
Formal Character izat ions of Ac t ive Databases :
Part II

Chit ta Bara1.1 and Jorge Lobo *.2 and Goce Trajcevski 2

Univ. of Texas at E1 Paso, E1 Paso, TX, 79968, USA,chitta@cs.utep.edu
2 Department of EECS, Univ. of Illinois at Chicago, 851 S. Morgan St,

Chicago~ I1 60607~ USA (jorge~gtrajcev}@eecs.uic.edu

A b s t r a c t . This paper presents a formal framework for specifying ac-
tive database systems. Declarative characterization of active databases
allows additional flexibility in defining an implementation-independent
semantics of the active rules. The results extend the active database de-
scription language introduced in [5] with additional semantic dimensions.
We demonstrate through examples how we can encode the active rules
and their operational behavior from different existing systems.

1 I n t r o d u c t i o n a n d M o t i v a t i o n

The core concept which makes a database system active is the concept of an
active rule. The origin of the active rules is the production rule paradigm from
the field of Artificial Intelligence with languages like OPS5 [8], used in expert
systems. Typically, a production rule is of the form condition--+ action, where an
inference engine cycles through all the rules and matches the condition part with
the data in the working memory. Active rules, on the other hand, typically follow
the event-conditwn-action (ECA) paradigm which specifies an action (possibly
a sequence of actions) to be executed when a given event occurs, provided that
certain conditions hold. The reactive capabilities of active databases are useful
for many applications, such as views [10, 11], integrity constraints [37, 9], and
workflows. Several active database languages [34, 23, 22] have been proposed,
and many systems and prototypes have been designed and, partially or com-
pletely, implemented [26, 29, 12, 20, 35, 41] (many systems are presented in
the collection [42]). Each system has some active features, expressed in its own
syntax and (operational) semantics. However, it can be noticed that sometimes
rules with a similar form will behave differently in different systems ([25] and
[14] present surveys of several systems functionalities and operational semantics).
The dissimilarities arise because there are many different functional features [31]
tha t make a database system active and the existing systems have taken differ-
ent choices among appropriate alternatives. This has resulted in recognizing

* Supported by the National Science Foundation, grant Nr. IRI-9211662 and IRI-
9501577.

** Supported by Argonne National Laboratory, contract Nr. 963042401.

248

[15, 31, 42] that there has been very little activity on formal foundations of ac-
tive behavior. Some recent results on formal characterization of active database
are [17, 19, 18, 5, 32, 39, 43, 44].

This paper extends the language £act~e introduced in [5] to describe the
semantics of active database systems. £.active is based on the action description
language £0 of Baral, Gelfond and Provetti [4]. One of the advantages of £0
is the clear distinction the language makes between actual and hypothetical
occurrence of an action. This feature enables the active database designer reason
about various effects of executing a sequence of actions [17] such as:

- Is the particular sequence executable?
- Will certain data hold after executing a particular sequence?
- Will certain events occur as a result of executing a given sequence or, equiv-

alently, will a certain active rule be triggered?

In 1:active we allow for the description of the effects of executing actions,
definition of events, and definition of active rules which can encode different
semantic options. The semantics of £act~ve is based on the automata-based se-
mantics of action description languages [21] and allows us to define an entailment
relation between an active database description and queries about the state of
the database after execution of a sequence of actions. A state of the database is
described both by the data and the events. This is similar to [19] where the au-
thors present a very comprehensive study of the existing active database systems
and various semantic dimensions (functional features) and also offer a formal-
ism (EECA) for encoding them. The rules from EECA format are translated
into a core format for which the execution semantics is given by an algorithm
specified in a C-lik e language. In contrast to [19] our formalism is completely
declarative. In our approach, given the description of the active database, the key
feature of the semantics is a transition function which generates the evolution
of the states when a particular sequence of actions is executed. This function is
implementation-independent. As we demonstrate later in the paper, the sepa-
ration of the event definition from the active rule allows us to specify more
complex events that the ones in [19] (although not the full class of [30]). An im-
portant aspect of our language is that it can be easily extended to incorporate
additional features such as concurrent actions [3] and deductive rules [27, 2, 28]
using previous results from action description languages. Furthermore, there are
straightforward translations of active database descriptions into logic programs
that implement the entailment relation giving us a tool to automatically reason
about hypothetical executions.

The remainder of the paper is structured as follows. We introduce the syntax
and semantics of £ac~ve, with some examples from the existing systems. Next,
we present more examples showing how different active database semantics can
be captured in our language. Next, we formally describe the semantics and show
how we can ask queries about the database behavior based on the entailment
relation. Last, we give a brief comparison with the existing works, draw some
conclusions and indicate directions for future work.

249

2 S y n t a x o f / : a c t i w

We assume that there are four (possibly countably infinite) pairwise disjoint sets
of symbols: A - action names, 5 r - fluents, $ - event names, and 7~ - rule names;
and a set of variables. Each symbol has an arity associated with it and literals
from each set are defined as usual. Atoms from ~4, b r , $ and 7~ are called actions,
fluents, events, and rule_ids respectively. We will restrict the use of literals to
fluent and event literals. There is a special action symbol j', called the processing
point action symbol (see section 2.1).

