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Abstract. Crowdsourced environmental sensing is made possible by the
wide-spread availability of powerful mobile devices with a broad array
of features, such as temperature, location, velocity, and acceleration sen-
sors. Mobile users can contribute measured data for a variety of pur-
poses, such as environmental monitoring, traffic analysis, or emergency
response. One important application scenario is that of detecting anom-
alous phenomena, where sensed data is crucial to quickly acquire data
about forest fires, environmental accidents or dangerous weather events.
Such cases typically require the construction of a heatmap that captures
the distribution of a certain parameter over a geospatial domain (e.g.,
temperature, CO2 concentration, water polluting agents, etc.).

However, contributing data can leak sensitive private details about an
individual, as an adversary may be able to infer the presence of a person
in a certain location at a given time. In turn, such information may reveal
information about an individual’s health, lifestyle choices, and may even
impact the physical safety of a person. In this paper, we propose a tech-
nique for privacy-preserving detection of anomalous phenomena, where
the privacy of the individuals participating in collaborative environmen-
tal sensing is protected according to the powerful semantic model of dif-
ferential privacy. Our techniques allow accurate detection of phenomena,
without an adversary being able to infer whether an individual provided
input data in the sensing process or not. We build a differentially-private
index structure that is carefully customized to address the specific needs
of anomalous phenomenon detection, and we derive privacy-preserving
query strategies that judiciously allocate the privacy budget to main-
tain high data accuracy. Extensive experimental results show that the
proposed approach achieves high precision of identifying anomalies, and
incurs low computational overhead.

1 Introduction

Environmental sensing using crowdsourcing is a promising direction due to the
widespread availability of mobile devices with positioning capabilities and a
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broad array of sensing features, e.g., audio and video capture, temperature,
velocity, acceleration, etc. In addition, mobile devices can easily interface with
external sensors and upload readings for many other environmental parameters
(e.g., CO2, water pollution levels, atmospheric pressure). The growing trend
towards crowdsourcing environmental sensing is beneficial for a wide range of
applications, such as pollution levels monitoring or emergency response. In such
a setting, authorities can quickly and inexpensively acquire data about forest
fires, environmental accidents or dangerous weather events.

One particular task that is relevant to many application domains is that
of detecting anomalous phenomena. Such cases typically require to determine
a heatmap capturing the distribution of a certain sensed parameter (e.g., tem-
perature, CO2 level) over a geospatial domain. When the parameter value in
a certain region reaches a predefined threshold, then an alarm should be trig-
gered, signaling the occurrence of an anomaly. Furthermore, the alarm should
identify with good accuracy the region where the dangerous event occurred, so
that countering measures can be deployed to that region.

However, there are important privacy concerns related to crowdsourced sens-
ing. Contributed data may reveal sensitive private details about an individual’s
health, lifestyle choices, and may even impact the physical safety of a person.
To protect against such disclosure, the state-of-the-art model of differential pri-
vacy (DP) adds noise to data in a way that prevents an adversary from learning
whether the contribution of an individual is present in a dataset or not. Sev-
eral DP-compliant techniques for protecting location data have been proposed
in [1,16,17]. However, these approaches consider only simple, general-purpose
count queries, and rely on simplifying assumptions that make them unsuitable
for our considered problem of anomalous phenomenon detection.

Consider the example of a forest fire, where mobile users report air tem-
perature in various regions. To model the fire spread, one needs to plot the
temperature distribution, which depends on the values reported by individual
users, and the users’ reported locations. With existing techniques, one could par-
tition the dataspace according to a regular grid and split the available privacy
budget between two aggregate query types, one counting user locations in each
grid cell, and the other summing reported values. Next, a temperature heatmap
is obtained by averaging the temperature for each cell. As we show in our experi-
mental evaluation, this approach results to useless data, due to the high amount
of noise injected. This is the result of a more fundamental limitation of exist-
ing approaches that are designed only for general-purpose queries, and do not
take into account correlations that are specific to more complex data processing
algorithms.

In this paper, we propose an accurate technique for privacy-preserving detec-
tion of anomalous phenomena in crowdsourced sensing. We also adopt the pow-
erful semantic model of differential privacy, but we devise a tailored solution,
specifically designed for privacy-preserving heatmap construction. Our technique
builds a flexible data indexing structure that can provide query results at arbi-
trary levels of granularity. Furthermore, the sanitization process fuses together
distinct types of information (e.g., user count, placement and reported value
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scale) to obtain an effective privacy-preserving data representation that can help
decide with high accuracy whether the sensed value in a certain geographical
region exceeds the threshold or not. To the best of our knowledge, this is the
first work that addresses the problem of value heatmap construction within the
differential privacy framework. Our specific contributions are:

1. We introduce a hierarchical differentially-private structure for representing
sensed data collected by mobile users. The structure is customized to address
the specific requirements of value heatmap construction, and accurately sup-
ports queries at variable levels of granularity.

2. We examine the impact of structure parameters and privacy budget allocation
on data accuracy, and devise algorithms for parameter selection and tuning.

3. We investigate techniques for reducing the impact of DP-injected noise, and
devise effective voting strategies during data processing that increase accuracy
of anomalous phenomenon detection.

