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This work addresses the problem of maintaining the consistency of the answers to con-
tinuous queries which are posed by the users of the Moving Objects Databases (MOD).
Assuming that the motion of the object is represented by a trajectory, we focus on the effect
that the modifications to the trajectory data can have on the queries answer-set. In case a
mobile user enters a road section in which an accident has occurred, which was not antic-
ipated in the “expected” traffic behavior, not only his trajectory needs to updated, but the
answer to the query that he posed may need to be recalculated and transmitted again.
In this work we propose a framework which enables detecting and processing the pending
queries whose answers need to be re-evaluated upon modifications to the MOD. We iden-
tify the relevant syntactic elements which can be extracted from the user’s queries and we
analyze their semantic implications. We also propose an architecture of a system that can
be used for this task. We demonstrate how triggers can be used to maintain the answers to
the users’ queries “up to date” with respect to the modifications to the MOD and we show
that our framework can be implemented on top of the existing ORDBMS.

I. Introduction and Motivation

A wide range of applications (traffic control, trans-
portation industry, digital battlefields, ecology/ en-
vironment monitoring, mobile communication sys-
tems, dynamic resource discovery, ...) need some
form of a management of the locations of the en-
tities involved [21]. The ability to store and pro-
cess information about moving objects has spurred a
lot of recent scientific research in the field of Mov-
ing Objects Data bases (MOD) and generated a large
body of results in several topics of interests: – mod-
eling and querying the locations of moving objects
[27, 36, 40]; – indexing schemas for efficient re-
trieval/update [1, 12, 25, 30]; – efficiency of location
management and query processing subject to uncer-
tainty [19, 40, 34].

On the other hand, there is a bulk of work that
has been done in the field of Active Database Sys-
tems. Various aspects (e.g., expressiveness, termi-
nation and confluence, executional semantics [6, 10,
14, 28, 38]) of the seemingly straightforward event-
condition-action paradigm, which adds a reactive be-
havior to the database systems, have been investigated
and some prototype systems have been implemented
(e.g. STARBURST [37], Chimera [5]).

�

This paper is an extended version of the paper Triggers and
Continuous Queries in Moving Objects Databases that appeared
in MDDS 2003. This research is partially supported by NSF grant
IIS-0325144.

On the commercial part, due to the recent trend for
supporting universal applications, Object-Relational
Database Management Systems (ORDBMS) are now
offering new (application-specific) complex data
types, inheritance, user-defined routines which imple-
ment operators/methods over the user-defined types,
extensions to SQL ([3, 16]), predicates (e.g. inter-
sects, contains) and functions for spatial calculations
(e.g. distance).

The above observations point out important exist-
ing bodies of work which, so far, seem uncorrelated
and one of the goals of this work is bring them to-
gether in order to address a significant and practically
relevant problem. In particular, we tackle the prob-
lem of maintaining the correctness of the continuous
queries in MOD settings and we show that this can be
achieved using active rules (triggers). We also pro-
pose an architectural framework which can be imple-
mented on top of the existing ORDBMS.

I.A. Problem Description and Our Con-
tributions

Consider a MOD which stores the information about
the (location,time) information for a set of moving ob-
jects. Due to the dynamic nature of the entities in-
volved, the queries the one can pose to the MOD have
been classified as (c.f. [27]): – instantaneous ones,
for which the answer is evaluated immediately and
transmitted to the user; – continuous queries, which
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need to be evaluated at every “clock-tick” so that the
consistency of their answer is ensured; – persistent
queries, which not only need to be evaluated at each
time instance, but may also require evaluation over an
unbounded history.

In this work we focus on continuous queries. For
example, a user on-board a moving vehicle may be in-
terested in: Q1: “Retrieve all the vehicles which will
be no further than 0.3 miles from me, between 8:00PM
and 8:10PM”. If the query was posed at 6:30PM, it
becomes continuous one, because many modifications
to the MOD can occur between the time

� �
was posed

and the relevant time-interval for its answer. For ex-
ample, one of the cars that was part of the answer to� �

changed its motion plan (e.g. a company truck
was re-routed) at 7:45PM. However, not all the modi-
fications to the MOD may be relevant to

� �
. If there

is an accident at 7:30PM, on a road segment which af-
fects no vehicle that is part of the answer of

� �
, then

the updates of the trajectories of the affected moving
objects should not cause re-evaluation of

� �
.

This is exactly the goal of our work – how to
provide a reactive behavior which will enable the
MOD to automatically maintain the correctness
of the answers to pending continuous queries, and
avoid re-evaluation of their answers when it is not
necessary. We consider the standard modifications to
the MOD (updates, deletions and insertions) and our
main contributions can be summarized as follows:� We identify the relevant syntactic elements in the
users’ continuous queries and analyze their (seman-
tic) implications on the reactive maintenance of the
correct answers.� We describe the specifications of the triggers which
enable the MOD to properly react to the modifica-
tions, for the purpose of (avoiding) re-evaluation of
continuous queries.� We propose a framework which can be used to
detect the set of queries whose answers are affected
by the modifications to the MOD. We describe set of
functions/procedures (for which, in the sequel, we use
the generic term scripts) needed for this functionality
and we demonstrate how they can be incorporated on
top of an ORDBMS.

