
Formalizing and Reasoning About the Requirements Speci�cations

of Work�ow Systems

Goce Trajcevski

Department of EECS

Univ� of Illinois at Chicago

gtrajcev�eecs�uic�edu

Chitta Baral�

Department of CSE

Arizona State University

chitta�asu�edu

Jorge Loboy

Bell Labs

jlobo�research�bell�labs�com

Abstract

This work addresses the problem of work�ow requirements speci�cations considering the
realistic assumptions that� � it involves experts from di�erent domains �i�e� representatives
of di�erent business policies�� not all the possible execution scenarios are known beforehand	
during the early stage of speci
cation� In particular	 since the main purpose of a work�ow is to
achieve a certain �bussiness� goal	 we propose a formalismwhich enables the users to specify their
requirements �and expectations� and test if the information that they have provided is	 in a sense	
su�cient for the work�ow to behave
as desired�	 in terms of the goal� Our methodology allows
domain experts to express not only their knowledge	 but also the
ignorance� �the semantics
allows for unknown values to re�ect a realistic situation of agents dealing with incomplete
information� and the possibility of occurence of exceptional situations� As a basis for formalizing
the process of requirements speci
cations	 we are using the recent results on reasoning about
actions� We propose a high level languageAW which enables specifying the e�ects that activites
have on the environment and how they should be coordinated� We also describe our prototype
tool for process speci
cation� Strictly speaking	 in this work we go
one step� before actual
analysis and design	 and o�er a formalismwhich enables the involved partners to see if the extent
to which they have expressed their domain knowledge �which may sometimes be subject to a
proprietary restricions� can satisfy the intended needs and behaviour of their product to be� We
de
ne an entailment relation which enables reasoning about the correctness of the speci
cation	
in terms of achieving a desired goal and	 also testing about consequences of modi
cations in the
work�ow descriptions�

Keywords� Worfklow Systems� Reasoning about Actions� Process Speci�cation� Information
Management� Knowledge Representation and Reasoning�Business Process Modeling�

� Introduction and Motivation

A work�ow �WF� is most commonly viewed as a process which executes various cooperative and
coordinated activities in order to achieve a desired goal 	
��� Worlk
ow systems combine the
data � centric view of applications� typical for information systems� with the process � oriented
�behavioral� view of operating systems� Work
ow Management Systems �WFMS�� on the other
hand provide tools for modeling� executing and monitoring work
ows� Throughout the last few
years� the development of work
ow management systems has gained increasing attention and have

�Support was provided by the National Science Foundation� under grant Nr� IRI������		�
ySupport was provided by Argonne National Laboratory under contract Nr� �
���
����

�

been used in wide range of applications 	
�� ��� ���� It has already been observed that� in order
to be useful for the enterprises� WFMSs need well � de�ned correctness�reliability criteria and the
ability to adapt to changes in a
exible manner 	�� ��� ���� Recent works have addressed quite a
few of these issues 	���
�� ��� �
� ��� ��� and identi�ed solutions of many problems of interest in
Work
ow Management Systems� Among the other contributions� several formalisms which enable
representation� reasoning about important run�time properties �e�g� concurrency and deadlocks�
distributed execution� and execution of work
ows� have been proposed� OGWL �Opera Graphical
Work
ow Language� 	���� State and Activity Charts 	���� Concurrent Transaction Logic �CTR�
	
��� Transaction Datalog �TD� 	��� � to name a few�
On the other hand� since the beginning of eighties� the software engineering research has been

pointing out the importance of knowledge representation being thoroughly captured during the
requirements speci�cations stage� before moving on with analysis�design and implementation 	�
�
��� ���� This aspect is very important for process speci�cation in many applications �e�g� E �
commerce� Virtual Enterprises� for the work
ow systems 	
�
��� Namely� the speci�cation stage
involves experts from di�erent domains� who are representatives of di�erent organizations and
bussiness policies� and as Whorf�s hypothesis from psycholinguistics says� � ��� the language a person
uses to describe his or her environment is a lens through which he or she views that environment�����
As an �o� the context� extreme example� there are escimo tribes which are known to have up to
�� di�erent expressions for the word snow� which is normal for them� given the importance that
the snow has on their everyday life 	���� Typically� when it comes to work
ows� not all the possible
executional scenarios are known during the requirements speci�cation stage� participants need
not know the details of how other partners are implementing certain �business� policies� On the

ip�side� a participant may not be even willing to fully reveal a complicated decision � making
process and �s�he should have the ability to choose to what extent a process will be a �black box�
for the other partners �or to what level of granularity it should be �opened��� Moreover� when it
comes to cooperation and synchronization� a particular domain expert typically states the �weakest
preconditions� and the �strongest e�ects� expected�
Consequently� during the early speci�cation stage� the main problems are� has there been

enough domain knowledge collected� given the information� can we reason about its correctness
�which� at this stage is mostly concerned with being able to achieve a desired �business� goal��
given the tendency of domain experts to specify mostly plausible scenarios� can we handle the
occurrence of exceptional cases�

Example � A common framework for representing a work�ow �as an abstract process� is an an�
notated control
ow graph in which vertices represent the activities �steps of execution� and arcs
represent the �ow of control�data� where the annotations on the arcs express the execution logic�
A natural abstraction of the activity performed by an agent� on the other hand� is the execution of
a �control� program� A program de	ning an activity is a sequence of 	ner activities which� when
executed� achieve a desired goal �in AI parlance� programs are called plans�� The control of �ow
in the program is given by conditions about the work�ow environment� that can be tested by the
program�

Figure
 �based on an example from ��
�� gives an example of a graph � based representation of
a work�ow with many basic constructs �AND splits and joins� OR splits and joins� preconditions�
transition constraints� ��
�� It also illustrates a corresponding conditional program which� when

�Throughout the paper we will use the terms environment and state interchangably� and we will formaly de�ne
the notion of state in Section �� In terminology of WF Management Coalition �WFMC� the environment includes
�work�ow relevant data�� �WF control data� and �audit data��

a

b

c

d

e

f

g

h

i

j

kF1

F2

F3

F4

F5

F6

F7

F8

AND

OR

OR

 e_a,F1 -> b; [(e_b,F3 -> d; e_d,F4 -> h; e_h ->j) | (e_b ->e; e_e,F5 -> j)]

 e_a,F2 -> c; [(e_c,F6 -> f; e_f -> i) |(e_c -> g)]

endcase;

case:

 e_j,e_i,F7 -> k

 e_j,e_g,F8 ->k

endcase

a; case:

Figure �� Control
ow graph and its conditional program

executed by the work�ow engine� will achieve the same behavior� The conditional program uses
literals �facts and events � formally de	ned in Section �� which describe the e�ects of activities
on the work�ow environment� where the meaning of each e x is the event that the activity x has
completed its execution�

The example above illustrates possible representations of a work
ow� The conditional program
is a formalism often used in AI community� On the other hand� the graph in its original form�
was used in 	
�� to demonstrate that a set of operators in Concurrent Transaction Logic �based on
Transaction Logic 	��� ���� is su�cient to express various properties of work
ows�
However� the problem that we tackle in this article comes from a slightly di�erent perspective�

Namely� none of the representations in Example � explains how it was decided that it is indeed
what corresponds to the users� needs� On the other hand� we are o�ering an approach which will
enable the users to reason if the representation corresponds to the intended meaning�purpose of
the work
ow�

��� An Overview of Our Approach

Throughout this work� we view work
ows as a collection of cooperative agents and we use recent
results on reasoning about actions 	�� ��
�� ��� to formalize the process of their speci�cation and
test their correctness� Our approach� in a philosophical sense� resembles formalization of database
updates 	��� and transactions 	��� ���� In cooperative design applications� terms 	���� we give a
formal characterization at the activities coordination level ��level��� in 	�����
Our main contribution are as follows� We present a very simple� high level language AW and�

based on it� a prototype tool� which facilitates the process speci�cation �i�e� the domain where the
work
ow activities will execute�� The tool enables dual �textual and graphical� representation of
work
ow speci�cation AND enables the user to toggle between the representations at any time�
The domain experts are enabled to specify the constraints on valid states and valid transitions
among them� and can specify not only their knowledge but also their �ignorance� �e�g� incomplete
state speci�cation� and the possibility of abnormal �exceptional� cases� The users can express
behavioral and control aspects in terms of reactive module and� once again� both textual and visual
representations are available and an user can
ip between the two at any time� With all these

exibilities� � the language allows unknown values to re
ect the realistic situations of dealing with
incomplete information �essential during dynamic modi�cations of a work
ow�construction of ad�

�

hoc work
ows�� � an entailment relation for querying the correctness of the speci�cations� and
reasoning about consequences of modi�cations to its description ��what � if� scenarios��� AW is
still based on a strict logical foundation and has a formal semantics� Hence� given the work
ow
description� we have a formal notion of its correctness�
The rest of this article is structured as follows� Section
 introduces the basis of our formalism�

describes the foundation aspects of the language AW and the basic version of our prototype tool�
In Section � we specify how we address the issues of cooperativity and exceptions and Section �
presents the formalization of the notion of correctness� The formal declarative semantics of AW is
given in Section �� In Section � we position our work and compare it with the relevant literature
Finally� in Section � we summarize and propose the directions for the future work�

� Basic Aspects of Formalizing the Work�ow Speci�cations

Speci�cation and reasoning about activities in our approach is done using a tool based on a high
level language AW � developed in the spirit of the action description language A 	
��� The description
of the language is based on AK in 	���� and ADC in 	���� Action theories have been successfully used
in reasoning about robot control programs 	��� and in the logical formalization of active databases
	�� �� �reasoning about parameterized actions� quali�cation and rami�cation constraints� concurrent
execution of actions 	
���� and facts exempt from commonsense law of inertia 	
��� The later use
makes it more appropriate than the traditional approach of program correctness 	

� which has been
designed for standard programming languages and lacks the
exibility of de�ning new operators�
activities�

Example � Observe an E�commerce scenario where� upon login� a customer should be presented
with a �welcome� promotional message� If its an old customer� the content of the message should be
based on several criteria like� � credit status� � history of purchases re�ecting his�her preferences�
� new �hot� products which may be of interest for the particular customer� On the other hand�
a new customer should �view� a more broad welcoming menu which shows general categories and
enables him to specify particular interest�s��

The example above �simpli�ed from 	���� reveals a very subtle issue� When specifying the
work
ow� all that the business partners need to know is that there will be a template activity�
say welcoming message� which requires certain input�output parameters� It should further be
decided� upon negotiations among the partners involved� which details �if any� of how that activity
is implemented should be given�
Recall that during the requirements speci�cation of work
ows� we do not want to generate �fully

correct� but sound and �mostly� complete descriptions� similar to the incomplete speci�cations in
	
��� This enables avoiding �full blown� theorem provers and using planners to generate modules�
Levesque et al� 	��� discuss the di�erence between the �action� approach and traditional approach
of �program correctness��

��� Activities� Domain Description

AW has three disjoint nonempty sets of symbols� called facts� events and activity names� Facts are
the data items which describe the environment of the work
ow �i�e� a tuple in a relational database�
or an attribute value of an object�� They correspond to the notion of �uents in AI parlance� used
by McCarthy 	��� in the context of reasoning about actions� A literal is a fact or event� possibly
preceded by ��

�

De�nition � An activity description in the language AW consists of a collection of three kinds
of�propositions��

a causes f if p�� � � � � pn� e�� � � � � em �an �ef�proposition�� ���

a determines f if p�� � � � � pn� e�� � � � � em �a �k�proposition�� �
�

a induces e if p�� � � � � pn� e�� � � � � em �an �event de	nition�� ���

� An �ef�proposition� describes the e�ect of an activity on the truth value of a fact� a denotes an
activity� whereas each of f� p�� � � � � pn �n � �� is a �possibly negated� fact� and each of e�� � � � � em
�m � �� is a �possibly negated� event�
Note that the facts can have unk values �i�e� are evaluated wrt ��valued logic�� but the events

cannot �negation of an event indicates that it is not a part of the environment�� Intuitively� the
literals pi� ej are preconditions on the e�ects of the activity a� meaning� if a is executed when the
preconditions are true then f becomes true after the execution of a� Observe that an action may
have di�erent e�ects on the environment� depending on the state in which it is executed �one can
specify �simultaneous� e�ects too� similar to Vortex 	�
��
To represent input�output parameters of the activities� we use variables� Hence� strictly speak�

ing� the syntax of an �ef�proposition� should look like�
a�Xa� � � � � �Xan� causes f�Xf � if p��X��� � � � � pn�Xn�� e��Y��� � � � � em�Ym�
Note that if some variable in �Xf � or negated literal in the preconditions� does not appear in

the positive literal in the precondition� our tool will automatically warn the user of the possibility
of unsafe evaluation and the need for the variable to be instantiated at the invocation time of the
activity�

� An �event de�nition� is a proposition which describes the occurrence of an entity of interest
during the course of execution of a work
ow� Besides �book�keeping�� the events are useful when
enforcing order constraints 	
�� on the execution of the work
ow� as we will explain shortly� Also�
they are essential for inter�process communication 	���� Heterogeneous work
ow tools may be
integrated�synchronized by a common event noti�cation mechanism �instead of using common
API and�or fully shared database�� Events are also used to denote which is the current state of
the work
ow� In our implementation of AW 	���� upon specifying an �ef�proposition�� the tool
automatically generates an �event de�nition� signaling the end of the particular activity� We
distinguish among two types of events� �i� internal events� given by the de�nitions� because at
speci�cation time we know which action could induce their occurrence� �ii� external events � the
ones generated by other work
ow agents� which notify the main work
ow about the occurrence of
�something of interest�� However� that occurrence is not controlled by the main agent�

� A �k�proposition� stipulates that if a is executed in a state in which its preconditions are
true� then in the resulting state the truth value of f becomes known� However� the value can not
be predicted and it will be known only at run time� The activities in �k�proposition�s are what we
have referred to as sensing activities �we also call them knowledge producing activities�� and they
have been studied formally in the context of planning problems 	���
��� Their main purpose in a
context of work
ow speci�cations is to represent cooperative agents� As we will discuss shortly� we
need to slightly modify the original syntax �k�propositions�� to be used in work
ow speci�cation�
Just like we mentioned for the �ef�proposition�� both �k � propositions� and �event de�nitions�

need variables to represent the various input�output parameters�

Example � Observe the problem of an automated paper trail involved in a students registration
process� as depicted on Figure
� Intuitivelly� in order to register for a given course� the student

�

advisor

instructor chair

secretary

has_prereq

class_full
OR

class_full

class_full,

registration

requested

password_granted OR

password_denied

space_waived_instr

has_prereq, class_full

Figure
� An example of a registration work
ow

must have his advisor verify that he has the prerequisites for it and that the section is not full� If
any �or both� conditions fail� the student may ask the instructor to waive the prerequsites and�or
waive the space which� in turn� must be approved by the departmens�s chair� Based on the outcome�
the secretary determines if the student should be given a registration password or not�

We are using the simple example above so that we can concentrate on the main aspects of our
formalism� without having to go into details of domain � speci�c issues� Below� we present a partial
activity description for the registration process� The variables S and C correspond to variables
from the domains of Courses and Students respectively� A particular instance of the work
ow
will� of course� have ground values for them from their respective domain� Recall that we have a
notiont of event� representing an occurence of �something� of interest� In the description below�
we use e requested�S�C� to denote that the event of requesting a registration for the course C by
the student S is present �i�e� the student has requested a registration�� Throughout the rest of the
work� we will use the similar notation � pre�xing with e the predicates which denote event type�
advisor�S�C� determines has prereq�S�C� if e requested�S�C�
advisor�S�C� determines class full�S�C� if e requested�S�C�
instr�S�C� determines prereq waived�S�C� if �has prereq�S�C�
instr�S�C� determines space waived instr�S�C� if class full�S�C�
instr�S�C� induces e seen instr�S�C�
chair�S�C� determines space waived chair�S�C� if class full�S�C�
chair�S�C� induces e seen chair�S�C�
secretary�S�C� causes passwd�S�C� if has prereq�S�C���class full�S�C�
secretary�S�C� causes passwd�S�C� if has prereq�S�C�� class full�S�C��

space waived instr�S�C�� space waived chair�S�C�
secretary�S�C� causes passwd�S�C� if �has prereq�S�C���class full�S�C��

prereq waived�S�C�
secretary�S�C� causes passwd�S�C� if �has prereq�S�C�� class full�S�C��

prereq waived�S�C�� space waived instr�S�C�� space waived chair�S�C�
secretary�S�C� causes �passwd�S�C� if �has prereq�S�C���prereq waived�S�C�
secretary�S�C� causes �passwd�S�C� if class full�S�C���space waived chair�S�C�
secretary�S�C� causes �passwd�S�C� if class full�S�C���space waived instr�S�C�
secretary�S�C� induces e secretary�S�C�

Note� in particular� that we are not concerned with the issue of roles in this work� Strictly
speaking� we should not be mixing an activity name �like advisor�� with the notion of who �i�e�
which agent� is responsible for executing it� Hence� in reality we may have an activity like
check prereq�A�S�C� determines has prereq�S�C� if e requested�S�C�� advises�A�S��
There is another observation regarding the advisor in Example �� Although the activity is a

�

cooperative one� the registration work
ow has no in
uence�impact on how the advisor work
ow
agent operates� Moreover� the main registration work
ow agent is someone that is �harrasing� the
advisor by asking him�her to execute an activity on its behalf �especially when the advisor has a
grant�proposal or paper submission deadline�� Similar to the activity welcoming message in the
context of Example
 where the business partner decides to which extent it will be unfolded or kept
as a black box� as far as AW is concerned� an activity like the advisor�S�C� in Example � may be
a template� or a work
ow itself�

��� Control Modules

The set of activities� description will specify the e�ects of executing a particular action in a par�
ticular state� However� we need to allow the users of our formalism to specify their knowledge
about how activities execution is sequenced�coordinated in order to achieve a desired goal� Recall
that during the speci�cation stage the complete information about the environment may not be
available and not all the possible execution scenarios are known� To express or de�ne the execution
of work
ow agents� we rely on a control module of reactive rules� Such control modules� which are
similar to production rule systems� have been used for real�time robot control 	�� ����

De�nition � A control module is a collection of rules of the form�
if e�� � � � � en� f�� � � � � fk�unk fk��� � � � �unk fm then a

where�
� each ei is an event literal �possibly negated�
� each fi�� � i � k� is a �positive or negated� fact
� each unk fj speci	es a particular fact whose truth value is unknown at a given state�
� a is the action to be executed in a state in which the conjunction on the left�hand side �LHS� of
the rule is true�

The set of rules in the control module re
ects the user�s knowledge about the data and control
�ow �i�e� how to sequence the activities� what are the pre�conditions on their execution� what
are the input�output parameters�� Strictly speaking� the module can be in several possible states�
active�running in which the module executes actions of the RHS of some rule which LHS conditions
are satis�ed in the given state of the environment� HALT which is reached upon a �successful
termination�� SUSPEND� which is a state that the module has entered because it has to �wait�
�e�g� waiting for some cooperative activity to terminate�� However� this state of the control module
illustrates the �knowledge� of the user about the particular state of the work
ow environment�
failure state of the control module illustrates the case where the work
ow environment does not
match any of the conditions in the LHS of any rule in the module �which� in cooperative terms could
mean a �deadlock��� The di�erence between failure and SUSPEND is that the former illustrates
a possibility which can not be �predicted� at speci�cation stage� Note that the �state� of the
control module is a part of the overall state of the work
ow and it can be captured using the set
of facts and events� For example� a particular instance of the module �wakes � up� �is triggered�
when an external event is generated� In the context of Example � this happens when a particular
student requests a registration� like for example� the event e requested�john�eecs��
� becomes true
in the work
ow state� We introduce the unk connector because agents are constantly dealing
with incomplete information which they complete by making requests to other work
ow agents
�i�e� remote procedure calls or consults to the external world�� The notion of the �unknown�
value may very well be implemented with having a null value for a certain attribute in a database�
However� during the early speci�cation stage it is unlikely that the domain� business expert is

�

familiar with the meaning of null values �or any implementation details�� This implies reasoning in
��valued logic� In the context of the Example
� if a new customer applies for a credit line with the
on�line shopping enterprise� the goal of the work
ow is to determine the eligibility for credit and the
credit line� However� evaluated under ��valued logic� the formula� grant credit�Customer� Limit�
��grant credit�Customer� Limit� need not be a tautology� which makes the goal of the work
ow a
non � simple one� Similarly� the registration work
ow of Example �� the goal is complex � to make
the formula passwd�S�C� �� passwd�S�C� true at the end of its execution� The set of propositions
in the activities� domain description and the set of rules in the control module provide enough

exibilities for specifying the basic primitives of work
ows �as prescribed by 	
���� sequencing �
AND�OR�splits and joins� iteration and nesting�

Example � A set of rules for the control module of the activities involved in the student�s regis�
tration can be described as follows�
if e requested�S�C��unk has prereq�S�C��unk class full�S�C� then advisor�S�C�
if has prereq�S�C���class full�S�C��unk has passwd�S�C� then secretary�S�C�
if �has prereq�S�C��unk prereq waived�S�C� then instr�S�C�
if has prereq�S�C�� class full�S�C��unk space waived instr�S�C� then instr�S�C�
if class full�S�C�� has prereq�S�C�� space waived instr�S�C��unk space waived chair�S�C�

then chair�S�C�
if class full�S�C���has prereq�S�C�� space waived instr�S�C��unk space waived chair�S�C�

prereq waived�S�C� then chair�S�C�
if �has prereq�S�C���class full�S�C�� seen instr�S�C��unk has passwd�S�C�

then secretary�S�C�
if class full�S�C�� seen instr�S�C�� seen chair�S�C��unk has passwd�S�C� then secretary�S�C�
if e secretary�S�C�� passwd�S�C� then HALT

if e secretary�S�C���passwd�S�C� then HALT

����� Rami�cations

A description using �ef�propositions� and �k�propositions� can only describe the direct e�ects of
executing an activity in a given state of the work
ow� However� executions of actions may have
indirect e�ects in a particular state �e�g� a database update� when executed in a particular state�
may cause an integrity constraint violation�� Rami�cation e�ects are usually derived from the set
of facts and events� and they can be used to specify which are the valid states of the work
ow
evolution �as well as the valid transitions among those states�� For that purpose� we introduce the
following rami�cation propositions in AW �

� p�� � � � � pn� e�� � � � em su	ce for l

with the intuitive meaning that in any state in which p�� � � � � pn� e�� � � � em are true� we can infer
that l is also true� The set of rami�cation propositions is similar to the rules for de�ning intentional
predicates in deductive databases 	�
�� Observe that l can be either a fact or an event� Although
we do not address the issue of composite events �c�f� 	�
�� in this work� a rami�cation proposition
can be readily used to specify a conjunction of events�

�

��� Prototype Implementation of AW

For the implementation of our tool� we followed the principles of process languages design surveyed
in 	���� which can be summarized as follows�
� pictures help in improving intuition and communication� cooperation�
� pictures work best when they depict modest ammount of information�
� the use of semantically deep formalism� behind the picture� may support many desirable proper�
ties�
In a nutshell� there are � main clasess� �� MainFrame�java � the �brain� which creates the

actions listeners that invoke appropriate methods to handle user input�
� Work�owArea�java
which is responsible for the graphical representation of the work
ow being speci�ed �e�g� redrawing
an obscured area� dragging the nodes of activities around so that they are arranged in a most
appealing manner�� �� Mediator�java is responsible for generating an internal representation and
using it when converting between textual and visual counterparts of the work
ow speci�cation�

Figure �� Speci�cation of a rule in a control module

Our tool will cooperate and guide the users through speci�cations of each proposition of the
language in both textual and visual representations� with a set of pulldown menus� Figure �
illustrates the speci�cation of a rule in a control module of a particular work
ow� There is a
similar menu�driven part which can be used for specifying the proposition in the activities domain
description� The user has a choice of selecting if he�she wants to describe an ef�proposition� a
k�proposition or an event�de�nition� As another example of the tool�s cooperative aspects �not
illustrated in Figure ��� if unsafe negation is used in some proposition� the user will be warned
of it and reminded that the particular variable must be instantiated at the invocation time of the
activity�� The detailed description of the functionality is speci�ed in 	����
Figure � illustrates a case of AND � join in the context of the registration work
ow in the

Example �� Recall that if a section is full� and both the department chair and the particular

�The current version of AW based prototype tool is available via anonymous ftp at www�eecs�uic�edu� �

gtrajcev�workflowtool�

�

Figure �� An example of a registration work
ow

course instructor need to decide if the space should be waived� the two �activities� can be executed
concurrently�� The �gure shows a textual of the activities domain description and the control
module to the left and the visual counterpart to the right� Note that in order to see what are
the e�ects of a parcitular node �activity� in the graph� the user may either look in the domain
description or select that activity in the graph� Moreover� when drawing the graph� if a particular
node is labeled with an activity which has not been �described� so far� the user is warned and �s�he
is o�ered a menu with textual �elds just like the one for the regular� textual � based speci�cations
of the propositions in the activities� domain description�

� Cooperation of Activities and Exceptions

Observe the scenario where a new customer enters the virtual enterprise of Example
� In order
to determine if the customer should be granted a credit �and the limit value�� it is very likely that
the work
ow will make a �cooperative� request to some other work
ow agent representing credit
history agency� All that the main work
ow agent knows is that the request for the service of credit
history check has been sent to the cooperative agent� It cannot know beforehand when the request
will be actually served� However� this should not prevent the main work
ow agent of the enterprise
from guiding the user through the list of products and their prices�availability� Periodically� the
main work
ow agent may re�send the request to the credit agency work
ow� until it gets a response�
In case the request has not been served after some prede�ned time period� the work
ow may decide
to inform the new user that the decision about granting him�her a credit line will be determined
later� The situation is more extreme in the Example �� Here� the registration work
ow cannot
continue its execution until the response from the advisor agent has been received and the truth
value of has prereq�S�C� is determined�
However� in general there may be several other processes running concurrently and it is not

practical to suspend the entire execution in a given state� waiting for a response from a particular
�cooperative� agent� Let us reiterate the
ip�side of the coin� as far as the registration work
ow

��

is concerned� the activity advisor�S�C� is a cooperative one� but for the advisor work
ow agent�
the request to act on behalf of registration work
ow is an �interference�� It is very likely that the
advisor has his own policy on how to respond to external requests� not known to the registration
work
ow agent�
This is why we assume the existence of two types of events� internal and external� Namely� when

the registration work
ow asks the advisor to determine has prereq�S�C� it generates its internal
event so that it is �aware� that the request for service has been made� Within the world of the
advisor work
ow this generates an external event notifying him that a particular service has been
requested� Once the advisor �nds out if the student has the prerequisites� it may send the value
back to the registration work
ow� Upon that� he may record that he had completed the request
�internal event�� The noti�cation to the registration work
ow that its request has been served is an
external event �indicating that the truth value of has prereq�S�C� is known�� The work presented
in 	��� uses exported event list and imported event queue �the authors also discuss di�erent event
revocation policies for exceptional cases��
To formalize the discussion above� we introduce the following modi�cation of the �k�proposition�

in the activity descriptions� We view the cooperative activity like the advisor�S�C� in the registra�
tion work
ow description as if it consists of two parts�

advisor�S�C�� induces e advisor asked�S�C� if �e advisor responded�S�C� ���

advisor�S�C�� determines has prereq�S�C� if e advisor responded�S�C� ���

This� of course� needs to be properly re
ected in the control module� In the particular setting
of the registration example� we may want to add the following rule�

if e advisor asked�S�C���e advisor responded�S�C� then SUSPEND�S�C�
to specify that the main work
ow agent should wait for the response from the advisor� Since� in
general� there may be several other activities that could be executed in a given state� even though
we may have a SUSPEND rule in the control module� the work
ow instance itself need not enter
that suspended state� We have the following de�nition�

De�nition � Let A � 	a�� a�� � � � an� be a sequence of activities executed by a workfow agent� We
call the sequence legal i� for every aj � action��X� there exists at least one ai � action��X� such
that i � j�

Observe that each ak will have ground values for the variables� corresponding to a particular
work
ow instance� More over� it can also be observed that De�nition � does not preclude a sequence
of actions in which several occurrences of a particular instance action��m�n� � � � � r� will not have
a matching action��m�n� � � � � r�� In the setting of Example
 this corresponds to the case where
the main enterprise work
ow agent has repeated the request for a credit history check but� for
whatever reasons� it has not obtained an answer from the cooperative agent yet� Clearly� this is
not the desired executional scenario and it may lead to an exception� formalized below�

��� Defeasibility and Exceptions

The work
ow research community has only recently tackled the problem of exceptions 	���
��� ���� Several types of failures have been identi�ed �c�f� 	����� �� basic failures �hard�
ware�network�DBMS��
� application failure �WMFS invokes an application which returns an
error code or does not return any value�� For the most part� these type of failures are handled