4. We perform an extensive experimental evaluation which shows that the pro-
posed techniques accurately detect anomalous phenomena, and clearly out-
perform existing general-purpose sanitization methods that fare poorly when
applied to the studied problem.

The paper is organized as follows: Sect. 2 provides background information
on differential privacy. In Sect. 3, we introduce the system model, and the met-
rics used to characterize anomalous phenomenon detection accuracy. Section 4
presents the proposed privacy-preserving data indexing structure and analytical
models for characterizing query accuracy. We introduce strategies for anomaly
detection in Sect. 5, followed by experimental evaluation results in Sect. 6. We
present related work in Sect. 7, and conclude with directions for future work in
Sect. 8.

2 Background

2.1 Differential Privacy

Differential privacy (DP) [2,3] addresses the limitation of syntactic privacy mod-
els (e.g., k-anonymity [19], �-diversity [12], t-closeness [9]) which are vulnerable
against background knowledge attacks. DP is a semantic model which argues
that one should minimize the risk of disclosure that arises from an individual’s
participation in a dataset.

Two datasets D and D′ are said to be siblings if they differ in a single record r,
i.e., D′ = D ∪ {r} or D′ = D�{r}. An algorithm A is said to satisfy differential
privacy with parameter ε (called privacy budget) if the following condition is
satisfied [2]:

Definition 1 (ε-indistinguishability). Consider algorithm A that produces
output O and let ε > 0 be an arbitrarily-small real constant. Algorithm A satisfies
ε-indistingui-shability if for every pair of sibling datasets D,D′ it holds that

∣
∣
∣
∣
ln

Pr[A(D) = O]
Pr[A(D′) = O]

∣
∣
∣
∣
≤ ε (1)
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In other words, an attacker is not able to learn, with significant probability,
whether output O was obtained by executing A on input D or D′. To date, two
prominent techniques have been proposed to achieve ε-indistinguishability [3,13]:
the Laplace mechanism (and the closely related geometric mechanism for integer-
valued data) and the exponential mechanism. Both mechanisms are closely
related to the concept of sensitivity:

Definition 2 (L1-sensitivity [3]). Given any two sibling datasets D, D′ and a
set of real-valued functions F = {f1, . . . , fm}, the L1-sensitivity of F is measured

as ΔF = max∀D,D′

m∑

i=1

|fi(D) − fi(D′)|.

The Laplace mechanism is used to publish the results to a set of statistical
queries. A statistical query set Q = {Q1, . . . , Qm} is the equivalent of a set
of real-valued functions, hence the sensitivity definition immediately extends to
such queries. According to [3], to achieve DP with parameter ε it is sufficient
to add to each query result random noise generated according to a Laplace
distribution with mean ΔQ/ε. For COUNT queries that do not overlap in
the data domain (e.g., finding the counts of users enclosed in disjoint grid cells),
the sensitivity is 1.

An important property of differentially-private algorithms is sequential com-
posability [13]. Specifically, if two algorithms A1 and A2 executing in isolation on
dataset D achieve DP with privacy parameters ε1 and ε2 respectively, then exe-
cuting both A1 and A2 on D in sequence achieves DP with parameter (ε1 + ε2).
In contrast, parallel composability specifies that executing A1 and A2 on disjoint
partitions of the dataset achieves DP with parameter max (ε1, ε2).

2.2 Private Spatial Decompositions (PSD)

The work in [1] introduced the concept of Private Spatial Decompositions (PSD)
to release spatial datasets in a DP-compliant manner. A PSD is a spatial index
transformed according to DP, where each index node is obtained by releasing
a noisy count of the data points enclosed by that node’s extent. Various index
types such as grids, quad-trees or k-d trees [18] can be used as a basis for PSD.

Accuracy of PSD is heavily influenced by the type of PSD structure and
its parameters (e.g., height, fan-out). With space-based partitioning PSD, the
split position for a node does not depend on data point locations. This category
includes flat structures such as grids, or hierarchical ones such as BSP-trees
(Binary Space Partitioning) and quad-trees [18]. The privacy budget ε needs to
be consumed only when counting the users in each index node. Typically, all
nodes at same index level have non-overlapping extents, which yields a constant
and low sensitivity of 1 per level (i.e., adding/removing a single location in the
data may affect at most one partition in a level). The budget ε is best distributed
across levels according to the geometric allocation [1], where leaf nodes receive
more budget than higher levels. The sequential composition theorem applies
across nodes on the same root-to-leaf path, whereas parallel composition applies
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to disjoint paths in the hierarchy. Space-based PSD are simple to construct, but
can become unbalanced.

Object-based structures such as k-d trees and R-trees [1] perform splits of
nodes based on the placement of data points. To ensure privacy, split decisions
must also be done according to DP, and significant budget may be used in the
process. Typically, the exponential mechanism [1] is used to assign a merit score
to each candidate split point according to some cost function (e.g., distance from
median in case of k-d trees), and one value is randomly picked based on its noisy
score. The budget must be split between protecting node counts and building
the index structure. Object-based PSD are more balanced in theory, but they
are not very robust, in the sense that accuracy can decrease abruptly with only
slight changes of the PSD parameters, or for certain input dataset distributions.

