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ABSTRACT
We address the problem of efficiently parallelizing the pro-
cessing of spatio-temporal range queries in multicore set-
tings. Although the data set can be partitioned and as-
signed to individual cores for processing a collection of range
queries, one cannot achieve an ”ideal” assignment for all the
cores’ load. Hence, the cores should collaborate in a dy-
namic manner: ones that have completed their (sub)tasks
should take part of the load from the cores that are still
processing some of the data. We provide algorithms and
synchronization data structures that achieve such collabo-
rative behavior and we investigate their impact in different
initial load-partitioning strategies. Our experiments demon-
strate that about 40% speed-up can be gained when com-
pared to static load-partitioning and that the proposed ap-
proach scales well.
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Algorithm
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Applying efficient parallel and/or distributed processing
techniques have been among the earliest quests of every com-
puting task [3]. Recent advances in the design of multicore
processors have added a particular perspective of devising
efficient algorithms in such settings [11,12]. When it comes
to spatio-temporal data management, the distributed and
parallel processing arise naturally as ”context-attributes” in
certain settings, e.g., data delivery and delegation of respon-
sibilities among mobile clients [7,8,10], as well as query pro-
cessing in sensor networks [2,5].

In our recent work [14] we presented techniques for in-
corporating the semantics of the underlying data when pro-
cessing spatio-temporal range queries to better utilize par-
allelization in multicore environments. Our objective in [14]
was to explore the advantages of splitting the load among
the cores based on some awareness about spatial and tem-
poral dimensions of the data and the query, when compared
to readily-available generic compiling tools for generating
parallel code [1].

Figure 1: Static allocation of load per core

In this work, we explore a complementary dimension –
namely, the impact of the (possible) collaborative parallel
processing of spatio-temporal queries in multicore settings.
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To better illustrate the motivation for our approach, con-
sider the query:
QR: Retrieve all the moving objects that were inside the
region R sometime between tb and te.

Figure 1 shows a collection of trajectories moving through-
out a given region of interest, where the range query is illus-
trated with the hexagon R. The depicted scenario shows a
setting in which the load (in terms of portions of the trajec-
tories) has been distributed among four cores. In this par-
ticular case, one can readily see that the cores C2 and C3 are
likely to finish their portions of the task of processing QR

earlier than the cores C1 and C4. Intuitively, waiting for the
(slower of the) C1 and C4 to complete their portions is what
determines the overall processing time. Hence, the question
that we are addressing in this paper is: could C2 and C3,
upon finishing with their load, help C1 and C4, and what
are the benefits in terms of the overall processing times?

Towards that, the main contribution of this work is a
”load-aware” methodology for processing spatio-temporal
range queries in multicore settings. After presenting the
background in Section 2, we formalize the algorithmic as-
pects in a shared data environment and present simple com-
munication and collaboration mechanism among the cores in
Section 3. To quantify the benefits of the proposed method-
ology, we implemented our algorithms in two, four, and eight
cores environment and evaluated them against näıve method
in which the load is split among the available cores in a
static manner, using the Brinkhoff simulator [4] to generate
sets of up to 10,000 trajectories. Our experimental obser-
vation (Section 4) indicate that speed-ups of up to 50% can
be achieved when the cores collaborate in a load-aware man-
ner. Section 5 compares our work with the related literature,
concludes the paper and outlines directions for future work.

2. PRELIMINARIES
We now present the basic concepts and notation used

throughout the rest of this paper. In the MOD-literature,
the motion of the objects is represented by a trajectory [9]:

Definition 1. A trajectory Tr of a moving object, is a
polyline in a 3D space (2D spatial + time), represented as
a sequence of points Tr = (x1, y1, t1), . . ., (xn, yn, tn), where
∀(i, j)(i < j ⇒ ti < tj). Between two consecutive points
(xi, yi, ti) and (xi+1, yi+1, ti+1), the object is assumed to

move along the straight line-segment ((xi, yi)(xi+1, yi+1)),
and with a constant expected speed
vi =

√
(xi+1 − xi)2 + (yi+1 − yi)2/(ti+1 − ti). The expected

location of the object at any time-point t (∈ (ti, ti+1)) is the
one obtained via linear interpolation between the endpoints,
using the expected speed vi. The projection of Trk in the
Euclidian 2D space is called its route.

According to Definition 1, a trajectory is function from
Time domain into the 2D Euclidian space (i.e., f(t) → R2),
and we consider past motion, which is, the entire motion of
each objects is known and stored in the MOD. However, the
said data type may also correspond to future motion plan
of a given object, obtained either via some trip-planning
tool (e.g., MapQuest or Google Maps), or dictated by some
business fleet-planning rules [6].