��

by relying on the recovery mechanisms of the underlying DBMS� For example� Exotica project
o�ers tools for speci�cation of compensating tasks� which are subsequently translated into FDL
�FlowMark De�nition Language��
Since we are concerned in formalizing and testing the correctness of work
ow speci�cation� we

are interested in expected and unexpected categories of failures 	���� Expected exceptions correspond
to the executional scenarios which are not desirable but may happen �hopefully� very rarely�� This
approach is very similar to the standard notion of exception handling in programming languages
like Smalltalk and C �
We would like to reiterate that in a real situation the domain experts may not be aware of

all the possible executional scenarios during the speci�cation stage� This may yield some cases of
unexpected exceptions� for which the main work
ow agent may not know how to react� In the
context of Example �� although the agent advisor is considered a cooperative one� may not respond
to the messages from the main �registration� work
ow agent� This is an exceptional situation for
which the main work
ow may not know how to react �i�e� it was assumed at speci�cation time that
any particular advisor will always respond to a request from a given work
ow instance�� Once a
work
ow instance encounters an unexpected situation� there are several steps that need to be taken�
�� modify the schema �work
ow de�nition� so that it can recognize and react to the exceptional
case in the future�
� modify the schema so that it has the rules to �repair� the current failure
instances� �� modify the schema so that the work
ow instances which are �beyond repair� are
aborted �and possibly re�started�� These three steps correspond to managing a work
ow de�nition
with a so�called progressive case policy� Clearly� steps
� and �� will not be needed after the
�infected� work
ow instances have been managed� The modi�cations done in step one� however�
will become propositions which remain in the schema for the future�expected exceptions� The
constructs of AW that we introduced so far are su�cient to specify the repair policies in steps
�
and ��
Hence� we must allow for some activities �i�e� the consequences of their executions� and some

rami�cations to be defeasible� in a sense that their e�ects to not apply in a particular state s be�
cause that state is considered to be exceptional� To handle this exceptional behavior� we extend
AW by introducing exceptional causality and rami�cation with the following propositions�

p�� � � � � pn� e�� � � � � em exceptionally su	ce for f

a exceptionally causes f if p�� � � � � pn� e�� � � � � em
a exceptionally induces e if p�� � � � � pn� e�� � � � � em
a exceptionally determines f if p�� � � � � pn� e�� � � � � em

In the exceptional situations� the e�ects of the activities are determined by the exceptional
propositions and the e�ects of the defeasible propositions are ignored� To illustrate the concept� in
the registration example we could add�

advisor�S�C�� exceptionally causes advisor no available�S�C� if e advisor timeout

in case a student request for the advisor�s response has reached a deadline marked by an event and
the work
ow is still waiting for the e�ects of the activity advisor�S�C�� In this situation the excep�
tional e�ect is assumed� Now we can have corrective actions that will execute in an environment in
which advisor no available�S�C� is true� Moreover� the set of exceptional rami�cation propositions
will induce new facts� events that will create a new state for the work
ow �say� by �cleaning� some
events and facts from the state before the exception was detected��
The main bene�t of extending AW with exceptional propositions is that we allow very early� in

�

the speci�cation stage� to separate the failure semantics and exception handling� from the control
logic� The formal treatment of the defeasible and exceptional propositions is given in 	��� based on
the language ADC�

� Checking the Correctness of the Work�ow Speci�cations

We allow two types of testing of the work
ow speci�cations� The �rst type corresponds to �o��line�
deliberation on the data and control
ow� In this type of tests we assume that each of the experts
involved in the speci�cations has provided �what �s�he believes is� the su�cient information about
the e�ects of the activities� In other words� we assume that we have a �current� version of the
domain description D as a set of ef�propositions� k�propositions and event�de�nitions�

De�nition � Given a domain description D and a legal sequence of activities A � �a�� a�� � � � � an��
a sequence query is an expression of the form � after A at s� where where � is a formula
�evaluated in ��valued logic� and s is a state�

Given a set of states S and a domain description �action theory� D� let S� � Closure�S�D� denote
the minimal set of states �with respect to the � ordering� such that� �i� S � S�� �ii� ��s 	 S� if s�

is reachable from s by executing legal sequence of actions described in D� then s� 	 S� � and �iii�
��s 	 S� any state s� reached during the execution of legal sequence of actions starting at s is in
S��
The formula � in De�nition � will denote a goal that the work
ow should achieve� We say that

a domain description D entails a sequence query q
 � after 	a�� a�� � � � � an� at s� �D j� q� if q is
true in all the models of D�

De�nition
 A domain description D is su�cient with respect to a goal G i� there exists a state
s and for every s� 	 Closure�s�D� there exists a legal sequence of actions A � �a�� a�� � � � � an� such
that D j� G after A at s��

De�nition � describes the means which the domain experts can use to test if they have speci�ed
enough of the domain description� Moreover� by assigning a cost value to the actions� it can be
used as a tool to check the cost of executing a particular sequence of actions which achieves the
desired �business� goal�
If the experts involved in the work
ow speci�cation are con�dent� there may be no need for any

o��line deliberation� they may complete the work
ow speci�cation at a single �negotiation�� both
the domain description D and the control module M � In any case� once the complete work
ow
description is available� we have the other type of query for testing its correctness�

De�nition � Given an activity description D and a control module M � a work�ow query is an
expression of the form � after M at s where � is a formula �evaluated w�r�t� the ��valued logic�
and s a state�

Work
ow queries enquire about the consequences of executing a control module M � based on
a given activities �domain� description D� Note that De�nition �� as opposed to De�nition ��
implicitly requires that the legal sequence of actions consists only of the actions speci�ed as a RHS
of some rule in the control module� In order to have a de�nition similar to De�nition � above� we
need to slightly modify the notion of a closure� Given a set of states S� a control module M and
a domain description �action theory� D� let S� � Closure�S�M�D� denote the minimal set of states

��

�with respect to subset ordering� such that� �i� S � S�� �ii� ��s 	 S� if s� is reachable from s by
executing legal sequence of actions from M described in D� then s� 	 S� � and �iii� ��s 	 S� any
state s� reached during the execution of M at s is in S� � Now we have the following�

De�nition � A work�ow speci	cation is said to be correct with respect to a control module M � a
set of states S� a set of activities description D� and a goal G if� S � Closure�S�M�D� and for all
states s 	 S� D j� G after M at s�

as a tool to formally state the correctness of the work
ow control module �and verify it for a given
goal��
There is a special subclass of work
ows for which we can do even more during the speci�cation

stage� The class of sequential work
ows consists of all the work
ows in which the set of rules in
their control modules have the property that all the rules whose LHS are satis�ed at a given state�
have the same RHS� Informally� sequential work
ows rule out the AND�joins �OR�rules do not
result in concurrent execution of activities�� For the class of sequential work
ows we can directly
apply the results in 	��� to actually generate the control module from a given domain description
and a given goal �in 	��� control modules are referred as plans�� The conditions of soundness and
completeness for sequential work
ows are given in 	���

� Declarative Semantics of AW

The semantics of an activity description is given by de�ning a �partial� transition functions ! called
a causal interpretation� which speci�es how the execution of �possibly empty� sequence of activities
modi�es a particular state s � 	"� E � of the work
ow� Here " � hT� F i where T denotes the set of
facts which are known to be true and F denotes the set of facts which are known to be false� The
rest of the facts are assumed to be unknown� On the other hand� E � Ei � Ee denotes the set of
events �internal and external� which are known to be true in a particular state� and the rest of the
events are assumed to be false�
We say that a literal f is an e�ect of executing an activity a in a state s if there is an �ef�

proposition� in the domain description� of the form a causes f if p� � � � pn and all the pi�s are
true in s� Let�
C�
a �s� � ff � f is an e�ect of a in sg

