T−

c ), the main difference with our work
is that we also incorporate the role of T+

c into the princi-
pal selection process. As our experiments will demonstrate,
this approach can yield savings in the number of hand-offs
between successive principals.

3.2 Sampling Look-Ahead Selection
Similarly to the RAB approach, our Sampling Look-ahead
Selection methodology (SLS) relies on location-prediction.
However, in addition to considering the expected trajectory,
we incorporate the expected locations and the duration of the
sampling epochs, denoted as I . Using a buffer containing
W of the most recent (location,time) samples, we use the

following formula to determine the expected location L̂k at
the beginning of the k-th epoch:

L̂k(xk, yk) =

{

x̂k = x̂k−1 +
∑i=k−1

i=k−W+1
wi(x̂i − x̂i−1),

ŷk = ŷk−1 +
∑i=k−1

i=k−W+1
wi(ŷi − ŷi−1)

(1)
We assume an application-dependent ”weight-factor” wi as-
signed to each known past displacement of the moving tar-
get. Under the ”continuous” spatio-temporal coverage, as-
suming W = 2 and w1 = w2, the optimal coordinates P̂k

of the next tracking principal that achieves minimal blind-
coverage during the next transfer is given by the formula:

P̂k(xk, yk) = (xk + Rs cos(ϕ), yk + Rs sin(ϕ)) (2)

where ϕ is the angle between the X-axis of the reference
coordinate system and a vector parallel to the velocity vec-
tor ~v of the moving object (cf. Figure 6). Note that the

L̂k(xk, yk)-coordinates correspond to the expected location
of the moving target at the next sampling instant. Ideally, it
should coincide with the sampling instant tk of epoch [t−k , t+k ]
under the new principal Pk. If this can be achieved, then
we minimize the blind coverage and, at the same time, max-
imize the coverage gap, i.e., the spatial segment (and the
corresponding temporal interval) during which no sampling
should occur, as illustrated in Figure 6.
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Figure 7: Discrete sampling vs. continuous coverage

However, in practice, the locations of the available sensor
nodes in the neighborhood of the previous principal need
not coincide with the ideal location P̂k. Consequently, the
actual locations of the nodes need to be incorporated into
the methodology for selecting the next tracking principal. A
feature of our work is that, in addition to the actual physical
locations of the sensor nodes, we also address the minimiza-
tion of the T−

c +T+
c portion – the blind coverage. We specif-

ically consider the impact of the actual location-sampling
time on the principal selection process.

With reference to the example of Figure 7 involving two
candidate nodes, we make the following observations:

1. The sn2 may appear to be a better candidate to as-
sume the role of tracking principal under a continuous
coverage process as in RAB, because it exhibits larger
nominal coverage: Tc2 > Tc1;

2. However, taking into consideration the discrete nature
of the sampling process via epochs, which is the case
with SLS, we observe that the object is already ”too
deep” into the coverage disk of sn2 when the sampling
of the k-th epoch occurs and the spatial coverage be-
forehand is not exploited (blind coverage).

3. SLS accounts for the blind coverage and selects sn1

as principal node for which the object is ”just enough”
into its coverage disk at the time-instant when k-th
epoch’s sampling occurs. By reducing the coverage of
the gap-area, sn2 gains additional effective coverage
for an additional sampling point. Thus, sn1’s larger

effective coverage T e
c1 > T e

c2 allows it to cover 3 con-
secutive epochs, as opposed to 2 epochs for sn2. Hence
sn1 is, in fact, a better candidate.

Let sni denote the current tracking principal, which needs
to perform a ”hand-off” for the subsequent epoch, and
D(sni, Rs) denote the disk centered at the location of the
sensor node sni with radius Rs (the sensing radius). From
the set of its neighbors NB(sni), we need to select one, say,
sj , for which the segment given by the intersection of the
(expected) trajectory of the tracked moving object with
D(snj , Rs) yields the largest number of sampling-points
along it. For this purpose, we define a function as follows:

ζ(snj ,NB(snj), ṽ, I) = (3)

| {L̂|L̂ is a sampling point ∈ D(snj , Rs)} |

Function ζ(snj ,NB(snj), ṽ, I) calculates the expected num-
ber of samples covered by node snj ∈ NB(sni) in the sub-
sequent sampling epochs. The selection process determines
the neighbor(s) of sni which covers the maximum number
of samples. As for the right-hand side of the Equation 3, it
is evaluated based on the following parameters:

• ṽI – the expected displacement of the moving target
during a sampling epoch;

• Tcj
· ṽ – the nominal spatial coverage of node snj with

respect to the moving target’s trajectory;

• LA – the location of the moving object where nominal
coverage begins (cf. point A in Figure 5); LA is deter-
mined as the first intersection point of the boundary
of D(snj , Rs) with the moving object’s trajectory;

• Lk+1 – the first effective sample covered by next prin-
cipal snj based on notations in Figure 5.

then the expected number of samples covered by node snj ∈
NB(sni) can be expressed as :

ζ(snj , NB(sni), ṽ, I) =

⌈

Tcj
· ṽ − ‖LA, Lk+1‖

ṽI

⌉

(4)

where the expression ‖LA, Lk+1‖ = (T−

c +T+
c ) · ṽ represents

the compensating factor of the blind coverage.

The implementation of the SLS selection, relying on the
function ζ(snj ,NB(sni), ṽ, I), is formalized in Algorithm 1.

Algorithm 1 iterates over the set of neighboring nodes in
NB(sni) (cf. lines 3-5), which are potential candidates for
resuming the role of tracking principal, and stores the best
candidates (cf. lines 8-9) into set NBcand. The NBcand set
consists of the nodes expected to cover the maximal num-
ber of location samples, based on the expected motion of the
tracked object. We re-iterate that Algorithm 1 is a heuristic,
which is reflected in the fact that line 8 of the algorithm relies
on the function ζ(snj ,NB(sni), ṽ, I) when deciding which
neighbor-node should be kept as a candidate, and the func-
tion itself relies on the expected sampling-locations.
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Algorithm 1 SLS principal selection

Input:
sni: current tracking principal
Output:
The identity of the next tracking principal

1: NBtemp = NB(sni);
2: NBcand = ∅ // initialization
3: while |NBtemp| 6= ∅ do
4: Select snj ∈ NBtemp;
5: NBtemp = NBtemp \ {snj}
6: if NBcand = ∅ then
7: NBcand ← NBcand ∪ {snj}
8: else if ∃ snq ∈ NBcand such that

ζ(snj ,NB(sni), ṽ, I) > ζ(snq, NB(sni), ṽ, I) then
9: NBcand ← (NBcand \ {snq}) ∪ {snj}

10: end if
11: end while
12: Pick a node from NBcand as the next principal

We now analyze some important properties of Algorithm 1.
First, we address the time complexity of our SLS approach.
For each node snj ∈ NB(sni), a constant number of op-
erations are performed to detect the length of the inter-
section segment of the object’s trajectory with D(snj , Rs),
and to count the number of location samples along it. Sub-
sequently, the current-principal (sni) uses Algorithm 1 to
select the next principal. Hence, the time complexity is
O(NB(sni)), linear in the number of the neighbors of sni.

When it comes to the message complexity, we note that the
entire decision process is done locally by sni (the current
principal) itself. The only SLS-specific message overhead
occurs due to the actual hand-off of the tracking data from
the current principal to the next one1. A hand-off message
contains accrued application-specific tracking information,
such as moving object’s identity (oi) and possibly a buffer
of (location, time) trajectory data, such as in [24].
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Figure 8: Impact of the effective sensing range

1We do not include the overheads due to neighborhood dis-
covery during the initial network configuration, as this is a
typical cost related to topology establishment. We also note
that the trilateration cost is independent of the SLS method-
ology and is a standard part of any tracking protocol.

We conclude by discussing how to break ties when there are
multiple candidate nodes for the subsequent role of tracking
principal (line 12 of Algorithm 1). The first approach is to
randomly select a node in NBcand. Noting that Algorithm
1 relies on the expected location(s) of the tracked object, an
alternative method is to have an extra ”future-window” as
the criterion for selecting the tracking principal. Specifically,
we could recursively extend line 12, by applying the while
loop (line 3-11) to each node in NBcand, and select the one
with the highest expected future pay-off. We defer a detailed
theoretical evaluation of this heuristic for the future work.

3.3 On the Effective Sensing Range
In theory, the coverage gap is dictated by two factors: (1)
the sensing range Rs and (2) the expected displacement of
a moving target during one sampling epoch: δ = ṽI .