We consider a multiple-reader multiple-writer (MRMW)
shared memory context [11], where each core Ci can ac-
cess different portions of the MOD-data, and operates on

the one assigned to it. When Ci completes the processing
of the range query with respect to its own data, it initi-
ates a collaboration with another core, say Cj that has not
completed the query processing yet. Assuming a unique tra-
jectory identifier Tri for each trajectory in the given MOD,
the initial allocation of a collection of trajectories per core
is done based on the trajectory IDs (cf. [14]). Namely, as-
suming n cores and K trajectories in the MOD sorted by
the unique ID, each core Ci is assigned a sequence of K/n
consecutive trajectories.

3. PARTITION AWARENESS IN LOAD
BALANCING

We now proceed with presenting the details of the
proposed techniques for collaborative processing of range
queries. We assume some underlying spatio-temporal in-
dexing mechanism (cf. [9]) used to bring the trajectories
relevant for processing a particular range query from the
disk, without false negatives, and we focus on pruning and
refinement.

The cores have shared access to all the MOD trajectories
that have passed the filtering stage, however, each trajectory
is initially assigned a single core. In other words, each core
Ci is assigned a load LCi

= {Tri,1, T ri,2, . . . , T ri,(K/n)}. We
note that

For a given range-query QR, let R denote the 2D spa-
tial region of interest, and let MBB(QR) denote its minimal
bounding box. Each core Ci will firstly check whether a
particular Tri,j ∈ LCi

intersects MBB(QR). If not, then
Tri,j can be safely pruned from any further consideration;
otherwise, Tri,j becomes a candidate for the refinement test.

The refinement, essentially checks whether any of the the
segments of Tri,j between tb and te (the boundaries of the
time-interval of interest for QR) intersects R. If so, Tri,j is
added to the Answer Buffer – a shared structure among the
cores.

The key elements of our approach are the two memory
components: Finished and Collaboration. Their respective
purposes are explained in the sequel.

The Finished structure, a separate instance of which is
assigned to every core, consists of two boolean variables,
Signaled and Accessed. The Collaboration is an array of
pairs (Core ID,CurrentLoad) indicating what is the current
load of a core that could potentially become of collabora-
tor of another core. Initially, for each core Ci, Collabo-
ration.CurrenLoad = LCi

. The behavior of the individual
cores can be specified as follows:

Figure 2: Collaborative load distribution

(1) When a given core, say Ci completes the processing of all
the TRi,j ∈ LCi

, it will set Ci.Finished.Signaled = true and
Ci.Finished.Accessed = false. Following this, a notification
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Algorithm 1 Range Query Processing – Collaborative Core
Ci

Input:
LCi

: initial load of MOD trajectories
Output:
The trajectories that satisfy QR

1: while Collaboration[i].CurrentLoad �= ∅ do
2: while LCi

�= ∅ do
3: Select Tri,k ∈ LCi

4: LCi
← LCi

\ {Tri,k}
5: if Tri,k ∩ MBB(R) �= ∅ then
6: if Tri,k ∩ R �= ∅ then
7: Answer = Answer ∪ Tri,k

8: end if
9: end if

10: if Signal received from Cj (j �= i) ∧
Cj .Finished.Accessed = false then

11: Bring Collaboration[i].CurrentLoad up to date
12: Wait for notification fromCj

13: if selected as collaborator of Cj then
14: Split Collaboration[i].CurrentLoad with Cj

15: LCi
← new Collaboration[i].CurrentLoad

16: end if
17: end if
18: end while
19: Ci.Finished.Signaled ← true
20: Ci.Finished.Accessed ← false
21: Notify allCj(j �= i)
22: Select Cj with a largest cardinality

|Collaboration[j].CurrentLoad|
23: Split Collaboration[j].CurrentLoad
24: LCi

← new Collaboration[i].CurrentLoad
25: end while

is sent to all the cores Cj �= Ci that have not finished the
processing of their respective loads LCi

.
(2) Whenever a core Cj receives a notification that
Ci.Finished.Signaled = true, it will check whether
it is still Ci.Finished.Accessed = false.
If so, it will set its corresponding entry
Collaboration[j].CurrentLoad to L’Cj

indicating what is its currently-left load of trajectories to
still process with respect to QR

(3) As soon as every Cj �= Ci has finished updating its entry
in the corresponding Collaboration array, Ci will:

(3.1) Select the Cj such that (∀(j, k �= i)) L’Cj
> L’Ck

.
(3.2) Split the IDs of the trajectories from L’Cj

into two

subsets of equal cardinality Li
Cj

and Lj
Cj

and, subsequently,

assign
Li

Cj
to Collaboration[i].CurrentLoad, and

Lj
Cj

to Collaboration[j].CurrentLoad

(3.3) Set Ci.Finished.Signaled = false and
Ci.Finished.Accessed = true, and notify the rest of the cores
that a particular core for collaboration has been selected.