Fluents are data items which can change their values as the active database
evolves. They can take different forms according to the kind of database being
used. For example, in an object oriented database, they could be a name of
an object attribute, together with a value from the domain of the attribute.
In a relational model, fluents correspond to the tuples that can appear in the
relations. Variables can be used in the literals and they represent parameters
tha t can be replaced by any value from the underlying domain of the attributes.
Our examples will be loosely based on the relational model, in order to minimize
the introduction of new notation.

There are three types of propositions in £ac t i ve :

(i) The first kind of propositions are the causal or effect laws which are expres-
sions of the form:

a(X) causes f (Y) i f p l (X l) , . . . , p n (X ~) (1)

where a(X) is an action and f (Y) , Pl (X-~),... , Pn (Xn) are fluent literals (n _> 0).

pl (X 1) , . . . , Pn (~nn) are called preconditions. The intuitive meaning of (1) is that
in any state of the active database execution in which p t (X 1) , . . . ,pn(X,~) are
true, the execution of the action a(X) causes f(Y) to be true in the resulting
state. The preconditions pl (X-~-I),..., pn (X-~) will be evaluated as regular queries
in the database and a(X) is an action that could be invoked by a user or an active
rule. Thus, variables appearing in Y or in any negated fluent in the preconditions
must also appear in one of the positive fluents in the precondition. If there
are variables in X that do not appear in any of the positive fluents in the
preconditions this arguments most be ground at the time of the invocation of
the action, otherwise there will be an error in the execution.

Example 1. The actions common to most database systems are the SQL op-
erations insert, delete and update, which we will refer to as add, del and upd
respectively. Consider, for example, an update request which will change the
salary of all the employees whose name is joe in the department dl to 2000,
regardless of their current sMary.

upd(emp.salary, 2000)) causes emp(SS, joe, dl, 2000)

i f emp(SS, joe, dl, X)
upd(emp.salary, 2000) causes -~ernp(SS, joe, dl, X)

if emp(SS, joe, dl, X)

250

This correctly reflects the semantics of the update which is, if the tuple exists,
substitute it with a new one with modified values for the attributes. If the tuple
does not exist, the effect is null.

In general, actions are the operations provided by the systems that can be applied
to the data. Some of them may have no direct effect on the database, and there
will not be causal laws associated with them. An example of such action could
be the retrieve operations defined in Postgres. Other actions could be commit,
abort , or even application procedures defined by the user. We would like to
remark that the role of the causal laws is not the define how to implement the
actions but to specify what are the effects of the actions in the da ta stored in
the database. We assume that actions are atomic.

(ii) The event definition proposition is an expression of the form:

e(X) a f t e r a(W) i f el(~-1),...,em(Y-~),ql(-~1),.--,q~(Z--~n) (2)

where e(X), el (~) , • • •, em (~mm) are event literals and ql (~) , • • •, qn (Z-~) are flu-

ent literals. This proposition says that the execution of the action a(W) ordered
in a state in which each of the fluent literals q i (~) is true and each of the event
literals ej (Y-I) is t rue (i.e. the event in the event literal belongs to the current
set of events if the event literal is positive, or it does not belong to the set if the
event literal is negative) generates the event literal e(X), i.e. it is added to the
set of current events if the event literal is positive, or removes the event from
the set of current events if the event literal e(X) is negative. If the execution
is ordered in a state in which some of the q i (~) or ej (Y'jj) does not hold then
(2) has no effect. Each of the variables appearing in X or in a negated event or
fluent titerals, has to appear either in W or in a positive event/fluent literal.

In general, must of the actions in a database system are part of the events, but
it is not s tandard which action will become an event. For example, in SQL-3, the
events are insertions, deletions and updates. Postgres adds retrieve to the list. In
addition, there are composite events (events defined by other events or a set of
actions), and possibly clock-ticks. Thus, we would like to separate actions from
events, and in case an action directly defines and event we must make an explicit
definition. Also note that the arguments in the events have two purposes: One is
obviously to pass information from the actions and other events that define the
event to the condition and action part of the active rules (to be defined). The
second is to distinguish between set vs. tuple at the time events. For example,
when a set of tuples is inserted in a relational table a rule can be triggered for
each tuple inserted or the insertion as a whole (depending if there are variables
in the event or no). For example the event definition:

e_ins(emp) a f t e r ins(emp(SS, N, D, Sal)
will generate an event after the insertion of a set of tuples in the emp relation.
The following event definition defines an event for each tuple inserted in the emp
relation:

e_ins(emp(SS, N, D, Sal) a f t e r ins(emp(S S, N, D, Sal)

251

We can obtain other granularities by removing arguments from the event. If we
would like an event for each depar tment where an insertion is made, then we
wilt write:

e_ins(emp(D)) a f t e r ins(emp(SS, N, D, Sal)

The default assumption is that the events persist from one s tate to another,
with two possible exceptions: either the event is consumed by an active rule
(see below), or the event is removed by an action based on the specification
of an event definition. For example, if we have an expression -ez a f t e r a l ,
the execution of the action al will cause the event el not to be present in the
resulting state. Hence, the meaning of "an event is true in a given state" is: the
event was induced (i.e. generated) in some state prior to the given one and the
event persisted, or the event was induced by an execution of an action in the
previous state.

Example 2. This example shows how event definition propositions enable us to
capture the concept of net effects. Many database systems allow the execution
of a set of actions in bulks before the active rules are processed and events are
defined in terms of the net effects the bulk of actions has in the database (as
suppose to the individual effect of each action). The complication here is tha t the
definition of net effect varies from system to system. For example, the premises
for defining a net effect in Starburst are:

- If a tuple is inserted and then updated, it is considered an insertion of the
updated tuple.