In practice, however, the coverage gap may be much larger.
Even if a target is within the sensing range of a given sensor,
the precision of the localization may not be accurate due to
signal attenuation and noise. While a full analysis based
on various noise models is beyond the scope of this work,
it is generally recognized (cf. [11]) that the levels of mea-
surement imprecision increase proportionally with distance,
i.e., ranging of closer targets yields better localization accu-
racy. Therefore, when certain Quality of Monitoring (QoM)
thresholds are user-specified, the sensing range2 is effectively
reduced to D̃ ≤ Rs. It is not always the case that QoM are
known a priori, and may be user-specified at run-time via
a tracking query, whereupon the nodes may consequently
adjust their effective sensing range dynamically.

However, even with this consideration, the main advantage
of SLS, when compared to the existing approaches, is pre-
served. Figure 8 illustrates the differences between RAB
and SLS as the effective sensing range is lowered. In the de-
picted scenario, under ideal conditions in which D̃ = Rs (cf.
Figure 8 (a)), both RAB and SLS yield the same selection of

a sequence of two tracking principals. If D̃ is slightly lower
than Rs, RAB defaults to a sequence of three tracking prin-
cipals (c.f. Figure 8 (b)) whereas SLS maintains a sequence
of two principals in its selections (c.f. Figure 8 (c)). As it
can be seen, it takes a much higher decrease in the effective
sensing range (D̃ << Rs), as in Figure 8 (d), for SLS to end
up with a sequence of three principals.

4. EXPERIMENTS

Our experiments were performed using the open-source,
SIDnet-SWANS simulator for WSN [8]. The network con-
sists of 750 homogeneous nodes with simulated ranging capa-
bilities that implement the equivalent of an active ultrasonic
echo ranging system, running on a standard MAC802.15.4
link layer protocol.

While mobility models such as random walk or random way-
point are often used, one of their drawbacks is the lack of
spatio-temporal dependency [2]. To overcome this, we used
the Gauss-Markov Mobility Model (GMMM) [3, 14] which

2We note that, in practice, the effective sensing range D̃
will be actually used in expression (4) when determining
the location LA, instead of Rs
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Table 1: Leader Selection Experiments Table
Communication/ Effective Principal Node Density Object Type / Average Speed [mph] / Trajectory
Sensing Range Sensing Range Selection [neighbors/node] Expected Epoch Displacement [m] / Window

[m] D̃[m] Methodology / Field Area [m2] Corresponding Sampling Interval [s] [# vertices]

Rc=90 m /Rs = 45 m 45 m CPS 8 / 1, 3002 ”Walk” / 4mph / 9-18m / SI= 4-8s W = 2
40 m RAB 12 / 1, 1502 ”Bike” / 10mph / 9-18m / SI= 1.5-3s
35 m SLS 16 / 1, 0002 ”Car” / 25mph / 9-18m / SI= 0.8-1.5s

(a) Random-Walk Model (b) Gauss-Markov Model (c) SIDnet-SWANS snapshot

Figure 9: Comparison of GMMM model vs. Random-Walk model

does exhibit spatial and temporal dependency. As illus-
trated in Figure 9 (based on [3]), GMMM models yield traces
that are more similar, especially in terms of sinuosity [6] to
real traces. Essentially, GMMM works on a time-slot basis
where at each slot the speed and direction are computed
based on the ones from the previous time-slot. Figure 9(c)
illustrates a snapshot of SIDnet-SWANS Simulator perform-
ing tracking on a GMMM-based mobile object.

The experimental configuration space is summarized in Ta-
ble 1. Accordingly, the main parameters of interest are:
(1) the moving target’s displacement δ = vI during a sam-
pling epoch, which is dictated by the average speed of the
specific type of mobile object as well as the value of the
sampling interval; (2) the effective sensing range to account
for possible measurement noise; and (3) the average num-
ber of 1-hop neighbors. The sliding trajectory buffer that
we use for location prediction has a size of two vertices (W
= 2). Traces were generated to be representative for three
common types of moving objects: walks (people), bikes and
cars, calibrated according to the average speed of the real-
traces that we had available: 4, 10 and 25 mph respectively.
Each experiment spans 3 hours of simulation time and con-
sists of two parts: (1) bootstrapping and neighbor discovery
protocols in SIDnet-SWANS; and (2) the actual tracking, in
the remaining hours.