The behavior is illustrated in Figure 2 which shows a sit-
uation after C1 has completed its initially assigned load of
trajectories. Upon signaling its availability and communi-
cating with the rest of the cores, C1 realizes that C3 is the
core which has most of its initial load still left to process.
The leftover load of C3 is then split between C1 and C3.

The intersection test in line 5. takes a constant time,

Figure 3: Trajectory map used in the experiments.

since the MBB(R) is a rectangle. If the region R is bounded
by a convex polygon with sR sides, then checking the in-
tersection of a trajectory segment with R can be completed
in O(log sR) time-complexity, whereas it could take up to
O(sR) for a concave1 polygon (cf. line 6.). Consequently,
the upper bound on the time-complexity of executing Al-
gorithm 1 is O((K/n)sK(log sR)) for a convex polygon R,
and O((K/n)sKsR) for a concave one. Assuming a per-
fectly balanced load distribution, in the sense of trajectories
per-core that qualify to be part of the answer, this is also
the upper bound of the time-complexity of the overall query
processing. However, in practice this is rarely the case and
without any collaboration among the nodes, the query pro-
cessing time will be upper-bound by the time it takes for the
core with largest contribution to the answer-set to complete
its task. The detailed (probabilistic) complexity analysis of
such cases depends on the distribution of the trajectories and
the location of the query region – and we leave it as a sub-
ject of a future work. As our experiments will demonstrate,
collaboration among the cores can significantly improve the
overall query processing time.

4. EXPERIMENTAL EVALUATIONS
We now proceed with presenting the observations from the

experimental evaluation of our proposed techniques. Our
experiments were conducted on an Intel Core i7 CPU ma-
chine with 8GB memory, with 8 dual-core processors at
2.20GHz running 64-bit windows operating system. We
used a task-based parallelization model among the individ-
ual core-queues in a work-stealing manner. The trajectories
data-sets were generated using the Brinkkof data genera-
tor model, with 50 moving objects at the beginning and
10 external objects generating movement of 5 objects per
timestamp for the beginning objects and 2 external objects
per timestamp. Objects were mapped to move in the city of
Oldenburg over a 5000 seconds time interval with a medium
speed parameter. A total of 10,000+ trajectories were gen-
erated with each trajectory made up of more than 120 seg-
ments, and Figure 3 shows a snapshot of the data used in
the experiments.

1We do not consider non-simple polygons, i.e., ones with
holes, in this work.
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Figure 4: Single Range Query - Average Times

As for the query parameters, we used regular square,
hexagon and octagon, with varying sizes (in terms of the
percentage of the total area of interest). We ran 12 different
simulations for each type of a polygon and each size, and
we report the averaged results. The temporal interval of in-
terest for the queries varied between .1h and 1.2h and, once
again, we report the average values of the results. Results
were generated over 1, 2, 4, and 8 cores. The final file data
size exceeded 40MB2

We compared two heuristics (labelled ”H1”and ”H2” in all
the graphs), where:
• H1 denotes the näıve heuristic, which statically assigns an
equal number of trajectories from the dataset per available
core and waits for the last core to complete its task, without
any collaboration among them.
• H2 denotes the implementation of the heuristic which we
presented in Section 3 and implements Algorithm 1.

Each of the heuristics was run in two, four and eight cores
setting and, as indicated above, we averaged the results of
all the simulation runs.

The first set of experimental observations is reported in
Figure 4. The abscissa shows the number of trajectories,
and the y-axis shows the time in miliseconds. Note that,
as a ”baseline”, we also added the case where H1 executes
in a single-core setting. As expected, the more cores avail-
able, the shorter the overall processing time for both heuris-
tics. Another (expected) observation is that the overall pro-
cessing time exhibits a linear dependency on the size of the
data set. However, in each case, our proposed methodology
(H2) shows improvements over the näıve approach, increas-
ing proportionally with the number of available cores – 40%
for 8 cores.

Our next set of experiments measured the impact of the
size of the query region. Figure 5 shows the benefits of H2
over H1 for two values of the input: 6,000 and 10,000 – each
bar corresponding to a particular number of cores used in
the respective heuristics (as indicated in the legend). The
time on y-axis is in milliseconds again, and the trend of
improvements (cf. 4) – is maintained.

Figure 6 presents the exact same observations, except the
size if the query region used was small – 2% of the total area

2The dataset and the source code of the implementation is
publicly available from:
http://www.sharpedgetech.com/CollaborativeMultiCore
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Figure 5: Medium-size Range Query (15%).

of interest, whereas the query region covered 15% of the to-
tal area of interest in Figure 5. Comparing the two figures,
we observe that the benefits, in terms of the processing time
gains, are larger when the size of the query region is smaller.
One main reason for this is the fact that a lot more trajec-
tories can be eliminated during the pruning stage when the
query region is smaller.

The last observation that we report pertains to the case
of having multiple range queries and considering their con-
junction. In other words, we are interested in:
MQRi

: ”Retrieve all the trajectories which intersect R1

sometimes between tb1 and te1, AND intersect R2 sometimes
between tb2 and te2, AND . . . , AND intersect RM sometimes
between tbM and teM .

Specifically, in Figure 7 we show the averaged results of
comparing our proposed methodology (H2) against the näıve
one (H1) for the case six range queries were posed – all eval-
uated in two, four and eight cores settings. As can be ob-
served, the trends of improvements in the query processing
times are similar as for the single-query case. One observa-
tion that, in a sense, may seem somewhat counter-intuitive,
is that the total processing time for the case of six range
queries is smaller than the six-fold increase for a single range
query. However, the explanation for it is that we can prune
any trajectory that fails to satisfy a single region from one
of the six range queries.
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5. RELATEDWORK AND CONCLUSIONS
Several recent works that had the objective of efficient

processing of spatio-temporal queries, have specifically ad-
dressed the aspects of distributed and parallel execution of
the underlying algorithms. For example, in [7], part of the
responsibility for monitoring location-based queries has been
distributed among the participating mobile entities. Com-
plementary to this, in [10] the authors capitalized on the
inherent parallelism of a shared-nothing computing environ-
ment for storing and indexing the spatiotemporal data.

Some flavors of the problems addressed in [13] are simi-
lar in spirit to ours – considering the spatial and temporal
dimensions of the data and queries for the purpose of load-
shedding. However, the settings of the work are different –
namely, the trajectory data is obtained via streams of (loca-
tion,time) update and the objective is to enable efficient re-
evaluation of a collection of pending spatio-temporal queries.
Our goal was to investigate the load-balancing among mul-
tiple cores when processing range queries in the settings in
which the trajectory data represents a complete(d) motion
of the objects.

Wireless sensor networks are an environment in which the
efficient processing of spatio-temporal queries [2,5] relies on
distributed and/or parallel algorithms, aiming at minimiza-
tion of communication overhead. In our settings we did not
have stringent energy constraints – which is something to
consider in the future.

In our recent work [14] we did consider the impact of in-
corporating the (spatial and temporal) semantics of the data
and the semantics of the queries when distributing the load
among multiple cores. Complementary to [14], in this work
we focused on the load-balancing among the cores.

We addressed the problem of efficient processing of spatio-
temporal range queries for trajectories in multicore settings.
More specifically, we focused on the collaboration among the
cores for the purpose of improving the overall response time
for generating the answer to a given range query, and devel-
oped a heuristic to cater to this desideratum. We presented
experimental observations which provided quantitative data
about the benefits of the proposed approach – demonstrat-
ing that it yields over 40% improvement of the processing
time. In addition, our experiments demonstrated that the
proposed approach scales well with the number of cores.

There are several extensions of the current results. Firstly,
we plan to adapt the existing methodology to different kind

of spatio-temporal queries – e.g., (reverse) nearest-neighbor,
– and consider arbitrary boolean combinations of multiple
queries. Secondly, we would like to have a more thorough in-
vestigation on the interplay of different context-attributes.
Specifically, motivated by the observations in our experi-
ments regarding the size of the query region, we plan to
study the (impact of the) correlation between the distri-
bution of the density of the trajectories and the relative
positioning of a given query. how they may affect the load-
balancing approach(es). In certain sense, this will spur im-
provements of the heuristics presented in [14] in a manner
that could further benefit the load-balancing desideratum.

Lastly, we plan to analyze the data access and sharing
patterns and devise partitioning heuristics that allow for
the privatization of the majority of the data to comput-
ing cores. This enhancement would allow data to be stored
in core-private cache slices and minimize cache coherence
transactions and data transfers on the on-chip interconnect,
greatly improving performance and minimizing chip energy
consumption.
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