- If a tuple is updated and then deleted, it is considered as a deletion of the
original tuple.

- If a tuple is updated more than once, it is considered as an update from the
original value to the newest value.

- K a tuple is inserted and then deleted, it is not considered in the net effect
at all.

These four premises can be encoded in l:~cti.e as:

e_add(H) a f t e r upd(G,H) if e_add(G)
e_del(G) a f t e r del(G) if e_upd(G,F)

e_upd(G, I) a f t e r upd(H,I) i f e_upd(G,H) (3)

In addition, due to our assumption of the persistence of events, we need the

following event definition propositions to remove events from the current set of
events:

-,e_add(G)
-,e_upd(G, F)
-,e_upd(G, H)

,e_add(G)

a f t e r upd(G,H) i f e_add(G)
a f t e r del(G) if e_upd(G, F)

a f t e r upd(H,I) i f e_upd(G,H)
a f t e r del(G) i f e_add(G) (4)

252

There are few observations that we need to make. A common use of active rules
(for applications such as alerting) is the ability of being triggered before the
execution of a particular action. We can model this behavior by a simple re-
quirement that the elements of ,4 are actually pairs. Each action a is specified
as a pair (abeg~n, aexecu$e). While the action part of a causal taw could have
only aexecute type of symbols, the event definition would be allowed to have
both types. Hence, the before behavior can be modeled by defining a trigger-
ing event of an active rule as: e_trigg a f t e r ab~9~n i f Q. Splitting the rule in
begin and execute is being borrowed from transaction oriented processing tech-
niques [24]. Also, observe that the syntax of / :~t i~e enables us to define more
complex events than most of the existing active database systems. For exam-
ple, we can easily define the "sharp increase" event which occurs if the updated
value of a particular at tr ibute is more than 10% higher than its current value:
e_sharp_increase a f t e r upd(rell (A, X), rell (-A, Y)) i f rell (-A, X), X >_ 1.1 * Y.

(iii) An active rule proposition is an expression of the form:

r (X r) : et(Z-'~) c o n s u m e d (C_s)
i n i t i a t e s [a] a t e~(X~)

i f Pl(X-~),--. ,Pn(X--~) a t e~(X-~) (5)

where r (~) is a rule identifier, e~ (~) , ea(~aa), and ec(Xc) denote the triggering
event, action-execution event, and condition-evaluation event respectively, ~ is
a sequence of actions, called the action part of the rule, and Pl (X--~),... ,p,~ (X-~)
are fluent literals, called the condition of the rule. C_s is one of the symbols no,
local or global. Variables appearing in X~, in any of the input arguments of the
actions in (~ or in any negative literal in the condition must also appear in X~ or
in a positive literal in the condition. Variables appearing in Xr or Xc must also
appear in X~.

Following is the intuitive meaning of each part in the rule:

• The triggering event et(X-~t): We assume that the rule is triggered in the very
first state in which the event e~ (~) has occurred. Due to the assumption of
"persistence" of the events, the rule remains triggered for as long as et(X~) is in
the current set of events. Notice that all the variables in the event are already
instantiated during rule processing since they were instantiated by the event
definition proposition.

• C_s denotes the consumption scope which the active rule has over the e~, with
respect to itself and the other active rules with the same triggering event. As
we said earlier, it is an element of the set {no, local, global}. These modes were
introduced in the specification model of [19]. The mode no consumption means
that neither the condition evaluation nor the action execution of the active rule
have any influence on the persistence of the triggering event et (X~). This mode is
typical of production rule systems such OPS5. Once a rule is triggered, each time
its condition is true, its action part will be executed. Before explaining the other
two options, let us discuss an issue closely associated with the coupling modes -

253

the notion of an active rule being considered. A rule may be t reated as considered
as soon as its condition par t is to be evaluated regardless of the outcome of the
query. Another option is to t reat a rule as considered only when its action par t is
to be executed. By default, we assume tha t the rule is considered at the moment
of its condition evaluation. 3 Now, if the consumption scope of the active rule is
local, its consideration will cause tha t the particular rule is no longer triggered by
et. However, the other rules which were triggered by et remain triggered. On the
other hand, if the consumption scope is set to be global, then the consideration
of a part icular active rule consumes the triggering event in such a manner tha t
all the other rules triggered by the same et are detriggered.

• c~ is a sequence of actions.

• The two other events, ec(~cc) and ea(~aa), denote the events in which the
condition evaluation and the execution of the actions take place. The purpose
of the explicit specification of the action and condition events is twofold: One,
it lets us define the different coupling modes. Two, when the mode is deferred,
ra ther than fixing the event for the condition evaluation or the action execution
(such as just before commit), the events will appear in the rule. For example, if
the designer wants to have the condition of the active rule evaluated immediately
when the rule is triggered, than the rule will be of the form:

r (Xr) : et(Xt) c o n s u m e d (C_s)

i n i t i a t e s [c~] a t et(Xt)

i f Pl (X--~), . . . ,pn(~) a t ec(X---~) (6)

where the triggering event and the condition event are the same. For a deferred
evaluation of the condition to just before commit and immediate execution of
the action part , we could set both ec and ea to, say, commitbegi,~. Although
in this paper we consider only rules tha t execute inside the same transaction,
nothing prevents the use of actions from extended transaction models, such as
open nested transaction models [24, 38] to define actions or conditions tha t are
evaluated outside the current transaction.