The recent work in [16] compares tree-based methods with multi-level grids,
and shows that two-level grids tend to perform better than recursive partitioning
counterparts. The paper also proposes an Adaptive Grid (AG) approach, where
the granularity of the second-level grid is chosen based on the noisy counts
obtained in the first-level (sequential composition is applied). AG is a hybrid
which inherits the simplicity and robustness of space-based PSD, but still uses a
small amount of data-dependent information in choosing the granularity for the
second level.

All these methods assume general-purpose and homogeneous queries (i.e.,
find counts of users in various regions of the dataspace), and, as we show later
in this paper, are not suitable for the problem of anomalous phenomenon detec-
tion. We compare against state-of-the-art PSD techniques in our experimental
evaluation (Sect. 6).

3 System Model and Evaluation Metrics

We consider a two-dimensional geographical region and a phenomenon charac-
terized by a scalar value (e.g., temperature, CO2 concentration) within domain
[0,M ]. A number of N mobile users measure and report phenomenon values
recorded at their location. If a regular grid is super-imposed on top of the data
domain, then the histogram obtained by averaging the values reported within
each grid cell provides a heatmap of the observed phenomenon. Since our focus
is on detecting anomalous phenomena, the actual value in each grid cell is not
important; instead, what we are concerned with is whether a cell value is above
or below a given threshold T , 0 < T < M .

Mobile users report sensed values to a trusted data collector, as illustrated in
Fig. 1. The collector sanitizes the set of reported values according to differential
privacy with parameter ε, and outputs as result a data structure representing a
noisy index of the data domain, i.e., a PSD. This PSD is then released to data
recipients (i.e., general public) for processing. Based on the PSD, data recipients
are able to answer queries with arbitrary granularity that is suitable for their
specific data uses. Furthermore, each data recipient has flexibility to choose a
different threshold value T in their analysis. In practice, the trusted collector
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role can be fulfilled by cell phone companies, which already know the locations
of mobile users, and may be bound by contractual obligations to protect users’
location privacy. The collector may charge a small fee to run the sanitization
process, or can perform this service free of charge, and benefit from a tax break,
e.g., for supporting environmental causes.

According to differential privacy, the goal of the protection mechanism is
to hide whether a certain individual contributed to the set of sensed values
or not. To achieve protection, noise is added to the values of individual value
reports. Furthermore, fake value reports may have to be inserted, and some
actual readings may have to be deleted from the dataset. Inherently, protection
decreases data accuracy.

To measure the accuracy of sanitization, we need to quantify the extent to
which the outcome for certain regions changes from above the threshold to below,
or vice-versa. Given an arbitrary-granularity regular grid, we define the following
metrics:

φboth: number of grid cells above the threshold according to both actual and
sanitized readings.

φeither: number of grid cells above the threshold according to either actual or
sanitized readings.

φflip: number of grid cells above the threshold in one dataset and below in the
other.

φall: total number of grid cells.

It results immediately from the metric definitions that φeither = φflip+φboth.
Hence, we can define two additional metrics with domain [0, 1] and ideal value
of 1 (i.e., perfect accuracy). FlipRatio (FR) quantifies the proportion of cells
that change their outcome due to sanitization:

FR = 1 − φflip

φall

Fig. 1. System model
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The Jaccard (J) metric, derived from the Jaccard similarity coefficient [2],
measures the dissimilarity between the real and sanitized datasets:

J =
φboth

φeither

The FR and J metrics have the advantage of being less dependent on the
grid granularity, i.e., the φall values, so they maintain their relevance across a
broad range of query granularities. However, only the J metric captures the local
impact of the sanitization method. Interchanging the state of two random cells
will not change the values of any other metrics than J , so they are not sufficient
to determine the accuracy of the heatmap. Therefore, in the rest of the paper,
we focus on the J metric. Formally, our problem statement is:

Problem 1. Given N users moving within a two-dimensional space, a phenom-
enon characterized by a scalar value with domain range [0,M ], an anomaly
threshold T , 0 < T < M and privacy budget ε, determine an ε-differentially-
private release such that the Jaccard metric between the real and sanitized
dataset is maximized.

4 PSD for Anomalous Phenomenon Detection

Constructing an appropriate PSD is an essential step, since the accuracy of the
entire solution depends on the structure properties. Furthermore, due to the
specific requirements of our problem, general-purpose PSDs such as the ones
optimized for count queries [1,16,17] are not suitable.

The anomalous phenomenon detection may be performed with respect to a
regular grid of arbitrarily fine-grained granularity. On the other hand, creating a
PSD that is too fine-grained is not a suitable approach. According to the Laplace
mechanism, each cell’s query result is added with random noise of magnitude
independent of the actual value. Therefore, PSDs with small cells and PSDs that
do not adapt to data density are not appropriate, as the resulting inaccuracy
is high. Instead, we construct a flexible structure, based on which the threshold
condition can be answered for arbitrary regular grids, as illustrated on the right
side of Fig. 1.

The PSD must keep track of two measures necessary to determine phenomena
heatmaps: sensor counts1 and phenomenon value sums, which together provide
average values for each cell. We denote the actual values for sensor count and value
sum in a cell by n and s, respectively (we use subscript indices to distinguish the n
and s values across cells). We denote the sanitized counts and sums by n∗ and s∗.
The sensitivity of n is 1, whereas the sensitivity of s is M (adding a new sensor in a
cell can increase n by 1 and s by M). Hence, if n is answered using privacy budget
εn and s is answered using privacy budget εs, the variance of n∗ is 2

ε2
n
, whereas

the variance of s∗ is 2M2

ε2
s

.

1 In the rest of the paper, the terms mobile user and sensor are used interchangeably.
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To simplify presentation, we introduce our PSD in incremental fashion: first,
we outline the main concepts and parameters for a single-level regular grid.
Next, we extend our findings to a two-level structure, and then generalize to a
multiple-level structure. Table 1 summarizes the notations used.

Single-level Grid. Assume a regular grid of N0 × N0 cells spanning over a
data domain of size w × w. Similar to other work on PSD [10,16], we assume
that a negligible fraction of the privacy budget is spent to estimate n∗

0, the total
number of sensors, and s∗

0, the sum of all sensed values. Granularity N0 must
be chosen to minimize the expected error over all rectangular queries (since any
query can be decomposed into non-overlapping rectangular regions). The error
has two sources:

– Laplace error within a single cell due to noise addition by the Laplace mech-
anism. These errors are added for all cells covered by the query.

– Non-uniformity error caused by non-uniformity of sensor distribution within
a grid cell. These errors occur only for cells which are partially covered by the
query rectangle. In such a case, we output a value proportional to the fraction
of the cell that overlaps the query.

Furthermore, errors occur for both sensor counts and sensed values. Since the
threshold T is expected to be proportional to scale M , we normalize the error
for sensed values to account for the skew introduced by M . The error expression
subject to minimization becomes the sum of all count errors plus 1

M of the sum
of all value sum errors.

Table 1. Symbols and notations used in the paper.

Symbol Description

n, s Real count and sum of values of sensors in a cell

n∗, s∗ Noisy count and sum of values of sensors in a cell

n′, s′ Count and sum of values of sensors in a cell after weighted averaging

n, s Count and sum of values of sensors in a cell after mean consistency step

ε Privacy budget

εn, εs Privacy budget used for answering count and, respectively, sum queries in
the cell

α Proportion of available privacy budget to use at current PSD level

β Proportion of privacy budget for the current level used for answering
count queries

Nu Split factor for cell u

M Maximum value of a sensor’s scale

T Threshold for the anomalous heatmap

Nt Threshold for minimum (noisy) number of sensors in a cell

K Non-uniformity constant
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Consider an arbitrary rectangle query of size rw2, r ∈ (0, 1). The query will
cover approximately rN2

0 cells. The total variance of the query result is 2rN2
0

ε2
n

for

n and 2M2rN2
0

ε2
s

for s. Hence, the count error is expressed as
√

2r N0
εn

, and the sum

error as
√

2r MN0
εs

. The total Laplace error is
√

2rN0

(
1

εn
+ 1

εs

)

.
The query rectangle might partially cover some cells. The number of such cells

is of the order O(
√

rN0) (determined by the perimeter of the query rectangle).
Hence, we can assume that the number of points in partially covered cells is of the
order O(

√
rN0

n∗
0

N2
0
) = K

√
r

n∗
0

N0
, where K is a constant. Assuming uniform sensor

density, the error for value sum in partially covered cells is K
√

r
s∗
0

N0
. Hence, the

non-uniformity error is K
√

r
N0

(

n∗
0 + s∗

0
M

)

.
Thus, we must minimize the expression:

√
2rN0

(
1
εn

+
1
εs

)

+ K

√
r

N0

(

n∗
0 +

s∗
0

M

)

(2)

According to the sequential composition property (Sect. 2), the available pri-
vacy budget ε must be split between εn and εs. We capture this split with
parameter β ∈ (0, 1), defined as the fraction used by the count sanitization:
εn = βε and εs = (1 − β)ε. Minimizing Eq. (2) with respect to N0, we obtain
the optimal single-level granularity

N0 =

√

ε × K√
2

× β(1 − β)
(

n∗
0 +

s∗
0

M

)

(3)

Two-level Grid. Starting with the optimal single-level N0 setting, we further
divide each cell according to its noisy n∗ and s∗. The privacy budget must be
split between the two levels according to sequential composition. We model this
split with parameter α ∈ (0, 1), which quantifies the budget fraction allocated
to the level 1 grid. Levels 1 and 2 receive respectively budgets ε1 = αε and
ε2 = (1 − α)ε. Each level budget is further divided between counts and sums
using parameter β ∈ (0, 1):

εn1 = βε1, εs1 = (1 − β)ε1, εn2 = βε2, εs2 = (1 − β)ε2 (4)

Since each level-1 cell is further divided, we define N0 as a fraction of the
value in Eq. (3) (later in this section, Eq. (11) shows how to choose η):

N0 =
1
η

√

ε × K√
2

× β(1 − β)
(

n∗
0 +

s∗
0

M

)

(5)