C�a �s� � ff � �f is an e�ect of a in sg
� The direct e�ects of executing an activity a in a state s � 	hT� F i� E � are�
Td�s� a� � �T � C�

a �s�� n C
�
a �s�� and

Fd�s� a� � �F �C�a �s�� n C
�
a �s�

Similarly� an event literal e is signaled by executing an activity a in a state s if there is an
�event�de�nition� in the domain description� of the form a induces e if p� � � � pn and all the pi�s
are true in s� Let�
E�
a �s� � fe � e is signaled by a in sg

E�a �s� � fe � �e is signaled by a in sg
� The directly induced events by executing an activity a in a set s � 	hT� F i� E � are�
Edi �s� a� � �E �E�

a �s�� n E
�
a �s�

We must take into consideration the external events too �although the main worfkow agent
has no control over their appearence�� Let Ede �s� a� denote the set of external events that were
generated by some cooperative agent�s� for a given state of the main work
ow� Now we have�
Ed�s� a� � Edi �s� a� � E

d
e �s� a�

��

Yet another thing that we have to consider is the set of rami�cation propositions in the domain
description� They can generate some �new� facts which are true �or make some false� and also
�generate� new events� Let Ram�

F �	"� E �� �resp� Ram�
F �	"� E ��� denote all the positive �resp�

negative� facts which are deduced�inferred in a given state and� similarly� let Ram�

E�	"� E �� �resp�
Ram�

E�	"� E ��� stand for the deduced events� Clearly� this may require a �xpoint computation�
One last thing that we need to consider is the possibility of exceptions� Executing an action
that will cause an exceptional e�ect �or induce an exceptional event� will create a state in which
both defeasible and exceptional rami�cations constratins may be valid� Let Ram�EXC

F �	"� E ��
�resp� Ram�EXC

F �	"� E ��� denote all the positive �resp� negative� facts deduced by an exceptional
rami�cation rule� Also� let Ram�EXC

E �	"� E �� �resp� Ram�EXC
E �	"� E ��� stand for the exceptionaly

deduced events� Since the exceptional e�ects should take precedence over the regular �defeasible�
ones� we have the following to describe the e�ects of rami�cation propositions in a given state�
�R�

F �	"� E �� � Ram�EXC
F �	"� E �� � �Ram�

F �	"� E �� n Ram
�EXC
F �	"� E ����

�R�F �	"� E �� � Ram�EXC
F �	"� E �� � �Ram�

F �	"� E �� n Ram
�EXC
F �	"� E ���

�R�

E�	"� E �� � Ram�EXC
E �	"� E �� � �Ram�

E�	"� E �� nRam
�EXC
E �	"� E ���

�R�E�	"� E �� � Ram�EXC
E �	"� E �� � �Ram�

E�	"� E �� nRam
�EXC
E �	"� E ����

Given the notation above� we have�
Res�a� 	hT� F i� E �� � 	hT �� F �i� E �� where
T � � �Td�s� a� �R�

F �	hTd�s� a�� Fd�s� a�i� E
d�s� a���� n R�F �	hTd�s� a�� Fd�s� a�i� E

d�s� a���
F � � �Fd�s� a� �R�F �	hTd�s� a�� Fd�s� a�i� E

d�s� a���� n R�

F �	hTd�s� a�� Fd�s� a�i� E
d�s� a���

and
E � � �Ed�s� a� �R�

E�	hTd�s� a�� Fd�s� a�i� E
d�s� a���� nR�E�	hTd�s� a�� Fd�s� a�i� E

d�s� a���
Observe that one can vary the preferences of insertion versus deletion by interchanging the order

among the n and the � operators �c�f� 	
����
For illustration� assume that a particular state of the registration work
ow has

has prereq�s�� c�� 	 T and class full�s�� c�� 	 F � If we execute the activity secretary�s�� c��
in this particular state we have that Res�secretary�s�� c��� 	hT� F i� E �� � 	hT �fpasswd�s�� c��g� F n
fpasswd�s�� c��gi� E � fe secretary�s�� c��g�� On the other hand� for a cooperative activity such
as advisor�s�� c���� with respect to determining if a student has the prerequisites for the course�
there are two possible functions� One which adds has prereq�s�� c�� to T and the other one which
adds has prereq�s�� c�� to F � However� both of them should leave " � hT� F i unmodi�ed� if they
are executed in a state in which e advisor responded�s�� c�� �	 E � We refer to Res as transition
function �similar to ones presented in 	����� Now we have�

De�nition
 A causal interpretation ! is a model of a domain description D i� for any state
s � 	"� E � and a sequence of actions �

� If � � �� then !��� s� � s

�� If � � 	a� �� then !��� s� � !���Res�a� s��
�� ! is unde	ned otherwise�

Given a sequence query q
 � after A at s we say that it is true in a model ! of a domain
description D i� � is true in the state !�A�S�� Similarly� a domain description D entails q �D j� q�
i� � holds in all the models ! of D�
For a complete work
ow speci�cation �both domain description and control module�� the state

is de�ned as a tripplet� s � 	"� E �R� where the meaning of " and E is as before� and R denotes
the set of the enabled rules from the control module �i�e� the set of ground instances of rules whose
LHS evaluates to True for the given " and E�� Now the causal interpretation !w is de�ned by
using an additional function Sel�R� which� in a given state selects �the action in the RHS of� one

��

of the enabled rules� to be applied as an argument to Res function� Sel�R� can be implemented
using the �choice� operator of Zaniolo� or by a prede�ned priority � based policy among the rules
�similar to Starburst and Chimera� 	���� Hence�
!w�M� 	"� E �R�� � !w�M� 	�Res�Sel�R�	"� E ����R� ���

where Res�Sel�R�	"� E ����R�	"�� E ��R�� and R� consists of all the rules that are enabled for
the "� and E �� The termination condition for !w is that in any state s in which a rule
with a RHS HALT is enabled� we have that� �� Sel�R� will always select that rule and
�
!w�M� 	Res�HALT� 	"� E ���R�� � 	"�� E ��R�� where "� � "� E � � E n fetg where eti is the event
which activated the particular work
ow instance� and R� � RnMti where Mti is the set of ground
instances of rules in the controle module� corresponding to the particular work
ow instance acti�
vated by eti�

� Related Work

There are several formalismsthat have recently been proposed for work
ow representation� One of
the graphic � based ones is OGWL �Opera Graphical Work
ow Language�� 	��� �which is subse�
quently converted to internal textual representation� similar to IBM�s FDL 	���� State and Activity
Charts 	��� is another one� close to the UML standard� and it uses ECA rules for describing tran�
sitions among states� The works 	
��
��� not concentrating too much on the visual representation�
use CTR �Concurrent Transaction Logic� to represent the design and reason about properties of
work
ows� in presence of a rich set of constraints� 	��� presents TD �Transaction Datalog� as a
concurrent programming language and uses it to determine computational complexity of work
ows�
All these methodoligies� in a sense� do not strictly formalize the speci�cation stage per se� It is
somehow assumed that through intellectual negotiations� the representation indeed corresponds to
whatever the users wanted to specify� On the other hand� we go one step behind in the work
ow
design� and propose a methodology to formalize the speci�cation phase� AW for example� o�ers
more
exibility than CTR or TD� in a sense that none of the two languages allows expressing
multiple e�ects of a same action� or takes a clear account for exceptions�
With respect to the foundations used in the formalism� the closest approach to ours is CON�

GOLOG 	���� where correctness of a concurrent agent language is formulated� However� our lan�
guage is simpler that CONGOLOG� in a sense that we do not have non�deterministic activities�
On the other hand� we consider exogenous�cooperative activities� which are not considered in
CONGOLOG and are essential to model work
ows�
The problem of planning with incomplete information has been addressed in the Description

Logic 	
��� however it is too specialized formalism to be used in work
ow speci�cation� A formal ap�
proach for the work
ow computation is given in 	���� but the problem of requirements speci�cation
stage is not treated as a separate aspect� which is the core of our approach�
Another existing formalismwhich has been used as a basis for modeling and analysis of work
ows

is the Petri Nets� In 	���� the author presents a detailed description of the dimensions� aspects of the
Wor
ow Management Systems and how they can be mapped into a Petri Net � based speci�cation
�actually� there is a formal de�nition of a WF�net� and presents construction of all the routing
constructs of interest� like AND� OR spits and joins� iteration� etc� A bene�tial aspect of this
approach is that Petri Nets �and their higher � level versions� colored� timed � � � � are very well
studied and have formal foundation for investigating various properties of interest to process � based

�Both OPERA and Mentor projects have addressed other very important problems ��� ��� in work�ow execution
and WFMS in general�

��

systems �e�g� liveness� boundedness� and there are many Petri Nets tools available� Note that in
our formalism� we are much more �liberal� for the speci�cation stage �not necessarily complete� and
we also have a tool which can toggle between visual and textual representation� We do not require
that the user is familiar with a specialized formalism and we allow incorporating the exceptional
scenarios� Let us point that the comparison between logic programs and high � level Petri nets
presented in 	��� �recall that the speci�cations in AW can be translated to logic program��
Some recent works� addressing the issue of exceptions are 	��� �Opera� and 	��� ��� de�ning

the Chimera�Exc language �in FAR system�� However� the main di�erence with our work is that
we tackle the exceptions handling in the context of speci�cation stage� so that a domain expert
can express its knowledge about exceptional situations and their handling according to a given
�business� policy�
The programming paradigm Vortex 	�
� ��� provides a choice�based execution of �attribute cen�

tered� work
ows� One of the main contributions is that the authors provide a form of incremental
decision�making in collecting the values of speci�c attribute� We view our work as something that
can be used as a pre�processor of a Vortex based design of work
ows�

	 Concluding Remarks
 Related Literature and Future Work

In this work we have extended previous results in formalizing reactive control using action theories
	��� and applied it to cooperative work
ow agents� The main advantage of the language AW is that
it allows an expert to express his�her domain knowledge in terms of the e�ects that an activity
or task may have on the environment� without any speci�c knowledge about how the activity
is implemented� This is an important aspect during the speci�cation stage� where experts from
di�erent domains are involved� We allow the users to specify the control logic AND reason if
the speci�cations that they have provided �so far� are su�cient to achieve a desired goal� More
importantly� given the description of the e�ects of the activities� we can help the users �generate�
enough control�logic information to achieve their goal� We have implemented a prototype tool which
enables both dual �textual and graphical� representations of the work
ow speci�cations� Observe
that the constructs in AW are su�cient to express all the routing constructs� as speci�ed by the
Work
ow Management Coalition 	
���
�� sequencing� If the action ai precedes the execution of the action aj � we need to include e ai end
in the LHS of the rule�s� which have aj on the RHS�

� OR�splits� If� depending on the e�ect�outcome of executing certain action ai the work
ow
should take one of the possible routes� we need to include e ai end in the preconditions of every
�rst action along every route AND ensure that the rest of the preconditions are mutualy exclusive�
�� AND�splits� If we can have
 or more sequences �of activities� execute concurrently �after
completion of certain ai�� then we need to ensure that the LHS of each ��rst�rule� in each of the
sequences is the same �and contains e ai end in it��
�� OR�joins� If an activity aj should follow a completion of one of the possible sequences of
activities �as a result of an OR�split�� we need a collection of rules with aj on the RHS �one for
each route�� In the LHS of each rule we need e ai end where ai is the last activity of a particular
sequence�route�
�� AND�joins� If an activity aj should wait for all the concurrently executing sequences �due
to AND�split� to complete their execution� then in the preconditions of the rule with aj on the
RHS� we need to include the conjunction of all e ai end �i�e� one for each last action in each
route�sequence��
�� iteration� the control module will execute continuously� until HALT is being executed�

��

�� nesting� Any collection of activities can be grouped into a higher�level activity� As far as the
outside clients are concerned� it�s details will appear like a black box� All we need to know is what
are the preconditions and e�ects of executing it in a particular state�
This is one of the salient features of AW � its modularity as a speci�cation formalism� New
activities descriptions and control module rules can be added independent of the rest of the domain
description�
There are few immediate extensions of our work� At present� we are considering how we can

incorporate the treatment of composite events �contexts and consumption policies�� Also� we are
investigating the possibility of translating between AW based speci�cation and other work
ow
representation formalisms� Notably� if we could have a translation to a UML based speci�cation�
it should be straightforward to use the State and Activity Charts 	���� which in turn� can be used
for distributed work
ow execution� Currently we are developing a collaborative version of our
prototype implementation� The work in 	�� shows how we can translate the set of propositions
writen in AW into a generalized logic program� In this regard� we are also working on the output
formatting so that it can generate a logic program that can be run on the XSB Engine 	����

Acknowldgements� The authors would like to thank Mr� Maxim Kondratyev for implement�
ing part of our formalism in the prototype speci�cation tool�

References

��� G� Alonso	 D� Agrawal	 A� El Abadi	 and C� Mohan� Functionalities and limitations of current work�ow
management systems� IEEE Experts � Special Issue on Cooperative Information Systems	 �����	 �����

��� G� Alonso	 U� Fiedler	 C� Hagen	 A� Lazcano	 H� Schuldt	 and N� Weiler� Wise� Business to business
e�commerce� In Research Issues on Data Engineering �RIDE�	 �����

��� G� Alonso	 C� Hagen	 and A� Lazcano� Processes in electronic commerce� In ICDCS Workshop on
Electronic Commerce in Web�Based Applications	 �����

��� C� Baral	 M� Gelfond	 and A� Provetti� Representing Actions� Laws	 Observations and Hypothesis�
Journal of Logic Programming	 �����

��� C� Baral and J� Lobo� Formal characterization of active databases� In International Workshop on Logic
in Databases �LID�	
�	 �����

��� C� Baral and J� Lobo� Defeasible speci
cations in action theories� In Intl� Joint Conference on AI	 �����

��� C� Baral	 J� Lobo	 and G� Trajcevski� Formal characterization of active databases� Part ii� In �th Intl�
Conf� on Deducive and Object � Oriented Databases �DOOD�	
�	 �����

��� C� Baral	 J� Lobo	 and G� Trajcevski� Formalizing work�ows as collection of condition � action ruls�
Technical report	 UIC � EECS � ���� � �	 Univ� of Illinois at Chicago	 �����

��� C� Baral and T� Son� Relating theories of actions and reactive robot control� In AAAI 	
 Workshop on
Reasoning about actions� planning and robot control� bridging the gap	 �����

���� C� Baral and T� Son� Approximate reasoning about actions in presence of sensing and incomplete
information� Technical report	 Dept of Computer Science	 University of Texas at El Paso	 �����

���� C� Baral and T� Son� Relating theories of action and reactive control� In Linkoping Electronic Articles
in computer and Information Science	 volume �� �����

���� S� Bergamaschi and C� Sartori� On taxonomic reasoning in conceptual design� ACM Transactions on
Database Systems	 �����	 �����

���� A� Bonner� Work�ow	 transactions and datalog� In Principles of Database Systems �PODS�	 �����

��

���� A� Bonner and M� Kifer� Transaction logic programming �or a logic of declarative and procedural
knowledge�� Technical report	 Univ� of Toronto	 �����

���� A� Bonner and M� Kifer� Concurrency and communication in transaction logic� In Joint Intl� Conference
and Symposium on Logic Programming	 September �����

���� U�M� Borgho�	 P� Bottoni	 P� Mussio	 and R� Parechi� Re�ective agents for adaptive work�ows� In �nd
Intl� Conf� on Practical Applications of Intelligent Agents and Multi � Agent Technology �PAAM�	
�	
April �����

���� F� Casati� Models� Semantics and Formal Methods for the Design of Work�ows and their Exceptions�
PhD thesis	 Politecnico di Milano	 �����

���� F� Casati and G� Pozzi� Modeling exceptional behavior in commercial work�ow management systems�
In �th Intl� Conf� on Cooperative Information Systems �CoopIS�	 �����

���� F� Cassati	 S� Ceri	 B� Pernici	 and G� Pozzi� Deriving active rules for work�ow enactment� In
th Intl�
Conf� on Database and Expert Systems Application	 �����

���� A� Cichocki and M� Rusinkiewicz� Migrating work�ows� In NATO�ASI� Advances in Work�ow Man�
agement Systems and Interoperability� �����

���� The Work�ow Management Coalition� Terminology and glossary� Technical Report WFMC�TC�����	
The Work�ow Management Coalition	 June �����

���� P� Cousot� Methods and logics for proving programs� In Handbook of theoretical computer science	
volume B	 pages �������� MIT Press	 �����

���� H� Davulcu	 M� Kifer	 R�L� Pokorny	 C� Ramakrishnan	 and S� Dawson� Modeling and analysis of
interactions in virtual enterprises� In Research Issues on Data Engineering �RIDE�	 �����

���� H� Davulcu	 M� Kifer	 C�R� Ramakrishnan	 and I�V Ramakrishnan� Logic based modeling and analysis
of work�ows� In ACM Principles of Database Systems	 �����

���� M� Gelfond and V� Lifschitz� Representing action and change by logic programs� Journal of Logic
Programming	 ����������	 �����

���� D� Georgakopoulos	 M� Hornick	 and A� Sheth� An overview of work�ow management� From process
modeling to work�ow automation infrastructure� Distributed and Parallel Databases	 ���������	 �����

���� S� Ghandeharizadeh	 R� Hull	 and D� Jacobs� Heraclitus� Elevating deltas to be a
rst�class citizens in
database programming language� Technical Report USC�CS�������	 Univ� of S�C�	 ����� revised �����

���� G� De Giacomo	 L� Iocchi	 D� Nardi	 and R� Rosati� Descriptoin logic�based framework for planning
with sensing action� In Description Logic	 �����

���� E� Giunchiglia and V� Lifschitz� An action language based on causal logic� In AAAI � 	�	 �����

���� C� Hagen and G� Alonso� Flexible exception handling in the opera process support system� In ��th Intl�
Conf� on Distributed Computing Systems �ICDCS 	��	 April �����

���� C� Hagen and G� Alonso� Beyond the black box� Event�base inter�process communication in pss� In �	
International Conferrence on Distributed Computing Systems �ICDCS�	 �����

���� R� Hull	 F� Llirbat	 E� Simon	 J� Su	 G� Dong	 B� Kumar	 and G� Zhou� Declarative work�ows that
support easy modi
cations and dynamic browsing� In Intl� Joint Conference on Work Activities Coor�
dination and Collaboration �WACC�	 �����

���� R� Hull	 F� Llirbat	 J� Su	 G� Dong	 B� Kumar	 and G� Zhou� E�cient support for decision �ows in e�
commerce applications� In �nd Intl� Conf� on Telecommunications and Electronic Commerce �ICTEC�	
�����

���� J� Je�rey	 J� Lobo	 and T� Murata� A high � level petri net for goal � directed semantics of horn clause
logic� IEEE Transactions on Knowledge and Data Engineering	 ����	 �����

��

���� M� Kondratyev� Dual representation of work�ow speci
cations� Master�s Project Report	 March �����
University of Illinois at Chicago�

���� Y� Lesperance	 H� Levesque	 F� Lin	 D� Marcu	 R� Reiter	 and R� Scherl� Foundations of a logical
approach to agent programming� In Intelligent Agents � II� �����

���� H� Levesque	 R� Reiter	 Y� Lesperance	 F� Lin	 and R� Scherl� Golog� A logic programming language
for dynamic domains� Journal of Logic Programming	 May �����

���� F� Leymann and W� Altenhuber� Managing business processes as an information resource� IBM Systems
Journal	 �����	 �����

���� J� McCarthy and P� Hayes� Some philosophical problems from the standpoint of arti
cial intelligence�
In Machine Intelligence	 volume �	 pages �������� Edinburgh University Press	 �����

���� B� Mitschang	 T� Harder	 and N� Ritter� Design management in concord� Combining transaction
management	 work�ow management and cooperation control� In
th Intl� Workshop RIDE�NDS	 �����

���� C� Mohan� Tutorial� State of the art in work�ow management system research and products	 March
�����

���� I� Motakis and C� Zaniolo� Formal semantics for composite temporal events in active database rules�
JOSI	 pages ����	 �����

���� P� Muth	 J� Weissenfels	 M� Gillman	 and G� Weikum� Integrating light�weight wfms with existing
business environments� In International Conferrence on Data Engineering �ICDE�	 �����

���� N� Nilsson� Teleo�reactive programs for agent control� Journal of AI research	 pages �������	 �����

���� R� Reiter� On specifying database updates� Journal of Logic Programming	 ��	�������	 �����

���� N� Ritter� An infrastructure for cooperative applications based on conventional database transactions�
In CSCW Infrastructure Workshop	 �����

���� A� Sheth� Proc� of the NSF workshop on work�ow and process automation in information systesm	
����� URL� http���lsdis�cs�uga�edu�activities�NSF�work�ow�

���� A� Sheth	 D� Georgakopoulos	 S�M�M� Joosten	 M� Rusinkiewics	 W� Scacchi	 J� Wileden	 and A� Wolf�
Report from the nsf workshop on work�ow and process automation in information systems� ACM
SIGSOFT � Software Engineering Notes	 �����	 �����

���� M�P� Singh� Formal semantics for work�ow computations� Technical report	 TR � �� � ��	 North
Carolina State University	 �����

���� I� Sommerville� Software Engineering� Addison � Wesley	 �����

���� S� M� Sutton	 P� L� Tarr	 and L� J� Osterweil� An analysis of process languages� Technical Report �� �
��	 Dept� of Computer Science	 University of Massachusetts	 Amherst	 �����

���� J� D� Ullman� Principles of Database and Knwoledge � Base Systems� Computer Science Press	 �����

���� W�M�P van der Aalst� The application of petri nets to work�ow management� The Journal of Circuits�
Systems and Computers	 ����	 �����

���� D� S� Warren� Programming in tabled prolog �draft�� Department of CS	 Suny at Stony Brook	 July
�����

���� B� Whorf� Language� thought and reality� MIT Press	 �����

���� J� Widom� The starburst active database rule system� IEEE Transactions on Data and Knowledge
Engineering	 ����	 �����

���� D� Wodtke and G� Weikum� A formal foundation for distributed work�ow execution based on state and
activity charts� In
th Intl� Conf� on Database Theory �ICDT 	
�	 �����

�

