
P2EST: Parallelization Philosophies for Evaluating
Spatio-Temporal Queries

Xiling Sun
∗

Anan Yaagoub Goce Trajcevski
†

Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Il 60208

x-sun,anany,goce@eecs.northwestern.edu
Peter Scheuermann∗ Hao Chen Abhinav Kachhwaha

Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Il 60208

peters,h-chen,abhinav@eecs.northwestern.edu

ABSTRACT
This work considers the impact of different contexts when
attempting to exploit parallelization approaches for process-
ing continuous spatio-temporal queries. More specifically,
we are interested in various trade-off aspects that may arise
due to differences of the computing environments like, for
example, multicore vs. cloud. Algorithmic solutions for par-
allel processing of spatio-temporal queries cater to splitting
the load among units - be it based on the data or the query
(or both) - relying to a bigger or lesser degree on a certain
set of features of a given environment. We postulate that
incorporating the service-features should be coupled with
the algorithms/heuristics for processing particular queries,
in addition to the volume of the data. We present the cur-
rent version of the implementation of our P2EST system
and analyze the execution of different heuristics for parallel
processing of spatio-temporal range queries.

Categories and Subject Descriptors
H.2.8 [Spatial Databases and GIS]: Miscellaneous

General Terms
Algorithms, Performance

∗Research supported in part by the National Science Foun-
dation under grants CNS 0910952.
†Research supported in part by the National Science Foun-
dation under grants CNS 0910952 and III 1213038.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissionsacm.org.
BIGSPATIAL ’13, November 05 - 08 2013, Orlando, FL, USA
Copyright 2013 ACM 978-1-4503-2534-9/13/11Ě$15.00.
http://dx.doi.org/10.1145/2534921.2534929

Keywords
Spatio-temporal queries, Multi-core, Cloud

1. INTRODUCTION

The goals of Moving Objects Databases (MOD) are centered
around two main themes: (1) efficient storage and retrieval
of the spatio-temporal data representing the motion of a
large number of moving objects; and (2) efficient processing
of various queries of interest, such as, whereabouts-in-time,
range, (k)Nearest-neighbor, similarity, skyline, etc... [9]. In
addition to the properties that are consequence of the type
of a particular query, many context dimensions have been
used to improve the efficiency of the query processing have
been by capitalized upon. Some examples are: historic tra-
jectories vs. streaming moving objects data [10, 12, 20, 30];
”crisp” vs. uncertainty-aware settings [18, 19, 27, 26, 25];
road network vs. free motion [4, 21].

More specifically, some works have investigated the corre-
lation of architectural/environmental aspects with the data
properties, for the purpose of generating efficient algorithms
for processing spation-temporal queries. For example, the
load-shedding introduced in [20] introduces structures to
drop moving objects from memory once they become in-
significant. Complementary to this, [7] proposes distributed
processing of spatio-temporal queries by delegating some of
the updates-responsibilities to the (distributed but collabo-
rative) mobile entities themselves.

In this particular work, we take a step towards incorporat-
ing the context of processing platforms when selecting ap-
proaches for efficient evaluation of spatio-temporal queries.
Since many GIS application need effective and scalable tech-
niques for processing such queries and parallelization is a
good approach, we investigated two ”ends of the spectrum”:

1. On one hand, we consider efficient execution of algo-
rithms in multicore settings [11] for the purpose of

��

Figure 1: Different Platforms for Parallel Processing of Spatio-Temporal Queries

maximizing the benefit of locally-parallelizing various
tasks involved in generating queries’ answers.

2. On the other hand, we incorporate the style of par-
allel programming supported by capacity-on-demand
distributed cloud environments [8]. Only recently has
the cloud-based paradigm been applied to geo-spatial
queries [3].

Cloud computing has become a popular technique to process
large-scale dataset [13], in large due to its elasticity provi-
sion and economic benefits (i.e., avoiding a purchase of own
servers for processing large data). [15]. Applications are
delivered as services come from the traditional software de-
livery model called Software as a Service (SaaS) [1]. From
a global perspective, part of our motivation comes from the
arguments presented in [24] – except we took the comple-
mentary stand of focusing on spatio-temporal queries and
the impact of a particular paradigm/platform.

Clearly, incorporating the semantics of the underlying data
and/or queries will (almost) always yield considerable ad-
vantages for exploiting the benefits of a particular platform.
However, the drive behind our work stems from the obser-
vation that ”blind incorporations” need not yield same (or
similar) benefits in different environments.