If all the three events in an active rule are the same, then we allow the omission of
ea and ec. If two events in an active rule are the same, then instead of repeating
we may just refer to the first event.

• The condition par t of the active rule is essentially a query posed to the database
and it may also contain some evaluable comparison predicates (like "<" or "=") .

2.1 R u l e p r o c e s s i n g p o i n t s

Before we present examples of active rules we need to introduce the concept of
rule processing points. The reason for introducing this notion is the variety of

3 If needed, we can add an expression of the form at ec or at e~ in the first line
of (5), to specify that consideration of the rule will occur when the actions begin to
execute.

254

"when the rules are considered," among different systems. For example, Postgres
considers rules after the execution of each action; Starburst considers rules only a
commit time. There axe systems, such as Ariel, where the user can group actions
in blocks and rule processing happens at the end of each block. In Lactlve we
will have a special action symbol 1". There are no effect laws associated with t ,
but the occurrence of 1" in a sequence of actions will indicate a processing point.
Thus, if we would like to process rules after each action as in Postgres, we will
add an 1" after each regular action. The 1" appearing in the action list of a rule,
allows the recursive processing of rules.

In the next subsection we demonstrate tha t much of the existing behaviors
described in the literature, which make reference to some pre-events states can
be elegantly captured by making a smart usage of the variables and the event
definitions.

3 Examples from the existing systems

This section presents some examples which demonstrate how our approach can
be used to encode different active behaviors from the existing systems. Since
[19] presents a very comprehensive comparative study of many active database
systems, we borrow the next two examples from it in order to illustrate the
relative power of £active. We also accompany them with comments regarding
some variations.

Example 3. Consider a domain description that has an active rule rule_pjs (prop-
agate_joe's_salary) which reacts to changes of the salary of a particular employee
named joe 4 in such a manner that it causes the salary two other employees, sam
and bob, to have the same salary as joe. However, there is also another rule
rule_iss (increase_sam's_salary) which is triggered any time the salary of sam
is changed. The rule recursively increases his salary by 10% until it becomes
larger than 5000 (provided it has been changed to any value <_ 5000). Assume
tha t we would like to have the salary of bob to be the same as sam's every time
joe's salary has been changed. The situation can be described with the following
domain. The triggering event for rule_pjs is defined by:

e_change_j s(Sn~w) a f t e r upd(emp(E # , joe, $1), emp(E# , joe, Shed))

The actions of setting Sam's salary equal to Bob's and Bob's salary equal to
Sam's are specified by the following effect propositions:

upd_sam_joe causes emp(E#s~m, sam, Sjoe) i f emp(E#jo~, joe, Sjo~)
upd_sam_joe causes ",ernp(E#sam , sam, Sotd) i f emp(E#sam , sam, Sold)

upd_bob_sam causes emp(E#bob, bob, Ssam) i f emp(E#8~m, sam, S~m)
upd_bob_sam causes -"emp(E #bob, bob, Stotd) i f emp(E #bob, bob, StoZd)

a Note that within the examples we axe using PROLOG-like notation (i.e. constants
begin with a small letter and variables begin with a capital letter).

255

The active rule is specified as follows:

rule_pj s : e_change_j s(Snew) c o n s u m e d (local)
in i t ia tes upd_sam_joe,

upd_bob_sam,

The triggering event for rule_iss and the active rule are specified as follows:

e_upd_s s after upd(emp(E # , sam, $I), emp(E # , sam, $2))
rule_iss : e_upd_ss c o n s u m e d (local)

in i t ia tes upd(emp(E # , sam, S) ,
emp(E#, sam, 1.1 * S)), T

i f S _< 5OOO

Notice that if we remove the rule processing point ~ after upd_sam_joe in
rule_pjs the effect is that any time Joe's salary is changed to some value less
than 5000, the database will end up in a state in which Bob has the same salary
as Joe, and only Sam has a salary larger than 5000.

The different use of processing points illustrates different types of active be-
havior. The former corresponds to Postgres type of processing while the latter
demonstrates Starburst-like behavior.

Example4. This example illustrates the behavior of the Starburst active
database system. The active rule is intended to cut the excessive salary in-
crease of the employees. If as the result of the execution of a user-requested
transaction the salary of any employee has been increased more than 10% of its
pre-transact ion value, it is reset to only 10% increase.

First, we need to be careful in encoding the net effect policy of the triggering
events:

e_upd_sal (E_name, $1, $3)
after upd(emp(E# , E_name, $2), emp(E # , E_name, $3))
i f e_upd_sal (E_name, $1, $2)

-~e_upd_sal (E_name, $I, $2)
after upd(emp(E # , E_name, $2), emp(E # , E_name, $3))
i f e_upd_sal(E_name, $1, $2)

Now, the active rule can be encoded as follows:

rule_cut_excess(E_name, X~ Y) :
e_upd.sal(E_name, X, Y) c o n s u m e d (local)

i n i t i a t e s upd(emp(E # , E_name, X), emp(E # , E_name, 1.1 * X)),
at commit_begin

i f Y > 1.1 • X at commit_begin

Note that the user's transaction may have caused an excessive salary increase
to more than one employee. We have captured this with the variables in the

256

definition of the active rule. Namely, in case several employees have received an
excessive salary increase, the description would have triggered as many different
ground instances of rule_cut_excess. By carefully specifying the event definition
propositions we have correctly captured the net effect triggering policy and the
proper pre-transact ion old value of the employees salary.