The rest of this paper is structured as follows. Sec-
tion 2 presents preliminary background and Section 3
outlines the categorization of the requests that a user
can pose to the MOD and identifies the relevant syn-
tactic elements. In Section 4 we describe the basic
building blocks of our proposed architecture. Section
5 discusses the specifications of the triggers which,

upon modifications to MOD, generate the activities
needed for re-evaluation of the continuous queries. In
Section 6 we briefly address the issue of possible op-
timizations of the reactive behavior, based on the in-
formation available in the requests’ syntax. In Section
7 we position our work with respect to the existing
literature and in Section 8 we conclude and outline di-
rections for future work.

II. Preliminary Background

In this section we introduce the model of the trajec-
tory and its construction and we address some issues
related to the modifications of the MOD, which will
be of interest for the subsequent sections.

II.A. Trajectory Model and Updates

In order to capture the spatio-temporal nature of a
given moving object, we need to, somehow, repre-
sent its motion. This information pertains to the ob-
ject’s whereabouts at a given time instance – (loca-
tion,time), and is represented using a trajectory [34]:� A trajectory of a moving object is a piece-wise linear
function � � � 
 � � � � � , represented as a sequence of
points � � � � � � � � � � , � � � � � � � � � � , ..., � � " � � " � � " � � � � )
� � ) * * * ) � " � . For a given a trajectory � . , its projec-
tion on the / 0 plane is called the route of � . .
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Figure 1: Trajectory and its construction based on a
route and speed profiles

Thus, the object is at � � 1 � � 1 � at time � 1 , and dur-
ing each segment 4 � 1 � � 1 6 � 7 , the object moves along a
straight line from � � 1 � � 1 � to � � 1 6 � � � 1 6 � � , and at a con-
stant speed. The expected location of the object at any
time � 8 4 � 1 � � 1 6 � 7 � � ; = ) ? � is obtained by a linear
interpolation between � � 1 � � 1 � and � � 1 6 � � � 1 6 � � . An il-
lustration of trajectory and its route is shown in Figure
1.

Relative to now, a trajectory can represent both the
past and the future motion of objects. The future part
of a trajectory corresponds to a motion plan of the
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moving object and in order to explain how we con-
struct it, we need to define an electronic map1:

� A map is a graph, represented as a relation where
each tuple corresponds to a block with the following
attributes:
– Polyline: Each block is a polygonal line segment.
Polyline gives the sequence of the endpoints: � � � � � � � ,

� � 	 � � 	 � , . . . , � � 
 � � 
 �
– Length: Length of the block.
– Fid: The block id number.
– Drive Time: Typical drive time from one end of the
block to the other.
The GDT maps provide a single Drive time attribute
for a given block. However, this attribute is “static”,
in the sense that it does not consider variations of the
traffic (e.g. the speed in a given block is 35 mph
during “regular” hours, and 20 mph during “rush”
hours). By monitoring the traffic, one can generate a
Speed Profile for a given block which is used in con-
structing the trajectory.

In order to construct the future part of the trajec-
tory, the moving object transmits its start point and
start time, and the destination point (plus, possibly,
a sequence of other “to-be-visited” points). Given
the start time, we use a time-dependent variant of the
shortest path algorithm, as presented in [7]( essen-
tially, an � 
 extension of Dijkstra’s algorithm), where
the cost of an edge in a graph depends on the start
time to travel along that edge. Using this, we generate
the shortest (in travel-time or distance) path between
the start point and the destination point, and for each
straight line segment, we compute the time of object’s
arrival at the end of the segment.

As far as the past motion of the object(s) is con-
cerned, one can use a set of 3D points � � � � � � � � � � ,

� � 	 � � 	 � � 	 � , . . . , � � 
 � � 
 � � 
 � which were transmitted
by a moving object periodically, during its past mo-
tion (e.g. using an on-board GPS to detect location
at given time points). To construct the trajectory, we
first ”snap” the points on the road network, and then
connect the snapped points with the time-dependent
shortest path.

Observe that, due to the Speed Profile attribute
used in the trajectory’s construction, a single
route segment may yield more than one segment
on the moving object’s trajectory. This is because
while being still within one particular route segment
(block), the object enters time-points at which the
value of the Speed profile for that route segment has
changed. The scenario is illustrated by the route seg-

1Such maps are provided by, among the others, Geographic
Data Technology (www.geographic.com).

ments � � � � � and � � in Figure 1.
Let us point out that this model of a trajectory can

be represented as a User-Defined Type (UDT) in an
ORDBMS. We define the � � � � � � � " � $ as a row type% ' ) +

of , " . 0 � , which is another row type having 1 3 5
and

+
attributes. Thus, we have a schema for repre-

senting moving objects trajectories6 7 + 9 " . ; 3 � � � � � � � " � $ 3 @ @ @ " � A � � � � � � . C D � � E F
In the rest of this paper we will use G I K to re-

fer to the (instance of the) relation which stores the
data about the moving object trajectories. The term

G I � will denote the server which, besides man-
aging the (location,time) information of the moving
entities, also stores the information about static ob-
jects of interest (e.g., landmarks), map data, etc. and
is used for communication with the moving objects.
The components of the G I � which are relevant for
maintenance of the continuous queries will be de-
scribed in details in Sections 4 and 5.

II.B. Modifications to the MOT

There are few sources which can cause modifications
to the MOT that we consider:
1. insert – At any time instance, a new trajectory may
be inserted in the database. The request may come
from a new moving object itself or a web-based user
(i.e. a trucking company). In either case, the trajec-
tory is generated as explained above and, after being
assigned its unique L M O

, inserted in the MOT.
2. delete – An existing trajectory of a given moving
object (given L M O

) may be deleted from the MOT. For
instance, a given truck needs a service which is ex-
pected to take a substantial time, or a given vehicle
was involved in an accident and will not be a traffic
participant for a while.
3. update – The are two basic sources of updating a
trajectory:

3.1. – A given moving object may decide to change
its route. For example, a particular truck needs to
be re-routed to a certain warehouse because of a new
pick-up request. In this case, the future part of the tra-
jectory for the given oid is re-constructed and inserted
in the MOT (after deleting the “old” future part).

3.2. – Although one may consider the speed pro-
files when constructing a future trajectory, there may
still be some unforeseen variations, due to: accidents;
road-works; bad weather; etc... In this case, the MOD
server needs to utilize some sort of a real-time infor-
mation to properly update the motion plans of the ob-
jects whose trajectory is affected by the unexpected
traffic conditions. Otherwise, the (location-time) in-
formation stored in the MOT will become inaccu-

22 Mobile Computing and Communications Review, Volume 8, Number 3



rate. This kind of information is available for many
metropolitan cities. For example, The University
of Illinois at Chicago (www.ai.uic.edu) maintains the
current traffic information for the expressways around
Chicagoland (I-55; I-290; I-90/94; I-294) which is up-
dated every 2 minutes. The sources of information are
traffic sensors (detectors) which are mostly located on
highways (e.g. toll booths) and intersections of ma-
jor streets. This kind of information can be used to
detect an occurrence of abnormal traffic conditions on
given sections of a road network. In order to utilize
this information, the MOD needs to: 1.) Identify the
trajectories which are affected by the abnormal traf-
fic; and 2.) Update the (location-time) information
about their (future) motion plans. These issues were
addressed in [33], where the model of a traffic incident
was proposed, which is utilized to update the trajecto-
ries affected by abnormal traffic conditions. In order
to identify all the trajectories which are affected by
the abnormal traffic, the model was proposed which
captures the spread of the effects of a traffic incident
on the neghbouring road-segments (called the traffic
spill-over effect). Due to lack of space, we will not
elaborate on the technical details of [33] here. For the
purposes of this work, we will assume that there is a
methodology which can be used to detect the trajec-
tories affected by some traffic incident and, based on
the type of the incident, correctly updates their future
portions.

III. Classification of MOD Queries

In this section we present the categories of queries
which can be used in a user’s request in our frame-
work. and we identify the important syntactic ele-
ments that can be extracted from a given request.

We assume that the users on-board moving vehi-
cle have some minimal processing power, so that they
can formulate their queries/requests and receive the
answer(s), e.g. they have a pocket-PC or a Personal
Digital Assistant (PDA). The web-based users of the

� � � are assumed to have some form of an interface
for the same purposes.

We distinguish between two basic categories of
continuous Query Requests (QR) to the MOD, as the
simplest and the most sophisticated:
1. Query Requesting Notification (QRN) in which
the user basically requests from the MOD to notify
her/him when certain event occurs/ certain condition
becomes true2. An example of the is

� � � 	 � “Notify

2Let us point that in the active database literature, two extreme
alternatives are to have both the event and the condition embedded

me when I am within 2 miles from hospital, between
1PM and 3PM”.
2. Query Requesting Answer (QRA) in which an
anwer-set needs to be transmitted to the user. For
example, a user on-board moving object may ask� � � 	 � “Retrieve all the motels that will be no fur-
ther then 1 mile from my route, between 9PM and
10PM”.

Observe that there may be other requests where the
user needs both notification and some answer trans-
mitted. In the context of

� � � 	 , this would corre-
spond to

� � 
 	 � “Notify me when I am within 2 miles
from the hospital and tell me the name of it”. In the
rest of this work, without any loss of generality, we
will focus on the

� � � types.

III.A. Categories of Queries

Now we present the categories of queries which can
be used in a particular

� �
. We do not address the

issues of their linguistic constructs or processing be-
cause various aspects of interest have already been in-
vestigated (c.f. [1, 25, 34, 36]).

� Location Queries: These queries pertain to the ob-
jects’ whereabouts and time. We consider two types
of location queries:
1. Where at(t,moid) – returns the expected location
(i.e. the � � � � � coordinates) of the object � � � �

at time
� .
2. When at(x,y,moid) – returns the time at which the
object � � �

is expected to be at location � � � � � .
� Range Queries: These spatiotemoral queries return
the set of moving objects which are within a given
region, for a given time-interval. The basic syntax is�  ! � � # � � � � 	 � � $ � .