In [28] we proposed several partitioning and coopera-
tive load-balancing strategies for processing a collection of
spatio-temporal range queries in multicore environments.
Our experimental observations indicated a certain degree of
differences in terms of execution time among the proposed
heuristics, thereby implying a ranking among them. What
we asked ourselves were the following two basic questions:

1. If we execute the same heuristic in a different par-
allelization environment, (e.g., Amazon Web Services
(AWS) cloud1 would the relative ranking be the same?

2. Is there any data size which would determine when one
environment should be preferred to the other?

1http://aws.amazon.com/

The intuition of our motivation is illustrated in Figure 1.
We view the multicore systems and the cloud as two ”ends
of spectrum”, and aim at providing a tool that would let
the users seamlessly test their different implementations on
different platforms.

In the rest of this paper, after collecting some prelimi-
nary background in Section 2, we discuss the paralleliza-
tion heuristics in Section 3, along with the files’ structures
and the algorithms used in processing the spatio-temporal
queries in AWS. Section 4 describes our current system pro-
totype and presents some experimental observations. We
conclude the paper and outline directions for future work in
Section 5.

2. PRELIMINARIES

We now review the basic concepts and notation used
throughout the rest of this paper.

Typically, in MOD settings, a trajectory Tr of a moving
object, is a polyline in a 3D space (2D spatial + time),
represented as a sequence of points Tr = (x1, y1, t1), . . .,
(xn, yn, tn), where ∀(i, j)(i < j ⇒ ti < tj). Between two
consecutive points (xi, yi, ti) and (xi+1, yi+1, ti+1), the ob-
ject is assumed to move along the straight line-segment
((xi, yi)(xi+1, yi+1)), and with a constant expected speed
vi =

√

(xi+1 − xi)2 + (yi+1 − yi)2/(ti+1 − ti).
The expected location of the object at any time-point t
(∈ (ti, ti+1)) is the one obtained via linear interpolation
between the endpoints, using the expected speed vi. The
projection of Trk in the Euclidian 2D space is called its
route.

We assume multicore settings in a multiple-reader multiple-
writer (MRMW) shared memory context [11]. Specifically,
each core Ci can access the different portions of the MOD-
data and, when applicable can write in a buffer(s) that can
be read by the other cores for the purpose of determining
whether a particular thread running on Ci should be termi-
nated or not, without affecting the correctness of the answer
to the query. In addition, we assume a cooperation among
the cores in the sense that when a particular core Ci com-
pletes the processing of its assigned load, it can take part of

��

Figure 2: Hadoop Architecture

the current load of another core Cj (cf. [29]).

Utilizing the cloud for any computation or query process-
ing typically assumes a collaboration among four main cat-
egories: (1) the front end platform (i.e. the client); (2) the
back end platform (i.e. the server); (3) the delivered service
(i.e. software or hardware); and (4) the Internet. The front
end platform requests the service from the back end platform
via the Internet. Popularized by Google over the last decade,
MapReduce is a distributed programming framework used to
relief distributed applications developers from the burdens
of reliability and scalability [14]. Map function and Reduce
function are the two fundamental computing units. Users
only need to provide their Map function and Reduce func-
tion in order to distribute the processing of large amount of
data. Map function processes the input, generates key-value
pairs, and then emits the key-value pairs to the intermedi-
ate of MapReduce framework. Then MapReduce framework
will gather all key-value pairs with the same key to the same
Reduce function. Each Reduce function, in turn, processes
these key-value pairs and emits the final output [16].

Along these lines, Hadoop is open-source software that sup-
ports reliable, scalable, data-intensive distributed comput-
ing for large-scale dataset among clusters2. Hadoop has
three main parts: the Hadoop kernel, the distributed file sys-
tem HDFS (Hadoop Distributed File System), and the im-
plementation of the basic paradigm, named Hadoop MapRe-
duce. The open source implementation, among others,
contains the Google File System [22], MapReduce frame-
work [14] and BigTable [6].