The context of the last example in this section is a simplified version of the
running example in [44]. Its main purpose is to illustrate how £:aaive can be
used for maintaining integrity constraints.

Example 5. Consider the following relations:
dept(Dept# , Dname, Div, Loc)
crop(E#, Ename, JobTitle, Sal, Dept#)

where there is a referential integrity constraint (a foreign key) between the re-
lations dept and emp. Hence, anytime a particular department is deleted from
the dept relation, all the tuples with employees from that department should be
deleted from the emp relation.

The triggering event is specified as:

e_dept_del(D #) a f t e r del(dept(D#, Dname, Div, Loc),
and the active rule is:

r_dept_emp(D #) :
e_dept_del(D#) c o n s u m e d (local)

initiates del(emp(E# , Ename, JobTitle, Sal, D #)),

Last example illustrates that we could easily encode the example given in [41]
(Section 5), however, we'd like to make a subtle observation. The aforementioned
example uses the aggregate statement avg from SQL. We can demonstrate tha t
the calculation of an average value can be accomplished by using active rules,
with undesirable inefficiency. We leave for future work how to formalize the
extension of the sets A and Y to incorporate such actions and fluents.

4 S e m a n t i c s o f Lacti~,e

For the rest of this section we assume that D is the set of ground instances of
the propositions in the domain description under consideration.

We will refer to any set of fluents as a fluent state and any set of events as an
event state. We say that a fluent f holds in a fluent state a if f E a. -~f holds
in a if f ¢ a. Similarly, an event e holds in an event state e if e E e. ~e holds in
e i f e •e.

Let ¢ be an event state and a a fluent state. Let r be a set of (triggered) rules.
Let ~ be set of (considered) rules (to be fired). We refer to a tuple of the form
< a, ¢, ~-, ~ > as an active database state or simply as a state.

The central concept in our semantics are the definition of transition functions
called causal interpretations. A causal interpretation is a partial function kV tha t

257

maps a (possibly empty) sequence of actions a and a s ta te < a, c, % ~ :> into a
new state. Given a domain description D, we would like to identify the causal
in terpreta t ions tha t model the behavior of D given any initial state. We will
do tha t t h rough four auxiliary functions tha t will describe how an action, when
executed in a s ta te < a ,c , r, ~ > , affects each component of the state. We will
also need an act ion selection function. An action selection function S is a to ta l
funct ion t h a t takes a set of events e and a set of considered rules ~, and re turns
the sequence of actions appear ing in some rule r~ in ~, such tha t act ion execution
event e~ ~ of ri is in e. If such a rule does not exists it returns a special null act ion
#. Each selection function S has an associated function S ~ tha t when applied to
e and ~, re turns a singleton set with the rule {ri} which contains the sequence
S(e, ~) if it is not the null action; otherwise it re turns an e m p t y set. Act ion
selection functions will be used to determine which act ions ' sequence will be
selected for execution when several active rules in D are ready to be executed.

We s tar t with the definition of the funct ion tha t describes the effects of an act ion
a in the fluent state a, when a is executed in a state < a, e, T, ~ >. Actually,
this funct ion only depends on a, the other par t s of the s ta te are irrelevant.
Firs t we need the following definitions. We say tha t a fluent literal f is an
(immediate) effect of (executing) a in a fluent s ta te a if there is a fluent effect
law a c a u s e s f i f p t , . . . , P , , in D whose precondit ions P l , . - . , P n hold in a.

Let

F + (a) = { f : f E j r and] is an effect of a in a},

F~-(a) = { f : f E j r and -~f is an effect of a in a} and

ne y(a,o) = (o U F : (o)) \ F:(o).
Resj: is referred to as the fluent transition]unction.

The second function defines the changes on the set of events. We say tha t an
event literal e is an (immediate) effect of (executing) a in a fluent s ta te a and
event s tate ~ if there is an event effect law e a f t e r a i f e l , . . . , e m , q l , . . . ,qn in
D whose precondit ions q l , . . . , q , hold in a and e l , . . . , e , , hold in ~. Let

E + (a , ~) = {e : e E £ and e is an effect of a in a,~},

E~- (a, ~) -- {e : e E $ and -~e is an effect of a in a, ~}.

These two sets identify the events directly generated or removed by
a. However, events can also be consumed by tr iggered rules t ha t
are considered and whose consumpt ion mode is global. A rule "r :
et c o n s u m e d (C_s) i n i t i a t e s [a] a t ea i f Pl , . . . ,pn a t ec", ground instance
of rule of the form (5), is called positively considered in a fluent s ta te cr and an
event s ta te ~ if ec E ¢ and P l , - . . , P n hold in a. I t is called negatively considered
if ec E 6 and P l , . . . , P n do not hold in a. r is called considered if it is either
negatively or positively considered. Thus, the events consumed by considered

rules is defined as

E - (a , ~ , r) -- {e : e E $, r E T, C_s -- global and r is considered in a , e} , and

258

ResE(a, < a,~, T >) = (~UE+Ca, s)) \ CE[Ca,~)UE-(Res~=Ca, a), (EuE+Ca, c)) \

Resc is referred to as the event transition function.

Note that to change the definition of consideration to time when the condition
part of a triggered rule is true we need to change "considered" to "positively
considered" in E - .