� Within Distance Queries: The basic syntax is% � � & �  � � ! � )  , # � � / 0 � � � � 	 � � $ � and these queries
return a set of objects which are no further than

�
units

from the object � / 0 , within the time-interval 3 � 	 � � $ 5 .
� k-Nearest Neighbor (k-NN) Queries: The se-
mantics of these queries is standard – for a given
query object, a set of 6 answer objects is returned,
constituting the 6 objects which are closest to the
query object, within a given time interval. Their
processing has already been investigated for spatio-
temporal context [1, 23, 29] and the basic syntax is� � � � / 0 � 6 � � 	 � � $ � .

in the event and use a rich event-processing language [15]; or have
both of them embedded in the condition and use some temporal
logic-based processing [28].
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III.B. Significant Times of the Requests

There are three significant time-instances pertaining
to a given

� �
:� Time Posed – � � , which is the time at which the

� �
is sent to the MOD3.� Time to Answer – � � , which is the time at which
the user wants the answer-set transmitted. For ex-
ample, the user may pose a

� � 
 � at 4PM: “Re-
trieve all the motels that will be no further then 1 mile
from my route, between 9PM and 10PM, and send
me the answer at 6PM”. In this case, � � � � � � and
� � � � � � . In case the request is of a notification
type � � � � � , by default, we assume that � � is the time
instance at which the event of interest has occurred
(equivalently, the condition becomes satisfied). Ob-
serve that, we may have more than one � � value – in
the context of

� � � � the object may be within 2 miles
from the hospital  � at 1:30PM and within 1.5 miles
from the hospital  � at 1:55PM.� Termination Time – � ! , which is the time after which
the QR is no longer valid. In the context of

� � 
 �
above, this time is � " � $ & � � . In theory, if the
user does not provide a termination time as a part of
the request, the query may have an “infinite duration”
and, in turn, require infinite re-evaluation. However,
in practice, every trajectory has some time-instance

� ' ( ) , at which the object has reached the end of its
trip. By default, we assume that � ! � � ' ( ) .

With respect to the relevant time-interval of the
query (e.g. 9PM to 10PM for

� � 
 � above), the
property of interest may be satisfied sometimes (resp.
always) or within some sub-interval(s) of the given
time-interval of the query. This corresponds to the +
(resp. , ) quantifiers in the temporal domain or some
percentage-based value of the validity of the property
of interest. These aspects impact the processing of the
respective queries, but not the main design aspects of
our work and, without loss of generality, we assume
throughout the rest of the work that the queries under
consideration are under sometimes semantics of the
temporal quantifier.

IV. System Architecture

As we mentioned in Section 1, according to the
definition in [27], continuous queries require that
their answer-set is re-evaluated with every clock-tick.
Clearly, this is very impractical and imposes a lot
of computational overhead on the MOD server. In
this section we define the main components which

3We do not distinguish between a valid time and transaction
time.

are needed to maintain the information about queries
posed to the MOD and to properly update it upon
modifications to the MOT.

IV.A. Schemas

We extend the � . 0 schema, introduced in Section
2, with two more attributes – Pending Posed Queries
(ppq) and Part of Query Answer (pqa). Now the
schema is:1 3 5 7 8 : ; < > @ B D E F > 8 @ I < K K K < M M N < M N B P
Both of the new attributes serve as flags and their se-
mantics is as follows:� Q Q S of the object T U V W is 0 if and only if there is X T
query posed by the object T U V W which is still “pending”
(i.e. may need a re-computation of its answer-set upon
modifications to the � . 0 ). Otherwise, the value of
the Q Q S corresponds to the number of pending queries
posed by the object T U V W .� Q S \ for a given T U V W is 0 iff there are no queries
(posed by any user – mobile or web-based) for which

T U V W is part of their answer-set. Q Q S � X denotes that
the given T U V W is part of the answers for X different
queries.

We have two more relations4,
_ ` ` b E ; andc B @ > d e ` h E @ with their respective schemas:� _ ` ` b E ; 7 i ` E @ j : ; < k b E @ I j : ; < 5 E @ m : e B > E P and� c B @ > d e ` h E @ 7 k b E @ I j : ; < 3 p D E F > j : ; P .

The first relation keeps track of which user (recall
that we allow for a web-based users of MOD) issued
which query, and what is the time after which the
query is no longer valid, which is the � ! parameter of
the query. The second one maintains the information
about which object is a part of the answer for a given
query.

IV.B. Scripts

We have several PL/SQL scripts:
1.) The first one,

5 @ B e ` m : > d e ` h E @ 7 k < i P is
used to transmit the answer of the query

�
to

the user s , who posed it. This is a trigger-like
script (not a pure database trigger) which does the
following: – for a given query S U V

, it extracts its
� � parameter. Recall that (c.f. Section 3), every
query request has its � � , which is the time at which
the user wants the answer sent to him/her by the
MOD. At � � , the

5 @ B e ` m : > d e ` h E @ 7 N : ; < b : ; P
instance of the script will

t u v u w 5
all

4We do not discuss here any of the relations pertaining to the
“static” data, i.e. hospitals, motels, landmarks. We assume that
they are properly represented and can be queried/accessed w.r.t,
as least, their names and geo-locations.
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the
� � � � � 	 � � 
 � � � �

the
� � � 	 � � � � � �� � ! � ! � � � 	 � � � � � � & ( ) � � * � � 
 , . � 
 and

send the projection to the / 0 2
.

2.) The script � � � � � 4 � 5 7 8 ( : , upon receiving the
query

;
from the user < ( / 0 2

): – assigns a unique= 0 2
to

;
; – inserts the tuple

5 ) � 
 8 . � 
 8 	 : into
the table

B � � ) � 
 , where C E C G is the termination
time of the = 0 2

. If the user / 0 2
is a mobile one, it

also increments by one the value of its H H = attribute
in the J L N . Subsequently, it invokes the script! 4 � O 5 . � 
 : (see below) and creates an instance of the
script

P � � � � R � 	 � � � � � � 5 . � 
 8 ) � 
 : .
3.) The

! 4 � O 5 ( : , basically evaluates a query, for
a given = 0 2

. After that, it properly updates the� � � 	 � � � � � � table with all the
5 . � 
 8 T � 
 : tuples,

where U 0 2
is an element of the answer-set for

;
.