As shown in Figure 2, a typical Hadoop cluster contains
one master node and several slave nodes. The master node
has four parts: TaskTracker, JobTracker, NameNode, and
DataNode. Each slave node has two parts: TaskTracker and
DataNode. Each Hadoop cluster also has a SecondaryNa-
meNode which mainly manages the log files of cluster3. Data

2http://hadoop.apache.org/
3http://hadoop.apache.org/docs/stable/hdfs user guide.html

in Hadoop clusters is split into smaller chunks which are dis-
tributed among clusters using data block protocol specified
by HDFS. HDFS acquires fault-tolerant by replicating the
data chunks across multiple machines [10]. Hadoop will get
the data chunks from the nearest machine when running
MapReduce applications.

There are several open source implementations of Hadoop
relying on HDFS for storing the data (e.g., HBase, Hive, Pig)
as well as commercial ones (e.g., HDInsight for Microsoft
Windows Azure platform). In this work, we used Amazon
Web Services (AWS) platform, running our MapReduce pro-
gram by using Elastic MapReduce and Scalable Storage ser-
vices.

3. PARTITIONING AND PARALLELIZA-
TION STRATEGIES

We now describe the data structures and partitioning ap-
proaches used throughout this work. For presentation pur-
poses, we separate the discussion along the ”environmental”
context and we address the multicore settings first, followed
by the cloud environment. For conciseness, we use the term
”unit” to denote a core in multicore setting, or a node in
AWS cloud-setting, respectively.

We focus on range queries, for which the basic statement is:

Qr: Retrieve all the moving objects which are inside the
region R between [t1, t2].

and, as mentioned in Section 2, when processing such
queries, we assume that in-between consecutive updates the
location of a moving object is obtained via linear interpola-
tion.

We note that the above example illustrates the, so called,
existential variant of a range query. However, one can also
consider other variants – e.g., retrieving of the objects who
were inside R throughout the entire time-interval of interest

��

(universal); or retrieving of the objects who were inside R
for at least Θ (0 < Θ < 1) fraction of [t1, t2].

3.1 Heuristics and Multicore
In multicore settings, we consider a data stored in a MOD, in
which each trajectory is represented as a user-defined type
consisting of a unique object ID (oID) and a sequence of
(location, time) values – e.g.,

{o25, [(x25,1, y25,1, t25,1), . . . , (x25,k, y25,k, t25,k)]}

We consider three heuristics (labelled H1 − H3) which we
describe in the sequel. We note that different collaborations
and load balancing techniques among the units are possible
based on a particular variant of the range query, and we
presented such details for multicore settings in [28, 29].

Figure 3: H3: R-based Load Distribution Among
Cores

• H1: The first heuristic partitions the MOD ”vertically”
– i.e., along the temporal dimensions. Essentially, this
implies that each of the m units is in charge of checking
a corresponding segment of all the trajectories reduced
to a time-interval of duration (t2−t1)/m. We re-iterate
that different variants of the query may offer different
(subtle) opportunities for speed-up. Namely, for the
existential variant (cf. Qr: above), the moment a par-
ticular unit detects an intersection/containment, for a
given trajectory, the rest of the units can safely ignore
their parts of the corresponding trajectory.

• H2: Complementary to H1, the second heuristics par-
titions the MOD data ”horizontally”. Namely, each
unit is assigned a subset of oIDs encompassing the en-
tire sequence of points for each individual trajectory.
It is in charge of processing the range query for each
complete trajectory in its subset. Similarly to H1, one
can expect different speed-up possibilities based on the
exact semantics of Qr. Specifically, for the existential
case, a given core can stop considering the rest of the
segments in a given trajectory Tri after the first in-
tersection is detected. Since each core is in charge of
entire trajectory, there is no need to communicate the
detection of the satisfiability to the rest of the cores
and have them stop processing any portions of Tri. It
is subtle issues like this that make H2 exhibit better
speed-up than H1 (cf. [28]).

• H3: The main difference between this heuristics and
the previous two is that the partition is based on the

query-space. Namely, for a given collection of regions
R1, . . ., Rn, each unit is assigned an equal area sub-
region(s), and is in charge of processing the range-
query over the entire collection of trajectories in the
MOD over the corresponding sub-region(s). As illus-
trated in Figure 3, the main intuition behind H3 is
to partition the query-region into k non-overlapping
regions – R1, R2, . . . , Rk, having only a common
boundary-edge as intersection between two consecutive
sub-regions. The processing of the sub-query pertain-
ing to Rj is assigned to the core Cj . An individual core
Cj operates over the entire collection of trajectories
in the MOD, however, it only evaluates a query per-
taining to a sub-region from the original query region
R. Assuming that the number of cores in a multicore
machine is typically a power-of-2 (e.g., [17], although
other multicore architecture exist), we can recursively
apply the algorithms for bisecting a given polygon into
two (sub)polygons of equal areas [23], so that each core
is assigned an equal-area sub-region 4 of R.

3.2 Cloud: Data Representation and Algo-
rithms

Amazon’s Elastic MapReduce assumes a default input for-
mat to be plain text files, where consecutive lines are sep-
arated by \n (newline) character5. Given that this is the
most commonly used format, we used two basic representa-
tion methods:

• Segment Per Line (SPL): This format has 8 attributes
in each line: Moid, Tripid, Tstart, Tend, Xstart, Ys-
tart, Xend, and Yend. Essentially, a given trajectory is
broken into individual ”trip-segments” (i.e., segments
between two consecutive time-stamps), and each seg-
ment is stored in the separate line.

The meaning of each attribute is as follows:

Moid is the ID of a moving object;

Tripid denotes the ID of a particular trip (in case a
given moving object may have a prolonged ”stationary”
time during the interval of interest).

Tstart and Tend denote the start time and end time
for the segment.

Xstart, Ystart and Xend, Yend denote the spatial co-
ordinates of the locations where the segment starts and
ends, respectively.

• Trajectory Per Line (TPL): This format is closer to
the MOD representation of the trajectory, in the sense
that all segments are listed in the same line.

The constituents of a line are: Moid, Tstart 1, Tend 1,
Xstart 1, Ystart 1, Xend 1, Yend 1, ... ,Tstart n,
Tend n, Xstart n, Ystart n, Xend n, and Yend n –
with their intuitive meaning. We note that the TPL
format does not have a Tripid column, since the tra-
jectory of a given trip for a particular object is repre-
sented in its entirety before the next \n symbol.

4See [28] for details.
5Once can use the InputFormat to specify other types in
Hadoop, and even create a subclass of the FileInputFormat
class to handle custom data types – which we plan to ac-
commodate in the future.

��

In either case, the entries (SPL or TPL format) are submit-
ted to the Maper and the code for intersection is specified
as part of the Reducer. We note that the source codes for
all the heuristics (both for multicore and cloud implementa-
tions) and the datasets that we used are publicly available
at:
http://www.sharpedgetech.com/PPEST.

As an example, we present the pseudo code of two variations
of the MapReduce for H1 and H2 in Algorithm 1. and
Algorithm 2, respectivelly.

Algorithm 1 MapReduce - H1 algorithm for TPL

1: procedure MAP (id, Tri)
2: tmid,ij

= (⌈Trj.End time - Trj .Start time) / nReducers⌉
/2

3: p = Time-Key-ID(tmid,i,nReducers,
MODtstart,MODtend)

4: EMIT(p,Si)
5: end procedure
6: procedure REDUCE (p, [S1,i1 ,S2,i2 , ... Sk,ik

])
7: ResultSet TR Intersected = ∅
8: for all S ∈ [S1,i1 ,S2,i2 , ... Sk,ik

] do
9: if Sj,ij .oid NOT IN TR Intersected then

10: if Sj,ij .oid INTERSECT Qr then
11: TR Intersected = TR Intersected∪ Sj,ij .oid
12: EMIT (Trij .oid)
13: end if
14: end if
15: end for
16: end procedure

The intersection test (and corresponding outputs) will be
performed on time-segmented portions of the trajectory data
in one of the Reducers (nReduce). To achieve this, we have
the Time-Key-ID(. . .) function in the Mapper which takes
is inputs a time value corresponding to the time-instant of
the middle of the i-th time-portion of the h-th trajectory
– tmid,ij

. The number of segments is equal to the number
of reducers, earliest and latest times of the MOD trajecto-
ries (MODtstart and MODtend), and the collection of the
reducers, nReduce. The output of the function is the value
of the reducer (variable p) that will be in charge of perform-
ing the intersection test for the particular subset (collection
of consecutive segments) of the trajectory, the midpoint of
which is tmid,ij

.

However, there are some subtle observations due to the
choice of representation. Namely, subsets from more than
one trajectory may be assigned to a same reducer. This is
why we need some ”book-keeping” in terms of maintaining
the oid of a trajectory. When an intersection is detected, the
reducer knows which particular trajectory should be added
to the answer set. Moreover, if a particular oid is already in
the intersection set, the intersection test for any segment Si

for the same oid can be avoided.