4.1 Impact of Moving Object Displacement
The first results that we report concern the influence of the
spatial displacement that is exhibited by the moving object
during an epoch. The spatial displacement, from the SLS
perspective, dictates the maximum size of the coverage gap
Tg = T−

c + T+
c ≤ δ that can be relied upon as a potential

source for improvement. To this end, w.r.t. the effective
sensing range of 35-45 meters, we have selected sampling
intervals of 4-8 seconds for slow moving objects, such as
human-walks, and .8-1.5 seconds for fast moving objects,
such as motorized vehicles. This selection is based on a two-
fold desideratum: (1) from an energy-saving perspective,
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Figure 10: Impact of Moving Object Epoch’s Dis-
placement
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Figure 11: Impact of the Effective Sensing Range

large-sampling intervals are desired; (2) from a reliability of
the tracking process standpoint, frequent sampling (small
sampling intervals) are ideal.

Figure 10(a) demonstrates that a 12%-28% improvement
can be achieved by SLS when compared to RAB and 28%-
38% when compared to CPS, as the potential coverage gap
increases from 9m to 18m. Larger coverage gaps, cor-
responding to larger sampling intervals, negatively affect
the number of transfers in both CPS and RAB – this is
because, with larger coverage gap, the effective coverage
T e

c = Tc−(T−

c +T+
c ) is lowered, hence the transfers will take

place more often. SLS compensates for this to some extent
through the coverage gap, attempting to pick nodes that are
further away along the trajectory of the mobile target. How-
ever, according to Figure 10(b), the risk of an unsuccessful
transfer Pk → Pk+1 also increases. This is because larger
coverage gaps increase the risk of miss-predicting the future
locations of the moving object during a principal transfer
and the object may not end up being covered by the pre-
dicted transferee. For example, the percentage of unsuc-
cessful transfers (relative to the total number of attempted
transfers) increases from by 3% to 8% for larger sampling
intervals.
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Figure 12: Impact of Nodes’ Density

4.2 Impact of Effective Sensing Range

We tested three different effective sensing ranges in order
to check whether certain trend can be established. Smaller
ranges translate into more frequent principal hand-offs. As
illustrated in Figure 11(a), RAB is quite more sensitive to
the changes in the sensing range than SLS. The performance
gain of SLS is maintained to 12%-24% when compared to
RAB, and 28%-31% when compared to CPS.

From a reliability standpoint, a smaller coverage area in-
creases the risk of target deviation from its predicted trajec-
tory and bypass the coverage area of the intended principal,
resulting in a wasted hand-off due to the inability of the
principal to continue tracking. The fail-safe mechanism for
unsuccessful transfers consists in principal election among
nodes that detect the object in their vicinity.Figure 11(b)
illustrates the relative ranking of the three approaches that
we considered, and an interesting observation is that the
sensitivity of RAB to the effective range makes it perform
marginally worse than SLS when it comes to the absolute
number of failed transfers under the lowest sensing range.
This is because RAB starts with a more limited set of can-
didate nodes as the relay area is bounded by D̃, resulting in
poor selections overall when the effective range is lower.
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4.3 Impact of Nodes Density
Figure 12(a) illustrates the strong impact of the nodes den-
sity, expressed as the average number of 1-hop neighbors in
the network, on the total number of tracking principals. As
shown, in the settings of low nodes densities, the SLS based
selection can only provide 7% improvement over RAB. How-
ever, as the density increases, the result shows around 19%
improvement over RAB for moderately dense networks of
12 neighbors per node, and up to 30% on topologies with
16 neighbors per node on average. When it comes to CPS
performance, it is interesting to observe a degradation which
is due to the fact that, in high-density networks, CPS can
find nodes much closer to the current location of the moving
target, which would qualify as the next-principal. This, in
turn, causes a lot more hand-offs to be performed.

As for the reliability, the number of failed transfers reduces
inversely with the average number of neighbors, RAB ex-
hibiting between 5% and 10% fewer such transfers than SLS,
as it can be observed in Figure 12(b).

In conclusion, we have experimentally demonstrated that
taking into consideration the specifics of the tracking epoch
can provide significant additional savings in terms of the
number of tracking principals at an average cost of 5%-10%
increase in unsuccessful transfers. We note, however, that
the ratio of unsuccessful transfers to the total attempted
transfers is very small, below 5% overall. CPS exhibits the
lowest-performance due to its overly conservative selection,
however, it is the most robust in terms of ensuring successful
transfers.

5. RELATED WORK
The problem of tracking in WSN settings is considered to
be a canonical one, and many works have addressed various
aspects of it, including the issue of leader election during the
tracking process.

We reiterate that the closest approach to ours addressing
the problem of tracking principal hand-off in a leader-based
target tracking scheme is presented in [11]. The main dis-
tinction of our work is that it takes into consideration the
discrete nature of the sampling intervals and extends the
considerations of the importance of the timing within a par-
ticular epoch.

Among the works that are closer in spirit to our work are
the prediction-based methods in [29, 30], both of which use
the relative proximity to the current location and predicted
target direction of travel for selecting the next tracking prin-
cipal. However, these approaches do not specifically tie the
predicted location of the moving target with the next sam-
pling event, which is the main distinction of our work. Fa-
voring the nodes that are closest to the current location of
the tracked target as next tracking principals may be ad-
vantageous from the perspective of robustness in terms of
not ”missing” the coverage area of the subsequent principal.
However, it imposes much higher overhead on the number
of hand-offs between successive principals.

Another approach which exhibits a certain similarity with
our work is presented in [31]. This approach also utilizes
prediction of the moving object’s location, however it differs

from our methodology in the following aspects: (1) the fo-
cus in [31] is on reducing the duty-cycle of tracking nodes
by promoting sleep-scheduling, without concerning the over-
all number of principals; (2) tracking principals are pre-
determined and selectively awaken for the arrival of the mov-
ing target, while, in our work they are determined on-the-fly;
and (3) they do not take into consideration the sampling-
interval information as a mean of reducing the number of
tracking principals’ transitions, although, concerns are ex-
pressed for the relationship between the sampling interval
and the probability of loosing track of the target.

A very recent prediction-based tracking scheme which pro-
poses a k-tracking nodes lookahead for the purpose of in-
creasing the detection probability for fast-moving targets, at
the expense of increased energy consumption, is presented
in [1]. Our work, while not directly considering the impact
of the high-speed motion still differs in the selection process
of a leader – while we consider the overlap of the coverage
with discrete (expected) location-points, [1] is based on the
leaders proximity to the entire predicted trajectory.

A criteria similar to the maximal temporal coverage has been
proposed in [23], however, our implementation of the criteria
is different in the following three aspects: (1) we use the next
predicted location as a basis for performing the evaluations,
(2) it is designed for low computational overhead, a desider-
atum in sensor network applications with limited processing
capabilities and (3) we consider the segment rooted at Lk+1,
rather than the entire trajectory segment.

6. CONCLUSIONS AND FUTURE WORK
We addressed a specific aspect of the tracking problem in
WSNs – minimizing the number of hand-offs among track-
ing principals – and proposed an improvement over the state
of the art by considering the discrete nature of the location-
sampling process. By carefully considering the concepts of
effective and blind coverage, and their inter-dependency, we
were able to generate a heuristic that incorporates them into
the criterion for selecting the (expected) best candidate for
the next-principal among the available sensor nodes in the
1-hop neighborhood of the current principal. Our experi-
ments, in which we take into consideration variations of the
effective sensing range, demonstrated that up to 25% (re-
spectively, up to 31%) of the savings in the number of hand-
offs can be achieved when compared to the RAB (respec-
tively, to the CPS) approaches. In addition, the experimen-
tal observations demonstrated that our SLS approach can
yield up to 30% savings when compared to RAB in denser
WSN. Similar trends were observed when considering the
variation of the objects’ motions patterns.

There are several potential extensions to this work. In lieu
of the results in [1] concerning fast moving object, it will
be interesting to investigate the increase of the predicted
time-instant for selecting the next tracking principal by con-
sidering nodes which are k-hops away from the current on.
Our experiments have clearly showed that node density may
represent a bottleneck in the achievable performances, yet
increasing nodes densities may not be practical nor cost-
effective. Even if the moving object’s speed is low, this can
enable us to increase the sampling interval to further reduce
the number of tracking principals. Another factor that we
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would like to consider in a more detailed manner is the im-
pact of the accuracy of the location-estimation. A first step
towards this would be to consider a probabilistic model of
the quality of sensing and the impact of this (im)precision on
the pdf of the expected locations of a given moving object.

An interesting practical consideration is to examine the im-
pact of the mobility models which exhibit the ”stop-and-go”
behavior. Our long term goal is developing a larger-scale
variant of our approach, so it can be applicable to tracking
shapes that evolve over time like, for example, spreading
of a wildfire via WSN. We also plan to explore incorporat-
ing techniques for probabilistic nearest-neighbor queries [25]
into our tracking method.
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