For each cell u in the first level we use budgets εn1 and εs1 to determine n∗
u1

and, respectively, s∗
u1. Based on these values, we split cell u into N2

u cells. For
each cell v ∈ child(u), we use εn2 and εs2 to determine n∗

v2 and, respectively,
s∗

v2 (the subscript indicates the level of the grid where the value is computed).
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Since the actual sensor count in a cell at level 1 is the same as the sum of the
sensor counts in all of its children at level 2 (and the same holds for the sums),
we perform a constrained inference procedure with the purpose of improving
accuracy. Based on the values n∗

u1, s∗
u1, n∗

v2, s∗
v2 we determine nu1, su1, nv2 and

sv2 such that

nu1 =
∑

v∈child(u)

nv2

su1 =
∑

v∈child(u)

sv2

and ∀u, the variances of nu1 and su1 are minimized. Note that, since all input
values are already sanitized, no budget is consumed in the constrained inference
step, and differential privacy is still enforced.
We determine these values in two steps:

1. We determine the weighted average estimators n′
u1 and s′

u1 with minimal
variance. We average the values of n∗

u1 and
∑

v∈child(u) n∗
v2 to determine n′

u1

and the corresponding ones for s′
u1. To do so, we are using the fact that

the variance of the weighted average of two random variables X and Y with
variances V ar(X) and V ar(Y ) is minimized by the value

V ar(Y )
V ar(X) + V ar(Y )

× X +
V ar(X)

V ar(X) + V ar(Y )
× Y (6)

In our case, X is n′
u1 (s′

u1) and Y is
∑

v∈child(u) n∗
v2 (respectively

∑

v∈child(u) s∗
v2).

2. We update the values to ensure mean consistency according to:

nu1 = n′
u1 nv2 = n′

v2 +
1

N2
u

⎛

⎝nu1 −
∑

v∈child(u)

n′
v2

⎞

⎠ (7)

su1 = s′
u1 sv2 = s′

v2 +
1

N2
u

⎛

⎝su1 −
∑

v∈child(u)

s′
v2

⎞

⎠ (8)

The effects of the constrained inference so far concern only queries which
partially cover level-1 cells. Suppose that a query covers i × j sub-cells of cell u,
where i, j ∈ {1, 2, . . . Nu}. Then, the effect of the constrained inference is that
min(i × j,N2

u − i × j) level-2 cells will be used to answer the query. On average,
the number of level-2 cells required to answer a query is:

1
N2

u − 1

Nu∑

i=1

Nu∑

j=1

min(i × j,N2
u − i × j) ≈ N2

u

5
+ O(Nu)

Hence, the total variances are 2N2
u

5ε2
n2

and 2M2N2
u

5ε2
s2

, and the resulting total Laplace

error is
√
10Nu

5

(
1

εn2
+ 1

εs2

)

.
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For non-uniformity errors, assume r is the ratio between the area used to
answer the query and the total area of the cell. We know from the single-level
case that the non-uniformity errors are K

√
r

n∗
u

Nu
and K

√
r

s∗
u

Nu
. To eliminate the√

r factor, we integrate over its domain ((0, 0.5]) and compute the expected

value of the total non-uniformity error. Since
∫ 0.5
0

√
rdr

∫ 0.5
0 dr

=
√
2
3 we get that the

total non-uniformity error is
√
2K

3Nu

(

n∗
u + s∗

u

M

)

.
Thus, we must minimize the expression

√
10Nu

5

(
1

εn2
+

1
εs2

)

+
√

2K

3Nu

(

n∗
u +

s∗
u

M

)

and we obtain

Nu =

√√
5

3
εKβ(1 − β)(1 − α)

(

n∗
u +

s∗
u

M

)

(9)

where we can approximate
√
10
3 by 1. This also provides a value for η (Eq.(5)),

such that:

N0 =

√

ε × K√
2

× β(1 − β)α
(

n∗
0 +

s∗
0

M

)

(10)

Nu =

√

ε × K√
2

× β(1 − β)(1 − α)
(

n∗
u +

s∗
u

M

)

(11)

Generalization to Multiple Levels. The analysis for two levels can be
extended to a multiple-level structure, where the privacy budget is split across
levels (keeping αε for the current level and dividing privacy budget between count
and sum using β, as before), and the granularity for each new level is determined
based on the sanitized data and variance analysis at the previous level. However,
we must carefully decide when to end the recursion, as having too many levels
will decrease the budget per level, and consequently decrease accuracy. Because
of this, we implement two stopping mechanisms: first, we introduce a maximum
depth of the PSD, max depth, to prevent excessive reduction of per-level privacy
budget. Second, we introduce a threshold, Nt such that a cell u is divided only
if its estimated sensor count satisfies inequality n∗

u > Nt.
The number Nu of children nodes of u is given by:

Nu =

√

εu × K√
2

× β(1 − β)(1 − α)
(

n∗
u +

s∗
u

M

)

(12)

We illustrate the proposed multiple-level PSD approach with a running exam-
ple, in parallel with the description of the pseudocode provided in Algorithm1.
The PSD is built in three phases. First, the PSD structure is determined (i.e.,
the spatial extent of each index node), by splitting cells according to Eq. (12),
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and noisy values are computed for sensor counts and value sums. This is the
only step that accesses the real dataset of readings, and hence the only step
that consumes privacy budget. The recursive procedure buildPSD (Algorithm 1)
summarizes this process.

Algorithm 1. Splitting a PSD cell u at depth depth, with privacy budget ε

1: function buildPSD(ε, u, depth)
2: if depth == max depth then
3: εcrt ← ε
4: else
5: εcrt ← αε
6: end if
7: εn ← βεcrt
8: εs ← (1 − β)εcrt
9: (n, s) ← getRealValues(u)

10: n∗ ← n + Laplace(1/εn)
11: s∗ ← s + Laplace(M/εs)
12: Nu ← ComputeSplit(ε, n∗, s∗)
13: if Nu < Nt then
14: εn ← β(1 − α)ε
15: εs ← (1 − β)(1 − α)ε
16: n′∗ ← n + Laplace(1/εn)
17: s′∗ ← s + Laplace(M/εs)
18: n′ ← Average(n∗, n′∗)
19: s′ ← Average(s∗, s′∗)
20: end if
21: for all v ∈ SplitCell(u, Nu, depth) do
22: buildPSD((1 − α)ε, v, depth + 1)
23: end for
24: end function

Figure 2 illustrates PSD construction with α = 0.2, β = 0.5 and ε = 1.6.
The root node will receive a budget of εn,root = 0.5 × 0.2 × 16 = 0.16 (lines
2–8 of Algorithm 1). Line 9 computes the real values for the count and sum
of sensor values inside the cell (the sensor counts for the running example are
presented in Fig. 2(d)). Lines 10–11 add Laplace noise, resulting in a value of
n∗

root = 14. The split granularity for next level is determined as in Eq. (12).
Assume we obtain Nu = 4, larger than the threshold Nt = 2. The root is split
into four cells, and the procedure is recursively applied to each of them with
ε1 = (1 − α)ε = 0.8 × 1.6 = 1.28.

The budget for level 1 is further split between sum and count values, to
obtain εn,1 = 0.128 (lines 2–8). Adding the corresponding Laplace noise to the
real values of 2, 1, 2 and 3 (Fig. 2(d)) (lines 10–11), results in noisy counts 9, 2,
6 and, respectively, −2 (Fig. 2(a)).

The cells with values 9 and 6 are further split, while the one with n∗
1 = −2 is

not, due to the value of Nt. In case no further splits are performed, the remaining
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(a) Building the index, showing (b) Weighted averaging, showing

(c) Mean consistency, showing (d) The real values for

Fig. 2. Representation of PSD construction, including weighted averaging and mean
consistency.

budget is used by running lines 13–20 of Algorithm1, which compute new noisy
estimates which are averaged to determine n′ and, respectively, s′.

Since the remaining cells are at the maximal depth allowed by the method,
the remaining privacy budget of εn,2 = 0.512 is used to compute the remaining
noisy values. The result of the algorithm is shown in Fig. 2(a).

The second phase of the index building method is weighted averaging.
We average for each internal node the two estimates and compute n′ and s′

according to Eq. (6). For each node, we keep track of the variance of the noisy
variables and the averaged values, since they will be needed in the higher levels
of the tree. The resulting tree at the end of this phase is shown in Fig. 2(b).

Finally, the last phase performs mean consistency, which ensures that the
estimate from one node is the same as the sum of the estimates from its children.
We use Eqs. (7) and (8) in a top-down traversal of the tree, the result of which
is shown in Fig. 2(c).

5 PSD Processing and Heatmap Construction

As illustrated in Fig. 1 (Sect. 3), after the PSD is finalized at the trusted col-
lector, it is distributed to data recipients who process it according to their own
granularity and threshold requirements. The objective of the data recipient is to
obtain a binary heatmap that captures areas with anomalous phenomena, i.e.,
regions of the geographical domain where the measured values are above the
recipient-specified threshold.

We assume that the recipient is interested in building a heatmap according
to a recipient resolution grid (rrg). Recall that our solution is designed to be
flexible with respect to recipient requirements, and each recipient may have its
own rrg of arbitrary granularity. In this section, we show how a recipient is able
to accurately determine a phenomenon heatmap given as input the PSD, the
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Vote: negative

Vote: positive

Vote: positive

Level 1

Level 2

Level 3

Recipient grid

Fig. 3. Construction of heatmap at the data recipient site

recipient-defined rrg and threshold T . The objective of heatmap construction is
to determine for each rrg cell a binary outcome: positive if the value derived for
the cell is above T , and negative otherwise.

Figure 3 shows an example of rrg superimposed on the PSD index. The PSD
has four levels, out of which only three are shown (the root is split into four
cells, and it is omitted from the diagram due to space considerations). The
bottom layer in the diagram represents the rrg. The shaded cell in the rrg layer
represents the cell for which we are currently determining the outcome. In this
example, we illustrated a high-resolution rrg, so most rrg cells are completely
enclosed within a PSD cell at each index level. However, in general, there may
be cases when a rrg cell overlaps with several PSD cells. We consider both cases
below.

Since the recipient has no other information other than the PSD, we assume
that the count and sum values inside a PSD cell are uniformly distributed over
the cell’s extent. Hence, for each rrg cell we compute n and s in proportion to the
overlap between the rrg and PSD cells, normalized by the PSD cell area. If one
rrg cell overlaps two or more PSD cells, the values for n and s are determined
as the weighted sum of the values corresponding to each PSD cell, where the
weight is represented by the overlap amount.

Note that, even if the above procedure may result in values for n and s for
each rrg cell which are not too far apart from the actual values, there is another
important source of inaccuracy due to the fact that the outcome for an rrg cell
is obtained by dividing the noisy s and n values. The ratio can be significantly
affected even if the noise is not very high. Furthermore, even though the leaf
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cells of the PSD are likely to be closer in resolution to the rrg grid, considering
solely leaf nodes in the outcome evaluation may have undesirable effects, due
to the fact that the noise added to leaf nodes is more significant compared to
their actual values compared to PSD nodes that are higher in the hierarchy (i.e.,
relative errors are higher closer to the leaf level).

In our solution, we account for these factors. Instead of näıvely dividing
estimates for n and s in each rrg grid cell (which may have low accuracy), we
evaluate individually the outcome based on information at each PSD level, and
then combine the outcomes through a voting process in order to determine the
outcome for each individual rrg cell. Returning to the example in Fig. 3, assume
that threshold T = 80. We determine the outcome of the gray cell at the rrg
layer by using the outcomes for all the marked PSD cells on the three levels
shown (cells are marked using a small black square). Specifically, the Level 1
PSD cell containing the shaded grid cell has n = 30 and s = 1050, resulting
in a phenomenon value ρ = s

n = 35, below the threshold T = 80. Hence, the
root cell’s vote would be negative, meaning that with the information from that
layer, the grayed grid cell does not present an anomalous reading.

However, at Level 2 of the PSD, we have n = 20 and s = 1700, resulting
in a value of 85, greater than the threshold. Hence, this layer will contribute a
positive vote. Similarly, at Level 3, n = 8 and s = 800 which also results in a
positive vote.

The resulting outcome for any rrg cell depends on the distribution of the
votes it has received. We could use the difference between positive and negative
votes, but this will report a biased result for grid cells overlapping multiple PSD
cells at the same level. A better solution is to use the ratio of positive votes
to the total votes. In our example, the grayed cell got two positive votes and a
single negative one, hence it would be marked as anomalous.

An alternative approach is to use only the number of positive votes
that have been received. For instance, a rrg cell would receive a posi-
tive outcome if at least two PSD cells vote positively. This approach has
two advantages: first, it captures locality better than the previous strat-
egy. If the region where the phenomenon has an anomalous value is small,
majority voting would tend to flatten the heatmap at higher levels, and
the sharp spike may be missed. The two-vote strategy, however, may correctly
identify the spike if both the leaf level PSD and another level above vote posi-
tively. Second, the two-vote strategy may prevent false alarms, caused by small
PSD cells that may receive a high amount of random noise. By having a sec-
ond level confirm the reading, many of the false negatives are eliminated, as it
is unlikely that two PSD cells at different levels that overlap each other both
receive very high noise due to the Laplace mechanism.

6 Experiments

We evaluate experimentally the proposed technique for privacy-preserving detec-
tion of anomalous phenomena. We implemented a C prototype, and we ran our
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experiments on an Intel Core i7-3770 3.4 GHz CPU machine with 8 GB of RAM
running Linux OS. We first provide a description of the experimental settings
used. Next, we evaluate the accuracy of our technique in comparison with bench-
marks. Finally, we investigate the performance of our technique when varying
fundamental system parameters.

Experimental Settings. We consider a square two-dimensional location space
with size 100 × 100, and a phenomenon with range M = 100 and threshold
T = 80. We consider between 10, 000 and 50, 000 mobile users (i.e., sensors),
uniformly distributed over the location domain. The average non-anomalous
phenomenon value is 20, and to simulate an anomaly we generate a Gaussian
distribution of values with scale parameter 20, centered at a random focus point
within the location domain.

We consider two benchmark techniques for comparison. The first method,
denoted as Uniform Grid (U), considers a single-level fixed-granularity regu-
lar grid. The parameters of the grid are chosen according to the calculations
presented in the first part of Sect. 4. The second method, Adaptive Grid (AG),
implements the state-of-the-art technique for PSDs as introduced in [16]. Specif-
ically, it uses a two-level grid, where the first grid granularity is chosen according
to a fixed split as indicated in [16], whereas the second-level granularity is deter-
mined based on the data density in the first level.

Comparison with Competitor Methods. We measure the accuracy in
detecting anomalous phenomena for the proposed tree-based technique (denoted
as t) and the benchmarks U and AG when varying privacy budget ε. For fair-
ness, we consider the 1-vote decision variant, which is supported by all methods.
Figure 4(a) shows that our technique (presented with two distinct depth settings)
clearly outperforms both benchmarks with respect to the Jacard metric. The U
and AG method are only able to achieve values around 0.1 or less. Furthermore,
they are not able to make proper use of the available privacy budget, and some-
times accuracy decreases when ε increases. The reason for this behavior is that
the procedure for grid granularity estimation proposed in [16] has some built-in
constants that are only appropriate for specific datasets and query types. In our
problem setting, the granularity of these choices increases when ε increases, and
the noise injected offsets the useful information in each cell.

To validate the superiority of the proposed technique beyond the J met-
ric, Fig. 4(b) and (c) provide visualization of the heatmap obtained for the U
method and our technique, respectively (the heatmap obtained for AG is similar
to that of U). The anomalous phenomenon in the real data is shown using the
circle area (i.e., points inside the circle are above the threshold). The heatmap
produced by the U method is dominated by noise, and indicates that there are
small regions with above-the-threshold values randomly scattered over the data
domain. In contrast, our technique accurately identifies a compact region that
overlaps almost completely with the actual anomalous region. Furthermore, for
the t technique we consider two distinct maximum depth settings, d = 3 and
d = 4. We observe that, although both variants outperform the benchmarks, as
the height of the structure increases, a potentially negative effect occurs due to
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the fact that the privacy budget per level decreases. Hence, it is not advisable
to increase too much the PSD depth.

Both the UG and the AG method are unable to maintain data accuracy, and
return virtually unusable data, without the ability to detect the occurrence of
anomalous phenomena. In the rest of the experiments, we no longer consider
competitor methods, and we focus on the effect of varying system parameters
on the accuracy of the proposed technique. We also note that our method incurs
low performance overhead, similar to that of the U method (between 2 and 4 s
to sanitize and process the entire dataset). The AG method requires slightly
longer, in the range of 15–20 s.

Effect of Varying System Parameters. We perform experiments to mea-
sure the accuracy of the proposed technique when varying fundamental system
parameters, such as budget split parameters α, β and sensor count N .

Figure 5 shows the accuracy of our method when varying α, the budget split
fraction across levels. Each graph illustrates several distinct combinations of
budget ε and count-sum budget split β. For smaller α values, a smaller fraction
of the budget is kept for the current level, with the rest being transferred for
the children cells. Since the root node and the high levels of the tree have large
spans, a smaller budget does not have a significant effect on accuracy, so it is
best when a larger fraction is used in the lower-levels. For α = 0.2, the proposed
method reaches close to perfect J metric value.

We also illustrate the effect of the various decision variants based on voting.
Comparing Fig. 5(a) and (b), we can see that the accuracy increases slightly for
the 2-vote scenario. This confirms that the 2-vote approach is able to filter out
cases where some large outlier noise in one of the lower-level cells creates a false
positive. On the other hand, the majority-voting strategy from Fig. 5(c) obtains
lower accuracy, as it suffers from a relatively high false negative rate. Even if
some of the levels signal an alarm, it is possible that a large amount of noise on
several levels flips the outcome to “below the threshold”. We conclude that the
2-vote strategy is the best available option.

Figure 6 shows the effect of varying parameter β, which decides the privacy
budget split between the counts and sums in the PSD. Similar to previous results,
we observe that the majority voting strategy has lower accuracy, due to the
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Fig. 7. Impact of number of mobile users N , β = 0.5, d = 3

increased occurrence of false negatives. The results also show that an equal split
between counts and sums yields good results. As long as the β split is not severely
skewed, the parameter does not significantly influence accuracy. However, when
β is excessively low or high, one of the sum or count components gets very little
budget, which causes large errors. In fact, this is one of the main reasons why
competitor techniques fail to obtain good accuracy, as they do not consider the
correlation between sum and count errors.

Finally, we consider the effect of varying number of sensors N . Figure 7 shows
that the accuracy of the method increases slightly with N . This is expected, as a
higher data density due to more reporting sensors benefits differential privacy, as
the signal-to-noise ratio increases. In this case, we also notice a tendency of the
majority voting strategy to underperform significantly compared to the 1-vote
and 2-votes strategies.
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7 Related Work

Collaborative sensing enables information extraction from a large number of
wireless devices, spanning from smart phones to motes in a WSN. We focus on
personal devices which are carried by users and may be used in sensing appli-
cations – from tracking to shapes-detection – in settings in which there are
no WSNs available [11,15]. Such settings occur in many real-life applications in
which the deployment of a WSN is either not possible or the WSN approach is not
sustainable. We note that collaborative sensing is, in some sense, a broader par-
adigm than participatory sensing and opportunistic sensing, and when it comes
to issues related to privacy protection, it subsumes the ones from the latter
two paradigms in the risk of leaking personal/sensitive information [8]. While
privacy-preserving computation has its history in domains such as cryptogra-
phy and data mining, the existing methodologies cannot be straightforwardly
mapped into the collaborative sensing applications.

Existing work addressed different aspects of the problem of detecting and rep-
resenting spatial features of a particular monitored phenomenon [4,5]. Spatial
summaries (e.g., isocontours [5]) may be constructed for energy-efficient query-
ing. A natural trade-off is the precision of the aggregated representation vs the
energy efficiency.

Location privacy has been studied extensively. Some techniques make use
of cryptographic protocols such as private information retrieval [6]. Another
category of methods focuses on location cloaking, e.g., using spatial k-anonymity
[7,14], where a user hides among k other users. As discussed in Sect. 2, such
techniques have serious security drawbacks. Closest to our work are the PSD
construction techniques in [1,16,17]. As discussed in Sect. 4, these techniques
are general-purpose, and our experimental evaluation shows that they are not
suitable for anomalous phenomenon detection.

8 Conclusions

We proposed an accurate differentially-private technique for detection of anom-
alous phenomena in crowdsourced environmental sensing. Our solution consists
of a PSD specifically-tailored to the requirements of phenomenon heatmap data,
and strategies for flexible processing of sanitized datasets with values collected
from mobile users. Experimental results show that the proposed technique is
accurate, and clearly outperforms existing state-of-the-art in private spatial
decompositions. In the future, we plan to extend our solution to continuous
monitoring of phenomena, where multiple rounds of reporting are performed.
This scenario is more challenging, as an adversary may correlate readings from
multiple rounds to breach individual privacy.
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