We note that when SPL representation is used, the main
difference is that the consecutive segments from one trajec-
tory (based on the mid-point time value) are assigned by the
Mapper to different reducers. Similarly to Algorithm 1, in
SPL case we can avoid un-necessary intersection tests.

Algorithm 2 MapReduce - H2 algorithm for TPL

1: procedure MAP (id, Tr)
2: tmid,i = (Tri.End time - Tri.Start time) / 2
3: p = Time-Key-ID(tmid,i,nReducers,

MODtstart,MODtend)
4: EMIT(p,Tr)
5: end procedure
6: procedure REDUCE (p, [Tr1,Tr2, ... Trk])
7: for all Trj in [Tr1,Tr2, ... Trk] do
8: for all Srj in Trj do
9: if Srj.oid INTERSECT Qr then

10: EMIT (Srj .oid)
11: exit loop
12: end if
13: end for
14: end for
15: end procedure

Algorithm 2 describes the TPL based implementation of H2.
As can be observed, the fundamental difference with Algo-
rithm 1 is the manner of assignment of the data from an
input file to a reducer. Specifically, the mid-point along the
temporal dimension is chosen for an entire trajectory (line
2.) and is used to determine the Reducer that will subse-
quently perform the intersection tests (line 3.). A particu-
lar Reducer (cf. line 7) gets a collection of entire/complete
trajectories to perform the intersection test. Note the sub-
tle difference with Algorithm 1 – since the trajectories are
present as whole, there is no need for the extra ”book-
keeping” to eliminate unnecessary calculations.

The corresponding algorithm for H2 when SPL is used is
similar to Algorigthm 2.

Lastly, we note that for H3, each Reducer is assigned a
subset of the query range to perform the intersection test
upon. The main difference is that for SPL, the Reducers
need copies of multiple files, whereas for TPL copies of a
single file are used.

4. EXPERIMENTAL OBSERVATIONS

Our algorithmic approaches have been implemented in the
prototype version of the P2EST system. Figure 4 shows the
interface of the system which offers three basic categories of
functionalities:

1. The users can select the data set. Pressently, we
have trajectories’ datasets from BerlinMOD [5], as well
as several datasets generated using Brinkhoff simula-
tor [2]. Optionally, the users may choose to visualize
(top-right portion) the map used for trajectories gen-
eration and the regions of the range queries.

2. The second feature that the simulator offers is the
choice of a processing environment – spanning from
”local”multicore, through Amazon Web Services (both
available at present). Optionally, users may select the
number of cores or, in case of AWS – the number of
nodes.

��

Figure 4: P
2EST User Interface

Size Heuristic 2-Core 4-Core AC-10 AC-20

1 GB H2 2.4% 3.3% -29% -46%
H3 25% 33.3% 7% 12%

3 GB H2 4.9% 1.9% -39% -40%
H3 32% 38.5% 47% 45%

4.5 GB H2 5.7% 4.8% -37% -61%
H3 25% 41.3% 42% 36%

15 GB H2 6.3% 4.3% -30% -16%
H3 20% 37.9% 23% 17%

Table 1: Comparison of speed-ups between heuristics in multicore and cloud settings

3. The last main feature of the P2EST involves op-
tions for specifying the parameters of spatio-temporal
queries like, e.g. the polygon for the range query and
the partitioning/parallelization heuristics (cf. Section
3).

In our experiments with multicore settings, typically, H2

would offer higher speed-up than H1, and H3 would offer the
highest speed up. The benefits would increase both with the
size of the data as well as the number of cores. However,
when we tried to ”replicate” the partitioning heuristics on
the AWS-cloud, we had some surprising observations.

Table 1 shows the speed-up benefits when comparing H2 and
H3 to heuristic H1 for the case of existential range query.
We report observations for both multi-core (2 and 4 cores)
as well as the AWS cloud with configurations of 10 and 20
nodes. The results are shown for datasets of trajectories
with sizes of 1GB, 3GB and 4.5GB. Looking at the 3GB

dataset, we see that for 4 cores setup, H2 provide a speed
up of 1.9% whereas H3 executes 38.5% faster than H1for the
same dataset. However, in AWS-cloud setting with 10 nodes,
strangely, H2 executes 37% slower than textbfH1 (hence -
37%), whereas H3 yields a speed-up of 42% compared to
H1.