Next function describes how the set of triggered rules changes after the execution
of a. New rules become triggered by the new events generated by a, mad there
are three possible reasons to detrigger a rule. 1) The trigger event of the rule
is removed from the event state by a; 2) The rule becomes considered and the
consumption mode is local; 3) The trigger event of the rule is removed from the
event state by a rule 5 that becomes considered with consumption mode global.

We say that a ground instance of a rule of the form (5): r :
et c o n s u m e d (C_s) in i t ia tes [a] at ea if Pl , . . - ,P ,~ a t ec, is triggered by
a set of events ~ if et E c. Let T + (~) be the set of rules triggered by ~ in D. For
a set of active rules T, let T - (T , e) = ~" \ T+(~). Let,

L - (a , z , r) = {r : r E T, C_s = local and r is considered in a,~} and

ResT(a, < a,S,T >) = (T U T+(E+(a,~))) \
(L - (Resy(a, a), (~ U E + (a, E)) \ E a Ca, e), T) U T - (T, (E : (a, ~) U E - (Res~:(a , a),

u Et(o, \ E:(o,

ResT is referred to as the triggered rule transition function.

So far transition functions do not depend on the set of considered rules ~. Addi-
tions to ~ are the positively considered rules based on the new set of fluent and
event states. The deletions depend on the selection function S. We will define the
function for t~ only for additions. Deletion of elements (rules) from ~ is achieved
using the S ~ function, as specified in Definition 1. below.

C+(a ,c ,T) = {r : r E r and r is positively considered in a,~}, and

Resc(a, < ~, ~, T, ~ >) = ~ U C + (Res~:Ca, a), (e U E + (a, ~)) \ E a (a, ~), ~-). Resc
is referred to as the considered rule transition function.

D e f i n i t i o n 1. A causal interpretation ~ is a model for a domain description D
iff for any state s = < a, e, T, ~ >, there exists an action selection function S such
that for any sequence of actions a

1. if a = 0 then q~(a, s) = s.
2. if a =1" o~ then

• 8) = < o, \ >)).

Note that this rule is also being detriggered by this case.

259

3. i f a = a o f l a n d a ~ ' t h e n
~(~, s) = ~ (~ , < R e ~ (a , o),

ResE(a, < a,c,~- >),
ResT(a, < a, ~, 7 >),
Rest(a, < ~,c,~,~ >) >),

if F+(a) A F~'(a) = 0 and E+(a,E) A E a (a , c) = 0. Otherwise is undefined
for the state. []

Observe tha t if S selects a sequence of actions which does not have a process-
ing point at the end of the list, no new rules will be allowed to fire at the end of
executing the selected sequence (i.e. the rules in ~ wilt have to wait until a new
processing point is encountered). With minor modifications to the definition of
models we could assume that rules by default are processed each t ime we get into
an empty sequence of actions (so that rules will be processed at least at the end
of the transaction) in addition to the explicit processing points. Furthermore,
we can put a restriction on a syntax which will require tha t every sequence of
actions must end with a 1" symbol.

The query language associated with with ~act~ve consists of hypothetical facts of
the form:

f a l t e r h a t a (7)

where f is a fluent literal, a a sequence of actions, and a a fluent state. For a
query q, we will denote by ~q the query g a f t e r a a t a if f in the query is -~g.
If f is positive, it denotes ~ f after a a t ~.

D e f i n i t i o n 2. We say that a query q of the form (7) is true in a model q~ of
an active database description D iff f holds in the fluent s tate of the s ta te
~(a,< ~,¢,¢,~ >). []

D e f i n i t i o n 3. An active database description D entails a query q (written as
D ~ q) iff q is true in all models of D. The set of all facts entailed by D will be
denoted by Cn(D).

We will say tha t the answer given by D to a query q is yes, if D ~ q; no, if
D ~ --q; and unknown otherwise. []

4.1 O p e r a t i o n a l s e m a n t i c s

We present a procedure which, given a sequence of actions a and a s tate of the
active database < eYin,gin,Tin , ~in ~> as an input, returns a state of the active
database < ao~t, ¢out, Tout, ~o~t > after executing the sequence a in the presence
of the active rules. The procedure execute_adb realizes the causal intepretat ion
~P from the declarative semantics of £:acti~e. The supscripts used below have the
obvious meaning (for example el' denotes the triggering event of the rule ri).

execute_adb(IN:o~, < ain, ~in, Tin, ~in > , O U T : < ao~t, ~o~t, 7o~t, t%ut >)
b e g i n

260

(T = f f i n , C = G i n , T = T i n , E = ;~in;

whi le (a # D)
if (a = a o fl)

i f (a #1")
t h e n b e g i n

a = fi, r - = 0 , G - = 0 , a ' = 0;
a = (a U Fa+(a)) \ F a (a);
G = G u E~+ (o, G) \ E : (~ , G) ;
for each r i :

i f (el' e E +(a, G)
T = tau U {ri];

for each ri : if ((ri e T)AND(e~c ' e G))
r l r i _ if ({PI ,"',Pn,} C a)

= ~ u {p~};

if (C 2 = local)
- ,-- = t_ u {r~);

i f (C;' = global)
G- = G- u { e y ;

T:T\T--;
for each rj: if ((rj e ~)AND(e2 ¢ ~))

r = -,- \ {rj};
e n d

if (a =$)
~' = S(G, ~);
rf : S'(~, ~);

= ~ \ { r J ;
: ~' o fl;

w e n d
f l o u t : O', Gout : G, Tou~ : T~ ~ o u t : ~ ;

end

We have the following:

P r o p o s i t i o n 4. Given a domain description D and a causal interpretation @
which is a model of D, a query q of the form f a f t e r a a t a is true in a state
k0(a, < a, 0, @, 0 >) iff f E aout generated by execute_adb(a, < a, O, 0, ~ >).

Space limitations do not allow us to present the proof of the Proposition 4
and the translation of an active database description to a logic program (both
given in [7]). The translation of domain description into a logic program [7] pro-
vides a computational vehicle to implement the entailment relation. It exdends
the one presented in [5] by capturing the extensions to the syntax of £:~ctive.
Non-determinism is implemented using the choice operator of Zaniolo and the
situation calculus is used to characterize the dynamic nature of active databases.
This gives us the ability to reason about hypothetical situations which, in turn,
we will enables to develop a more sophist icated query language.

261

5 C o n c l u s i o n a n d F u t u r e W o r k

We have presented a very simple language for describing active databases with
an implementation-independent semantics for characterizing the evolution of the
database in response to a sequence of actions. The distinction between actual
and hypothetical situations enables the designer to reason about various conse-
quences of actions' execution. This is, in a sense, very similar to the distinction
between when and apply operators for 5s [22] which can be used to specify a
wide range of execution modes, in a bit less declarative style than £:active. Work
with similar goals to ours is presented in [32]. Based on the relational machines
(i.e. Turing machines augmented with relational store [1]) the authors develop
a common framework for analyzing the expressive power of some of the exist-
ing systems. The tradeoff of such an in depth analysis is that only a limited
number of functional features is considered. One of the main differences between
our approach and the works on characterizing the active behavior by formal
semantics in [39, 43] is the explicit notion of event incorporated in the active
database state. This allows us to capture the effects of different coupling modes
into the transition function. In [18], based on the event calculus, the authors
use the notion of history to define event occurrences, database states and ac-
tions. The main idea is to keep the two operational semantics (deductive rules
and active rule) independent of each other and integrate them, instead of one
subsuming the other. This is, in a sense, a compromise between the perspectives
taken in [40] (which argues that active rules and deductive rules lie at oppo-
site sides of a spectrum, trading declarativeness for more powerful expression of
active behavior) and [43] (which proposes a fixpoint-based extension of the op-
erational semantics for deductive rules, providing a common view for active and
deductive rules). Although we do not present here the translation of database
descriptions into logic programs, similar to [18] where the event calculus is used,
we use situation calculus in our translation. However, instead of suggesting an
architecture for ADBMS, we are describing a language in which multiple types
of active databases can be modeled. The work presented in [17] concentrates on
the ability to reason about implications of event occurrences and interactions
among rules, which is similar to our work. However, there is no clear account
for the description language of the active databases. The result of [44] makes a
distinction between two types of changes caused by a transaction execution in a
presence of active rules: ephemeral and durable. Identifying the durable changes
enables an efficient implementation of the operational semantics and adds the
benefit of automatic determination of priority among the rules and termination
detection. This, in a sense, refines the net-effect based triggering policy of Star-
burst. We need to verify if we are able to capture durable changes under our
current formalism.

Observe that throughout the paper we were very cautious about the "transac-
tional terminology". The reason is that transaction processing [24] has recently

262

developed many variations of its own a t tempt ing to model different advanced
database applications [16]. One of the goals of our future work is to allow for
concurrent and complex actions, which wilt inevitably lead us into using some
form of advanced transaction model. This, in turn, may require modifications of
the notion of active rule processing itself, and may impose a tradeoff on some of
the functional features. Another extension is to allow active rules in which the
condition par t refers to previous states in the evolution of the active da tabase
[13, 33]. Also, we are planning to introduce instead options, to override the effects
of an action with the execution of a rule. This behavior can be obtained by using
defensible specification of effect propositions similar to the ones described in [6].
Other issues that we plan to address are extending our language to incorporate
deductive rules and examine the criteria for terminat ion of the active rules.

References

1. S. Abiteboul, M. Vardi, and V. Vianu. Fixpoint logic, relational machines and
computational complexity. In Structure in Complexity Theory, 1992.

2. C. Baral. Reasoning about actions: non-deterministic effects, constraints and qual-
ification. In Proc. of IJCAL Montreal, 1995.

3. C. Baral and M. Gelfond. Representing concurrent actions in extended logic pro-
grams. In Bertram Fronhofer, editor, Theoretical Approaches to Dynamic Worlds.
(to appear). Preliminary version appeared in IJCAI 93.

4. C. Baxal, M. Gelfond, and A. Provetti. Representing Actions: Laws, Observations
and Hypothesis. Journal of Logic Programming (to appear), 1997.

5. C. Baral and J. Lobo. Formal characterization of active databases. In Interna-
tional Workshop on Logic in Databases, 1996.

6. C. Baral and J. Lobo. Formalizing defeasible causality in action theories. In Proc.
of IJCAI, Japan, August 1997.

7. C. Baxal and J. Lobo and G. Trajcevski. Formal Characterization and Reasoning
about Active Databases. ht tp: / /www.eecs.uic .edu/~jorge.

8. L. Brownston, R. Farell, E. Kant, and N. Martin. Programming Expert Systems in
OPSS: An Introduction to Rule.Based Programming. Addison-Wesley, 1985.

9. S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Automatic generation of
production rules for integrity maintenance. Transactions on Database Systems,
19(3):367-422, 1994.

10. S. Ceri and J. Widom. Deriving production rules for incremental view mainte-
nance. In Very Large Databases, 1991.

11. S. Ceri and J. Widom. Deriving incremental production rules for deductive data.
Information Systems, 19(6):467-490, 1994.

12. S. Chakravarthy, B. Blaustein,A. Buchmann,M. Carey, U. Dayal,D. Goldhirsch,
M. Hsu, R. Jauhari, R. Ladin,
M. Livni, D. McCarthy, R. McKee, and A. Rosenthal. Hipac: A research project
in active, time constrained database management. Technical Report XAIT-89-02,
Xerox Advanced Information Technology, 1989.

13. J. Chomicki and D. Toman. Implementing temporal integrity constraints using an
active database. IEEE Transaction on Knowledge and Data Engineering, August
1995.

263

14. U. Dayal, E. Hansen, and J. Widom. Active database systems. In W. Kim, ed-
itor, Modern Database Systems: The Object Model, Interoperability and Beyond.
Addison-Wesley, 1994.

15. K.R. Ditrich, S. Gatziu, and A. Geppert. The active database management system
manifesto: A rule-base of adbms features. In 2nd International Workshop on Rules
in Database Systems, 1995.

16. A. Elmagarmid, editor. Transaction Models for Advanced Database Applications.
Morgan-Kaufmann, 1992.

17. O. Etzion. Reasoning about the behavior of active database applications. In In-
ternational Workshop on Rules in Database Systems, 1995.

18. A.A.A. Fernandez, H. Williams, and N.W. Paton. A logic based integration of
active and deductive databases. New Generation Computing, 15:205-244, 1997.

19. P. Praternali and L. Tanca. A structured approach for the definition of the se-
mantics of active databases. Transactions on Database Systems, 20(4):414-471,
1995.

20. N. Gehani and H.V. Jagadish. Ode as an active database: Constraints and triggers.
In Very Large Databases, 1991.

21. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.
Journal of Logic Programming, 17(2,3,4):301-323, 1993.

22. S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevating deltas to be a
first-class citizens in a database programming language. Technical Report USC-
CS-94-581, revised 1995.

23. S. Ghandeharizadeh, R. Hull, D. Jacobs, J. Castillo, M.E. Molano, S.H. Lu, J. Luo,
C. Tsang, and G. Zhou. On implementing a language for specifying active database
execution models. In Very Large Databases, 1993.

24. J. Gray and A. Reuter. Transaction Processing: concepts and techniques. Morgan
Kaufmann, 1993.

25. E. Hanson and J. Widom. An overview of production rules in database systems.
Knowledge Engineering Review, 8(2):121-143, 1993.

26. E.N. Hanson. Rule condition testing and action execution in ARIEL. In ACM
SIGMOD, 1992.

27. G. Kar tha and V. Lifshitz. Actions with indirect effects: Preliminary report. In
KR94, pages 341-350, 1994.

28. F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Computa-
tion, 4(5):655-678.

29. D.R. McCarthy and U. Dayal. The architecture of an active database management
system. In ACM SIGMOD, 1989.

30. I. Motakis and C. Zaniolo. Composite temporal events in active database rules:
A logic oriented approach. In Deductive and Object Oriented Databases (DOOD),
1995.

31. N.W. Paton, J. Campin, A.A.A. Fernandez, and M. Howard. Formal specification
of active database functionality: A survey. In 2nd International Workshop on Rules
in Database Systems, 1995.

32. P. Picouet and V. Vianu. Semantics and expressiveness issues in active databases.
In Principles of Database Systems, 1995. full version 1996.

33. P. Sistla and O. Wolfson. Temporal conditions and integrity constraint checking in
active database systems. In Proceedings of the 1995 A CM SIGMOD International
Conference on Management of Data. ACM Press, San Jose, CA, 1995.

34. M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedure
caching and views in database systems. In ACM SIGMOD, 1990.

264

35. M. Stonebraker and G. Kemnitz. The Postgres next-generation database manage-
ment system. Communications of ACM, 34(10):78-92, 1991.

36. 3.D. Ullman. Principles of Database and Knowledge.base Systems, volume I. Com-
puter Science Press, 1988.

37. S.D. Urban, A.P. Karadimce, and R.B. Nannapaneni. The implementation and
evaluation of integrity maintenance rules in an object-oriented database. In 8th
International Conference on Data Engineering, 1992.

38. G. Weikum and H.3. Schek Concepts and Applications of Multilevel Transactions
and Open Nested transactions, in Transaction Models for Advanced Database Ap-
plications, Morgan-Kaufmann, 1992. A. Elmagarmid, editor.

39. J. Widom. A denotational semantics for the Starburst production rule language,
1992. SIGMOD Record 21.

40. J. Widom. Deductive and active databases: Two paradigms or ends of a spectrum?
In International Workshop on Rules in Database Systems, 1993.

41. 3. Widom. The Starburst active database rule system. IEEE Transactions on
Knowledge and Data Engineering, 8(4):583-595, 1996.

42. J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann, 1996.

43. C. Zaniolo. A unified semantics for active and deductive databases. In Interna-
tional Workshop on Rules in Database Systems, 1993.

44. C. Zaniolo. Active database rules with transaction-conscious stable-model seman-
tics. In Deductive and Object Oriented Databases (DOOD), 1995.