If this was the first invocation of
! 4 � O 5 ( : (i.e.� � � 	 � � � � � � 5 ( ) � � * � � 
 8 � � � � � 	 � � 
 : did not have

any tuples with the = 0 2
), then the value for the H = V

attribute of each U 0 2
in the J L N table is incremented

by one. Otherwise: – if the tuple
5 . � 
 8 T � 
 � � : was

in the
� � � 	 � � � � � � , but T � 
 � � is no longer in the

answer-set for
;

, the tuple is deleted, and the H = V
value for T � 
 � � in the

� � P
is decremented by one; – if

the tuple
5 . � 
 8 T � 
 � � : was not in the

� � � 	 � � � � � � ,
the tuple is inserted and the H = V value of the T � 
 � � is
incremented by one in the J L N .
4.)

! 4 � O � � O O 5 : simply scans the
B � � ) � 
 relation

and, for every query = 0 2
whose

P � � R � � � 	 � attribute
is not less than C Y [ ] ] ^ _ G , invokes the

! 4 � O 5 . � 
 : .
5.)

! 4 � O � � O O � B � � ) � 
 5 7 B ` : script scans
the relation

B � � ) � 
 and, for every tuple
for which

B � � ) � 
 & 7 � � � � � 
 , 7 B `
andB � � ) � 
 & P � � R � � � 	 � d C Y [ ] ] ^ _ G , it invokes! 4 � O 5 B � � ) � 
 & ( ) � � * � � 
 : . If the execution of! 4 � O 5 B � � ) � 
 & ( ) � � * � � 
 : caused modifications to

the
� � � 	 � � � � � � table and there is an existing in-

stance of the script
P � � � � R � 	 � � � � � � 5 ( B ` 8 7 B ` : for

which ( B ` , B � � ) � 
 & ( ) � � * � � 
 , the new answer
set is transmitted to the user

7 B `
.

6.) � � ! 4 � O � � � � � � � 5 � B ` : , on the other hand,
scans the relation

� � � 	 � � � � � � . For every tuple
for which

� � � 	 � � � � � � & � � � � � 	 � � 
 , � B `
, it

invokes the script
! f � g 5 � � � 	 � � � � � � & ( ) � � * � � 
 : .

Similarly to the previous script, if the execution of! 4 � O 5 � � � 	 � � � � � � & ( ) � � * � � 
 : caused modifica-
tions to the

� � � 	 � � � � � � table and there is an existing
instance of the script

P � � � � R � 	 � � � � � � 5 ( B ` 8 7 B ` :
for which ( B ` , � � � 	 � � � � � � & ( ) � � * � � 
 , the new
answer set is transmitted to the user

7 B `
.

7.) � � R T 4 � 5 ( B ` : is a script which: – removes
the tuple for which

B � � ) � 
 & ( ) � � * � � 
 , ( B `
; –

decrements the
� � P & k k . counter for the respec-

tive
� � P & T � 
 , B � � ) � 
 & 7 � � � � � 
 : , in case that

tuple is still in the
� � P

; – removes every tuple
from

� � � 	 � � � � � � table for which its respective
attribute

� � � 	 � � � � � � & ( ) � � * � � 
 , ( B `
and decre-

ments the
� � P & k . � attribute of the corresponding� � P & T � 
 , � � � 	 � � � � � � & � � � � � 	 � � 
 . The last

action if the � � R T 4 � 5 ( B ` : script is to remove any
existing instance of the

P � � � � R � 	 � � � � � � 5 ( B ` 8 7 : .
8.) Finally, the script

� ) � m � 5 B � � ) � 
 : periodically
checks the

B � � ) � 
 table. For every tuple for which
the value of the

P � � R � � � 	 � attribute is less than
C Y [ ] ] ^ _ G , it invokes the � � R T 4 � 5 B � � ) � 
 & ( ) � � * � � 
 :
script.

The concepts that we introduced are illustrated in Fig-
ure 2, which we use in the following:

Example 1. Observe an instance of the MOD at 1PM,
at which time the mobile user U 0 2 o issues the query:
retrieve all the objects which will be no further than
0.25 miles from me between 3:50PM and 4:00PM,
and send me the answer at 3PM. The query is assigned
a ( ) � � * � � 
 = 0 2 p

. The significant times for = 0 2 p
are

C r E s t J , C v E y t J and C G E o t J . The se-
quence of steps taken by the invocation/execution of
the corresponding scripts and the appropriate modi-
fications are indicated in the circles on the arrowed
lines (the scripts that are activated are drawn with the
thicker oval lines). Observe that the object U 0 2 o had
already posed another query = 0 2 |

which terminates at
2PM. Hence, its H H = attribute is incremented. Since
the objects U 0 2 } and U 0 2 ~

become the answer to = 0 2 p
,

their respective H = V attributes are modified accord-
ingly. As the user requested, the script TransmitAn-
swer(qid7,oid4) will be executed at 3PM. In the con-
text of the terminology proposed in [29], the answer
will be of the form: ([oi6,(3:50, 3:55)], [oid9,(3:55,
4:00)]).

V. Active Rules

As one may have observed, Figure 2 contains an el-
ement labeled

P � B � � ! � �
which was not elaborated

upon in the Example 1 above. In this section, we fo-
cus on the basic elements which provide the proper
reactive behavior which guarantee that answers to the
(pending) continuous queries to the MOD are kept
up-to-date. We consider the standard modifications
to the J L N , which are UPDATE, DELETE and IN-
SERT and, as we mentioned, each of these modifi-
cation may cause changes to the answer-set(s) of the
users queries. We describe the syntax (and semantics)
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Figure 2: Query request posed by a mobile user to the MOD

of the respective active rules/triggers5 which will en-
sure that the changes to the queries’ answers are prop-
erly reflected. Since our goal is to utilize the capabil-
ities of existing ORDBMS for their implementation,
we follow the standard Event – Condition – Action
(ECA) paradigm.

V.A. Updates to the MOT

Recall that an update may be initiated by: 1. The mo-
bile user itself – either it decided to change its motion
plan or its on-board computer detected that it deviates
from its MOD-modeled trajectory (c.f. [34]); 2. The
MOD server, when unexpected traffic conditions are
detected from a real-time traffic site. To capture this,
as a part of the � � � specifications we have two trig-
gers. The first trigger is:� � � � 	 � 	 � � � � � � � � � � � � � � 	 � � � �

� � 	 � � � � � � 	 � � � 	 �  ! " # $ % � ' � ( � � 	
* + � � � � � 	 . 0 0 1 3 4� 5  6 � � 6 6 � � 7 7 9 " : ; � � 	 . % = : >

and the second one is:
� � � � 	 � 	 � � � � � � � � � � � � � � 	 � � � ?
� � 	 � � � � � � 	 � � � 	 �  ! " # $ % � ' � ( � � 	

* + � � � � � 	 . 0 1  3 4
� " � 5  6 � � @ 7 C " � ; � � 	 . % = : >

5We do not confine to any particular DBMS here, although
our implementation uses Oracle 9i. Instead, our specifications are
written, as generically as possible, in compliance with the SQL3.

The triggers are designed so that they capture both
cases: the updated object has posed a query to the

� � � and the updated object is part of an answer for
a query posed by another object.

We illustrate the behavior of the triggers with the fol-
lowing:

Example 2. Figure 3 gives a (partial) instance of
the MOD used in the Example 1, at 3:30PM. Ob-
serve, firstly, that the query qid2 is no longer in the
Issued table because, as indicated on Figure 2, its
termination time was 2PM, so it was purged from
the MOD. Assume that the Real-Time Traffic site re-
ported a congestion on a certain road-segment. The
MOD will identify the affected trajectories and up-
date them accordingly (c.f. [33]), as illustrated by the
thicker portion of the oid6 on Figure 3. Due to the up-
date to the MOT, we have an event which “awakes”
both triggers. Since the moving object oid6 has not
posed any queries itself, the condition part of the trig-
ger MOD UPDATES 1 fails. However, since oid6 is
part of the answer to the qid7 (posed by the oid4),
the condition for the MOD UPDATES 2 is satisfied.
Thus, its action is executed, which invokes the script
ReEval Answer(oid6). The sequence of execution is
illustrated by the numbers in the circles above the ar-
rowed lines. After executing Eval(qid7) it is detected
that, due to the slow-down, oid6 is no longer part of
the answer set. However, the object oid5 which, ini-
tially, was moving too fast to be “...no further than
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Figure 3: Triggers upon update to MOD

0.25 miles from me (= oid4) between 3:50PM and
4:00PM...” (c.f. specifications of qid7 in the Ex-
ample 1), now is slowed down enough so that it be-
comes part of the answer. Since the output generated
by Eval(qid7) has changed, the new answer ([oid9,
(3:52,3:57)], [oid5, (3:58,4:00)]) is transmitted to the
user oid4.

V.B. Deletions to the MOT

When a certain tuple is deleted from the
� � �

table
e.g., a particular moving object has a serious engine
problem and will not be part of a traffic for a signifi-
cantly long time, again we need to consider its effects
to the pending user’s queries in the

� � �
. Firstly, any

query posed by the affected object itself, is no longer
of interest. For that, we have:� � 	 
 � 	 � � 
 � � 	 � � � � � � 	 � 	 � 
 � � � � �


 � � 	 � � 	 � 	 � 	 � � � � �

� 	 � 	 � 	 � � 
 � � � � � 
 � � �  � ! " � #$ % 	 � 	 ' � �  � ! " � # * " " , - . 0
� 	 � � 1 	 ' 3 0$ % 	 � 	 ' 3 
 �

� 	 � 	 � � 5 ! # 6 7 � 8  
� � � � 
 : : ! #  $ % 	 � 	 5 ! # 6 7 � 8  = � �  � ! " � # * 
 � 0

The second case occurs when the deleted object
either has not posed any queries itself, or the ones
that it posed are already removed from the


 : : ! #  
table, due to the execution of the

� � � � � 	 � 	 � 
 � � � � �

trigger above (for which we always assign higher
priority). However, we still need to consider the case
when it was part of the answer to the query posed by
another object. This is handled by:� � 	 
 � 	 � � 
 � � 	 � � � � � � 	 � 	 � 
 � � � � ?


 � � 	 � � 	 � 	 � 	 � � � � �

� 	 � 	 � 	 � � 
 � � � � � 
 � � �  � ! " � #$ % 	 � 	 ' � �  � ! " � # * " , @ - . 0
� # 	 B @ � � 
 C : F # 6 ' � �  � ! " � # * 
 � 0

Observe that, in case the deleted object had
both posed queries AND was part of some other
object’s query, it is handled by the first trig-
ger,

� � � � � 	 � 	 � 
 � � � � � , and the second trigger
has no effect because all the tuples for whichH @ 6 I 
 C : F # 6 * � K L # M I � 8  = � �  � ! " � # * 8  are al-
ready deleted.

V.C. Insertions to the MOT

When inserting a new moving object to the
� � �

, the
situation is most straightforward for the specifica-
tions of the trigger, but most complicated for the effi-
cient processing of (its impact on) the pending users’
queries.

Basically, the insertion of a new moving object
could possibly affect the answer set to every pending
query in the

� � �
. Thus, the brute force approach is

to simply re-evaluate every query posed to the
� � �

.
Clearly, this is very inefficient, but the optimization
problem is beyond the scope of this work (and an on-
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going research topic). We would like to point out that
an attempt towards optimization, which could serve as
a basis for “better - than - brute - force” approach is
given in [22], however there are some limitations to
the proposed methodology, which we address in Sec-
tion 6. Thus, we have the following brute-force to
ensure the correctness of the answers to the pending
continuous queries:� � � � � � � � � 	 	 � � � 
 � � � � � � � � � 
 � �

:
� � � � � � � � � � � 
 � � 
 �

� � � � � � � � �  

VI. Possibilities of Syntax-Based Op-
timization of the Reactive Behav-
ior

While the optimization of the reactive maintenance of
the continuous queries was not a goal of this work,
it is a topic of our ongoing research. In this section
we would like to demonstrate how a careful analysis
of the syntactic information available in the query re-
quests can be used in conjunction with the options
which are readily available in the commercial OR-
DBMS which, in turn, may enable some form opti-
mization of the reactive behavior.

Recall the categories of query requests that we con-
sidered in Section 3. A careful observation will reveal
that a particular

! #
has:$ A query-object (

! # & (
), and$ An answer-object(s) (

! # ) (
).

Similarly to the observations in [29], based on the
combinations of the nature (Dynamic or Static) of the
query object and the answer object(s), we have the
following options:
1. DD – Both the query object and the answer objects
are moving. An example of this query would be: “
Retrieve all the moving objects which are within d =
5 miles from the moving object mo id, between * + and

* , ”.
2. DS – The query object is moving, but the an-
swer objects are static. An example is

! # - + (c.f.
Section 3): “Retrieve all the motels that will be no
further then 1 mile from my route, between 9PM and
10PM”.
3. SD – Here, the query object is static, but the
answer objects are moving. An example of this query
is: “ Retrieve all the objects which are within d = 5
miles from the monument mid, between * + and * , ”.
Observe that this can be viewed as a special case of a
range query.
4. The last combination SS is a pure spatial query.

To illustrate the possible impact that the combi-
nation of the Type of a particular

! #
can have in

conjunction with its Dynamics, let us consider the
following:! # - 1 “Retrieve all the moving objects which will be
inside the region R between 3:30 and 3:45PM”.

Assume that the query was posed at t p = 1:30PM
and that its answer was calculated to be - 2 ! # - 1 3 56 7 , 8 7 1 8 7 : 8 7 + < = . Also, assume that at 3:00PM a traf-
fic abnormality occurred which affected all of the
trajectories of the moving objects which are part of
the answer - 2 ! # - 1 3 . As described in Section 5,
upon updates to the MOT, a separate instance of the
trigger

� 
 � � > ? � � � � � � @ will be enabled and (even-
tually) fired for each of the objects 7 , 8 7 1 8 7 : and

7 + < . Clearly, this will bring the answer-set - 2 ! # - 1 3
up-to-date, however, a lot more efficient behavior
can be achieved. Namely, instead of having one
“generic” type of trigger for all updates, one could
automatically generate an instance of a particular trig-
ger type upon receiving a

! #
, which will be tai-

lored towards syntax-based efficient reactive behav-
ior. In the case of

! # - 1 above, a trigger simi-
lar to

� 
 � � > ? � � � � � � @ can be created upon receiv-
ing the

! # - 1 which should be specified to execute
in a set-oriented granularity. This will ensure that
the respective trigger will fire after all the updates of

7 , 8 7 1 8 7 : and 7 + < have completed and is very likely
to yield more efficient behavior than the same trigger
executing in row-oriented granularity, where a sepa-
rate instance of the respective trigger will be fired after
the update of each individual trajectory in the answer

- 2 ! # - 1 3 .
Let us point out that

! # - 1 is a range query and
its dynamics is of a type SD. On the other hand, note
that the request

! # - + is of a within distance type and
its dynamics is DS. In such a case, generating a cor-
responding trigger which executes in a tuple-oriented
manner when C E F is updated, could yield an execu-
tion which is as efficient as the one when the trigger is
specified to execute in set-oriented manner.

VII. Related Work

The topic of active databases has been extensively
studied for a long time [4, 6, 10, 38] (see the collection
in [18] for an extensive list of references). Many as-
pects have been investigated: – termination and con-
fluence [35]; – coupling modes between transactions
which generated events vs. condition evaluation and
actions execution [10]; – event processing and con-
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sumption [15]; – expressiveness issues [20] and se-
mantics of the active rules behavior, for which sev-
eral formalisms have been used, like for example, ac-
tion theories [2], temporal logic [28] (to name a few).
However, at the time when the research in the field
of Active Databases was at its peak, the research on
Moving Objects Databases was barely at its infancy.
Due to the specific nature of the spatio-temporal do-
main, none of the works can be applied directly to the
MOD settings. Most of the queries, as well as the
action parts of the triggers, are dependent on User-
Defined Functions (UDF) for their processing.

Moving Objects Databases research has attracted a
lot of attention in the recent years. Researchers have
identified and investigated several aspects: 1.) Access
Methods: much work has been done on selecting an
appropriate index for certain types of queries both in
primal [24, 26, 25, 30] and in dual space [1, 12, 13].
Specifications of relevant “dimensions” for a MOD
indexing are presented in [31, 32]; 2.) Uncertainty:
[39, 40] introduce a cost based approach to deter-
mine the size of the uncertainty for optimizing the
communication cost and query imprecision. Another
model of uncertainty and its implication on the spatio-
temporal queries is given in [34], whereas [19] gives a
quantitative characteristics of the objects whereabouts
for a given boundary of the speed along a road seg-
ment; 3.) Linguistic issues and models: Series of
works [8, 9, 11] address the issues of modeling and
querying moving objects by presenting a rich algebra
of operators and a comprehensive framework of data
types. [36] work presents new operators for special
cases of spatio-temporal range queries.

The MOST model [27] introduced the notion of dy-
namic attributes (similar to the approach in [26]) and
introduced the notion of continuous queries, which are
the topic of our work. As defined in [27], continuous
queries require re-evaluation with every clock-tick. In
this work, we identified the important time-parameters
of the categories of queries and, based on their se-
mantics, proposed a schema which utilizes triggers to
avoid evaluation of the continuous queries with ev-
ery clock-tick, and demonstrated that the framework
can be readily implemented on top of the existing OR-
DBMS.

A recent approach towards efficient evaluation of
queries in a dynamically changing spatio-temporal en-
vironment is given in [22]. The authors present an in-
teresting view where the queries are indexed, instead
of the usual indexing of the moving objects, which
enables incremental evaluation of continuous queries.
They restrict their focus to range queries where the re-

gions are bounded by rectangles. We see these results
as something that could be utilized in the future when
we focus on the efficiency of the triggers’ execution.

The impact that the dynamics of the objects in-
volved has on the efficient processing of the spatio-
temporal queries has been addressed in [29]. How-
ever, the authors do not consider any reactive ability
to handle the changes to the (stored) representation of
the dynamic attributes.

VIII. Concluding Remarks and Fu-
ture Work

We presented a framework for evaluating continuous
queries posed to the MOD. After presenting the cat-
egories of queries and their relevant “semantic im-
pact”: – time instances and dynamic vs. static nature
of query objects and query answers, we proposed a
system which, upon modifications to the MOD will
re-evaluate the only the queries whose answer-set may
be affected by those modifications. We identified the
basic elements of the architecture (scripts and data ta-
bles) which can be implemented on top of the “off the
shelf” ORDBMS.

The work that we presented here is part of a larger
research effort that we are currently undertaking in the
area of context-aware MOD. Although we never ex-
plicitly mentioned it (and, as we only hinted in Sec-
tion 6), the values that can be extracted from the syn-
tax of the queries are nothing but values of a particular
context dimension pertaining to a given query request.
What is the interplay of the various context dimen-
sions and how can that be utilized towards the over-
all efficiency aspect of the reactive behavior of the

� � � ? For example, the Motion Plan can be viewed
as a context dimension which can have a value of a
type trajectory or of a type sequence of GPS-reported
points. Each type can have a different impact on
the processing and maintaining the continuous queries
posed by the respective user, when taken in conjunc-
tion with the values of the Query Type and Dynamics
context dimensions. Moreover, one cannot disregard
the impact of the values of some Environmental con-
text dimension, e.g., the Traffic Conditions may be
normal or congested which, as we demonstrated in
this work, affects the trajectories (Motion Plan) and
the answers to the pending continuous queries. One
particular topic that we are focusing on is incorporat-
ing the sensor-generated data into the overall context-
awareness settings. For example, a high temperature
reported by a set of sensors may indicate a fire in a
given region which, in turn, impacts the traffic condi-
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tions and generates a scenario similar to the ones that
we considered in this work.

The steps that we have taken towards the foundation
of treating the continuous queries posed to the MOD,
open some other interesting challenges for the future
work. Part of our ongoing research is targeted towards
system-level optimization of the reactive behavior, in
the sense of efficient execution of re-evaluation of the
queries’ answers, in a similar spirit to [22]. Another
long term goal is to investigate if/how incorporating
the user’s preferences, as another context dimension,
can be utilized for optimizing the evaluation of the
pending continuous queries, along the lines of the re-
sults presented in [17] and how to incorporate the un-
certainty of the moving objects whereabouts into the
framework (c.f. [34]).
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