The results reported in Table 1 above are based on averaging
observations from several experimental settings. We ran up
to 5 experiments for each Heuristic/Environment coupling,
where each experiment varied in a number of aspects: – we
used different number of polygons (representing the area of
interest) with varying number of regions and shapes; – we
used different MOD input data formats (i.e. time or object
orders); – lastly, for the AWS-cloud implementation, some
experiments used the one phase MapReduce approach while
other use chained MapReduce (in our case - 2 Mapreduce).
As mentioned, it was the discrepancies between the expected
and observed speed-ups that gave the main motivation for
pursuing the work towards developing a system that we will

��

Nodes Size in GB H2 - Segment per Line H2 - Trajectory per Line

1 1 754.321 s 500.308 s
3 1955.96 s 1279.791 s

4.51 2943.877 s 2059.029 s
10 1 305.869 s 194.53 s

3 375.065 s 295.638 s
4.51 474.399 s 361.445 s

20 1 461.241 s 171.303 s
3 308.367 s 248.293 s

4.51 337.089 s 391.659 s

Table 2: Comparison of speed-ups between Data Structures - cloud w/Query Size = 4

to demonstrate.

There was another ambiguity that we observed in our ex-
periments. Namely, for a particular query, different rep-
resentations would yield different speed-ups on the cloud.
Specifically, Table 2 shows the speed-up benefits when using
H2 for a query size of 4 between the two different data repre-
sentations – SPL and TPL. As can be seen, for 20 nodes on
AWS, the relative benefits of SPL and TPL vary for different
sizes.

5. CONCLUSION AND FUTUREWORKS

We presented our comparative implementations for process-
ing spatio-temporal range queries in multi-core vs. cloud
environments. We brought some experimental observations
which hint that there are some important ”environmental
context” which need to be considered when attempting a
parallel processing of such queries. Specifically, mixing dif-
ferent representations and different heuristics, resulted in
some counter-intuitive performances. To say the least, we
observed inconsistencies among the relative benefits of par-
ticular heuristics and representation methods.

We are working towards augmenting the current functional-
ities of the P2EST system in two MOD-related directions.
Firstly, we would like to enable the users to experiment with
different types of queries (e.g., kNN and skyline). Secondly,
we investigate the option of incorporating moving objects
with spatial extents (e.g., mobile shapes representing tails
of hurricanes).

In addition, we are also extending the AWS implementation
in the following two aspects: – combining the use of H3 in
conjunction with H1 and/or H2; – accepting different rep-
resentation of the motion plans (e.g., interpolation between
two points using acceleration information), relying on the
Hadoops’ extensibility features.

Part of our long-term desiderata is to provide an extensible
tool that will enable the users to incorporate (and test the
impact of) various distributed environments (cf. [24]). To-
wards that, we already have some preliminary steps for in-
corporating Windows Azure platform and we would also like
to extend P2EST by incorporating GPU-based paralleliza-
tion strategies. The later, however, will require additional
research and implementation efforts that are different in a
few contexts from the current instance of our work.

6. REFERENCES
[1] Fox A., Griffith R., Joseph A., Katz R., Konwinski A.,

Lee G., and Stoica I. Above the clouds: A berkeley
view of cloud computing. Dept. Electrical Eng. and
Comput. Sciences, University of California, Berkeley.
Rep. UCB/EECS, 28, 2009.

[2] Thomas Brinkhoff. A framework for generating
network-based moving objects. GeoInformatica, 6(2),
2002.

[3] Ariel Cary, Yaacov Yesha, Malek Adjouadi, and
Naphtali Rishe. Leveraging cloud computing in
geodatabase management. In GrC, pages 73–78, 2010.

[4] Ugur Demiryurek, Bei Pan, Farnoush Banaei Kashani,
and Cyrus Shahabi. Towards modeling the traffic data
on road networks. In GIS-IWCTS, 2009.

[5] Christian Düntgen, Thomas Behr, and Ralf Hartmut
Güting. Berlinmod: a benchmark for moving object
databases. VLDB J., 18(6):1335–1368, 2009.

[6] Chang F., Dean J., Ghemawat S., Hsieh W. C.,
Wallach D. A., Burrows M., Chandra, T., Fikes A.,
and Gruber R. E. Bigtable: A distributed storage
system for structured data. OSDI, page 1, 2006.

[7] Bugra Gedik and Ling Liu. Mobieyes: A distributed
location monitoring service using moving location
queries. IEEE Transactions on Mobile Computing,
5(10), 2006.

[8] Robert L. Grossman and Yunhong Gu. On the
varieties of clouds for data intensive computing. IEEE
Data Eng. Bull., 32(1):44–50, 2009.

[9] Ralf H. Güting and Markus Schneider. Moving Objects
Databases. Morgan Kaufmann, 2005.

[10] Ralf Hartmut Güting, Thomas Behr, and Jianqiu Xu.
Efficient k-nearest neighbor search on moving object
trajectories. VLDB Journal, 19(5):687–714, 2010.

[11] Maurice Herlihy and Nir Shavit. The Art of
Multiprocessor Programming. Morgan Kaufmann,
2008.

[12] Katja Hose and Akrivi Vlachou. A survey of skyline
processing in highly distributed environments. VLDB
J., 21(3), 2012.

[13] Foster I., Zhao Y., Raicu I., and Lu S. Cloud
computing and grid computing 360-degree compared.
Grid Computing Environments Workshop, pages 1–10,
2008.

[14] Dean J. and Ghemawat S. Mapreduce: Simplified data
processing on large clusters. OSDI, 2004.

[15] Rolia J., Zhu X., Arlitt M, and Andrzejak A.

��

Statistical service assurances for applications in utility
grid environments. MASCOTS, pages 247–256, 2002.

[16] Chen K. and Zheng W. Cloud computing: System
instances and current research. Journal of Software 5,
2009.

[17] Poonacha Kongetira, Kathirgamar Aingaran, and
Kunle Olukotun. Niagara: A 32-way multithreaded
sparc processor. IEEE Micro, 25:21–29, 2005.

[18] Bart Kuijpers, Rafael Grimson, and Walied Othman.
An analytic solution to the alibi query in the
space-time prisms model for moving object data.
International Journal of Geographical Information
Science, 25(2):293–322, 2011.

[19] Xiang Lian and Lei Chen. Probabilistic ranked queries
in uncertain databases. In EDBT, pages 511–522,
2008.

[20] Mohamed F. Mokbel and Walid G. Aref. SOLE:
scalable on-line execution of continuous queries on
spatio-temporal data streams. VLDB Journal,
17(5):971–995, 2008.

[21] Kyriakos Mouratidis, Man L. Yiu, Dimitris Papadias,
and Nikos Mamoulis. Continuous nearest neighbor
monitoring in road networks. In VLDB, pages 43–54,
2006.

[22] Ghemawat S., Gobioff H., and Leung S. T. The google
file system. In ACM SIGOPS Operating Systems
Review, 37(5):29–43, 2003.

[23] Thomas C. Shermer. A linear algorithm for bisecting a
polygon. Inf. Process. Lett., 41(3):135–140, 1992.

[24] Michael Stonebraker, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, Erik Paulson, Andrew
Pavlo, and Alexander Rasin. Mapreduce and parallel
dbmss: friends or foes? Commun. ACM, 53(1):64–71,
2010.

[25] Yufei Tao, Xiaokui Xiao, and Reynold Cheng. Range
search on multidimensional uncertain data. ACM
Trans. Database Syst., 32(3):15, 2007.

[26] Goce Trajcevski, Alok Choudhary, Ouri Wolfson,
Ye Li, and Gang Li. Uncertain range queries for
necklaces. In MDM, 2010.

[27] Goce Trajcevski, Ouri Wolfson, Klaus Hinrichs, and
Sam Chamberlain. Managing uncertainty in moving
objects databases. ACM Trans. Database Syst., 29(3),
2004.

[28] Goce Trajcevski, Anan Yaagoub, and Peter
Scheuermann. Processing (multiple) spatio-temporal
range queries in multicore settings. In ADBIS, pages
214–227, 2011.

[29] Anan Yaagoub, Goce Trajcevski, Peter Scheuermann,
and Nikos Hardavellas. Load balancing for processing
spatio-temporal queries in multi-core settings. In
MobiDE, pages 53–57, 2012.

[30] Yu Zheng and Xiaofang Zhou. Computing with Spatial
Trajectories. Springer, 2011.

��

