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Abstract—This work addresses the problem of managing the
reactive behavior in Wireless Sensor Networks (WSN). We
consider settings in which the occurrence of a particular event,
detected in a state that satisfies a given condition, should fire
the execution of an action. We observe that in WSN settings,
both the event and condition may pertain to some continuous
phenomena that are monitored by distinct groups of nodes and,
in addition, their respective detection may impose an extra
communication overhead, if a correct executional behavior is
desired in terms of firing the action. Towards that end, we
propose the concept of a meta trigger, which essentially translates
a particular request, so that the communication overhead among
the entities participating in its processing is minimized. We
discuss a proof-of-concept implementation which demonstrates
the benefits of the proposed methodology on an actual small-size
network, and we present a detailed simulation-based experimen-
tal evaluation in large-scale networks. Our experiments indicate
that the meta-triggers can yield substantial savings in the energy
(and bandwidth) expenditures of the network, while preserving
the intended executional correctness.

I. INTRODUCTION AND MOTIVATION

A wireless sensor network (WSN) typically consists of a
large collection of sensor nodes , i.e. devices characterized by
limited energy resources, computational power, memory space
and communication capabilities [1], that are capable to form
a network and coordinate their activities in order to achieve a
particular task. In order for the WSN to provide a satisfactory
level of a Quality of Service (QoS) (e.g., in terms of data
latency, accuracy) for a particular task, careful algorithmic
designs are needed at the application, routing and media
access layer (MAC) [2]. However, given the limited power-
resources of the individual nodes, an important parameter is
the time-extent during which a WSN is operational, namely,
the network’s lifetime [3]. Lifetime maximization and energy-
consumption minimization are correlated but distinct problems
[3] and it has been shown that the network lifetime opti-
mization problems are NP hard (c.f. [4]). Various techniques
have been proposed to reduce the energy-costs associated with
particular network tasks, e.g., in-network data aggregation [5],
filtering [6], compression [7] and optimal-path routing [8]. All
of them consider the energy-efficiency aspect as part of the
solution to the lifetime maximization problem.

From acquisitional point of view, the WSN can be seen as a
distributed database, in which instantaneous and/or continuous
queries are being processed [9]. Specifically, the TinyDB

project [10], provides an SQL-like interface where the users
can state their queries pertaining to the data observed by
a given WSN, and the system transparently performs vari-
ous query-optimization tasks. TinyDB is a distributed query
processor that runs on the individual nodes in the WSN,
offering many of the features of a traditional query processor
(e.g., select, project, join and aggregate data). However, it
also has a number of other features designed to minimize
power consumption via acquisitional techniques. As a specific
example of the SQL syntax, consider the query (cf. [10]):

SELECT AVG(volume),room
FROM sensors
WHERE floor = 6
GROUP BY room
HAVING AVG(volume) > threshold
SAMPLE PERIOD 30s.

This query partitions motes on the 6th floor according to the
room where they are located (which may be hard-coded in
each device, or determined via some localization technique).
The answer reports all rooms where the average volume is over
a specified threshold, updated every 30s. The query described
above is continuous, in the sense that it will be periodically
re-evaluated until it is de-registered from the system. One
of the central concepts to the acquisitional query processing
are the event-based queries. Events denote the occurrence of
”something of interest” that is generated explicitly, either by
another query or by a lower-level part of the operating system
(in this case, the TinyOS) and the code that generates the event
must have been compiled into the sensor node. As an example,
consider (cf. [10]):
ON EVENT bird-detect(loc):
SELECT AVG(light), AVG(temp), event.loc
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE PERIOD 2 s FOR 30 s.

This query reports the average light and temperature level at
sensors near a bird nest, however, it does so only when a bird is
detected. Clearly, in case the arrival of a bird in a given nest is
not a frequent event, the above query will generate substantial
savings compared to a similar query that would, for example,
continuously sample the temperature and the light intensity
values.

Although the TinyDB paradigm provides event-based be-
havior for the purpose of efficient query processing, a method-
ology that enables a full-fledge exploitation and management
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of the reactive behavior, available in almost any commercial
Database Management System (DBMS) via triggers is still
lacking. Triggers, which resulting from the Active Databases
(ADB) research [11], [12], are statements of the form:

ON EVENT
IF CONDITION
THEN ACTION

specifying the (ECA) rules of reactive behavior. They have
been part of the SQL standard since the 1990s and, typically:
the EVENT is an elementary transactional operation (e.g.,
Insert); the CONDITION part is an SQL-query over the
state (current and/or past) of the database; and the ACTION
part is again an SQL statement.

In WSN settings, some of the main aspects of managing
ECA-like reactive behavior are:
(1) The EVENT may be associated with an occurence of a
phenomenon that has a duration/validity interval associated
with it, thereby making it continuous in nature;
(2) The CONDITION part may also be a continuous query
which, in addition, may pertain to a region that is spatially
different from the region in which the EVENT was detected;

Region of Monitoring

Temperature (R1) Light (R2)

Event
Detected

Condition
Satisfied

Report MAX
Sink

Cluster
Head

Root

Fig. 1. Distributed Reactive Behavior

Specifically, consider the following request:
Rq1: ”Whenever the average temperature over the last 2
minutes exceeds 85F in region R1, if the average light intensity
is ≥ 80 lumens in region R2 over the past 60 seconds, double
the sampling-frequency of the temperature sensors and report
the maximum readings to the Sink.”
An illustrating scenario is provided in Figure 1, where we
observe that the notification of the temperature-event detection
must be transmitted to the root (or cluster head) of the
nodes monitoring the light intensity which, in turn, respond
with the answer of the condition-query part. An observation
that motivates this work is that the current state-of-the-art
in the query processing in WSN has not addressed all the
aspects of processing such reactive behavior. Specifically,
the reduction of the communication overhead between the
(roots/cluster heads) of the respective groups of sensors, espe-
cially when both the event and/or condition require evaluation
of continuous phenomena over a (sliding) time-interval, has
not been formally addressed.

The main contribution of this work is the introduction of
the concept of meta-triggers. A meta-trigger is a module

which compiles an ECA-like trigger into groups of triggers
that are subsequently distributed and still guarantee behav-
ioral/executional correctness, while providing energy-savings
due to minimizations of communication overheads. As a proof
of concept, we have actually programmed a small network of
TelosB motes and observed the benefits of the meta-triggers on
the oscilloscope (a tool readily available in the TinyOS distri-
bution). In addition, we have conducted extensive simulation-
based experiments to provide quantitative data regarding the
potential benefits of the meta-triggers in large scale WSN.

The rest of this paper is structured as follows. In Section
2 we recollect some background. Section 3 introduces the
meta-triggers, and presents our observation form the proof-of-
concept implementation. In Section 4, we discuss the large-
scale experimental observations. Section 5 positions our work
with respect to the relevant literature, and Section 6 concludes
the paper.

II. PRELIMINARIES

In this section, we present a brief historic overview of
the different paradigms that have, in one way or another,
addressed the management of reactive behavior. Subsequently,
we discuss some specifics of TinyDB that are used as a
foundation for our work.

A. Overview of Formalisms

Historically, there are two extremes for specifying and
managing reactive behavior:
(1) condition → action rules (IF condition holds, THEN exe-
cute action) were introduced in the Expert Systems literature
(e.g., OPS5 [13]). Basically, the inference engine of the system
”cycles” through the set of such rules and, whenever a left-
hand side of a rule is encountered that matches the current
status of the knowledge-base (KB), the action of the right-
hand side of that rule would execute. Clearly, some kind
of ”implicit” event, along with a corresponding formalism,
is needed so that the condition part of the ECA paradigm
can incorporate the behavioral evolution of the database. In
general, the very concept of evolution must be well-defined,
for example: the state of a given instance, and what changed it.
An approach offering such formal tools for database triggers,
assuming a ”clock-tick” as an elementary implicit-event, was
presented in [14], based on temporal logic as an underlying
mechanism.
(2) event → action – as another extreme, one may consider the
type of rules with a missing condition part. In this case, the
detection of events must be empowered with the evaluation of
a particular set of facts in a given state of the database (i.e.,
the evaluation of the ”C” part of the ECA, must be embedded
within the detection of the events [15]).

More recently, the efficient management of events and
queries has spurred research works in contexts different from
ADBs. One example is the field of event-notification systems
(ENS), in which various users can, in a sense, ”subscribe”
for notifications that, in turn, are generated by entities that
have a role of ”publishers” – all in distributed settings[16].
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Various formalisms (e.g., event algebras) have been proposed
to specify a set of composite events, based on the operators
that are applied to the basic/primitive events [15]. For example,
the expression E1; E2 (sequence) denotes a composite event
which is true whenever (an instance of) E2 is detected after
(an instance of) E1 has been detected. As another example,
the focus of Continuous Queries (CQ) processing [17] is
on efficient management of user queries over time, without
forcing the users to re-issue their queries. The data values
may arrive as streams which the system has to process on the
fly and, furthermore, it may be multi-dimensional in nature.

B. Triggers in TinyDB

Strictly speaking, TinyDB [10] does not provide triggers in
the traditional SQL sense. However, motivated by the need for
efficient query processing, as part of the acquisitional query
language, it provides the abilities to:
(1) Start evaluating a query (similar in spirit to condition) in
response to a detected event, and
(2) Execute an action, pending the result of the query
Specifically, one of the types of queries identified in the
TinyDB framework are the, so called, actuation queries which
enable users to execute an action in response to a query,
exemplified by:

SELECT nodeit, temp
FROM sensors
WHERE temp > threshold
OUTPUT ACTION power-on(nodeid)
SAMPLE PERIOD 10s.

This query actually states that the actuator, i.e. a cooling fan at
nodeid, should be turned on, in response to detecting a higher
temperature-level – the OUTPUT ACTION clause specifies
the external command to be invoked. Adding an ON EVENT
construct (cf. Section 1), could readily provide an ECA-like
capability of the TinyDB. However, the fully fledged ECA
paradigm has a long tradition in the ADB community [11],
[12], and many issues that have been investigated there are still
lacking in WSN settings: e.g., composite events; the variety of
coupling modes between the continuous events’ detection and
queries evaluation; etc. For instance, the procedural semantics
of the trigger-like statements in TinyDB is:
(1) When event is detected by a particular node;
(2) That node disseminates the query, specifying itself as the
query root;
(3) That node collects query results, and delivers them to the
basestation or a local materialization point (cf. [10]);

As we will explain in the next sections, there are aspects
of the management of the ECA-like reactive behavior in
WSN settings, that can yield significant energy-savings when
processing users’ request, without sacrificing the correctness
of the executional behavior.

III. WSN AND META-TRIGGERS

Now we present the main results of this work. Firstly,
we introduce some basic notation and define the WSN set-
tings considered. Subsequently, we introduce the concept of
the meta-triggers, define its role/purpose, and describe its

operational behavior. Lastly, we discuss a proof-of-concept
implementation that we completed for the purpose of getting
some realistic observations regarding the benefits of the meta-
triggers in actual small-scale WSN.

A. Network settings and requests specifications

We assume a collection SN = {sn1, sn2, . . . , snN} of
N sensor nodes, deployed over a given area of interest,
where each node sni ∈ SN has a unique, fixed physical
location in the 2D geographic space, represented as a pair
(xi, yi) corresponding to the X and Y coordinates in a given
reference system. Nodes are assumed to have the capability
of determining their location (xi, yi) at run-time, either by
means of a location hardware, such as a GPS device, or
by implementing a location discovery algorithm [18], [19].
Each node is equipped with an omnidirectional radio device
that can be used to establish communication links with other
nodes within distance R – the communication range. Due to
the limited spatial coverage of the radio device, each node
sni ∈ SN can communicate directly with only a subset of
nodes from the network, which form its set of neighbors
NB(sni) = {snj |d(sni, snj) ≤ R, i �= j, snj ∈ SN},
where d(sni, snj) represents the Euclidian distance ‖(xi, yi)−
(xj , yj)‖ between the locations of the two nodes sni and snj .
We also assume that the nodes are behaving in a cooperative
manner [20], in the sense that no node will maliciously refuse
to forward any packets.

When it comes to users’ requests, without loss of generality,
we assume that they consist of 3 parts:
(E): Event – which is detected whenever a certain predicate
regarding the set of measured values, over a time-interval
(window), has been satisfied;
(C): Condition – a continuous query pertaining to a certain
predicate (including aggregates) over the set of measured
values, spanning over a time-interval.
(A): Action – which currently has an actuation-like nature
over the components in the motes (e.g., adjusting the sampling
frequency; activating the sensing of a particular physical value
to-be-measured; etc).

Most importantly, we assume that the physical measure-
ments whose values are used to detect the occurrence of the
event ”E”, and/or answer of the condition ”C”, are being
processed by disjoint sets of nodes. For instance, we assume
that the nodes in SNE ⊆ SN are in charge of detecting
the event, and the nodes in SNC ⊆ SN are in charge of
monitoring the condition, and SNE ∩ SNC = ∅. Note that
this need not imply a non-overlap of the geographical regions
in which SNE and SNG are deployed – although, in Figure
1 (Section 1), these nodes were actually physically separated
in two different regions.

Hence, throughout the rest of this work, we assume that the
ECA-based request will have a syntax of the form
Rq: ON EVENT (NodeGroup1)

IF QUERY (NodeGroup2)
OUTPUT ACTION (NodeGroup1)

where each of the EVENT and QUERY pertains to monitor-
ing some continuous phenomena by using disjoint sets of
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Input Trigger:
ON EVENT (e, NodeGroup1)
IF CONDITION (NodeGroup2)
THEN ACTION (NodeGroup1)

Output Trigger11 (NodeGroup1):
ON EVENT(e)
IF    ALERT_SENT (e, NodeGroup2)
       AND NOTIFICATION_RECEIVED (e, NodeGroup2)
THEN ACTION

Output Trigger21 (NodeGroup2):
ON ALERT_RECEIVED (e, NodeGroup1)
IF CONDITION (NodeGroup2)
              AND NOT (STOP_ALERT_RECEIVED (e, NodeGroup1))
THEN SEND_NOTIFICATION (NodeGroup1)

Meta Trigger

Output Trigger12 (NodeGroup1):
ON EVENT(e)
IF  NOT (ALERT_SENT (e, NodeGroup2))
THEN   SEND_ALERT(e, NodeGroup2)

Output Trigger13 (NodeGroup1):
ON NOT(EVENT(e))
IF ALERT_SENT (e, NodeGroup2)
THEN SEND_STOP_ALERT (e, NodeGroup2)

Fig. 2. The Meta-Trigger Module

sensor nodes (NodeGroup1) and (NodeGroup2). The
OUTPUT ACTION part is executed by NodeGroup1.
where NodeGroup1 ∩ NodeGroup2 = ∅.

B. The Meta-Trigger Module

The main motivation behind the meta-triggers is that, due to
the continuous nature of the events and the conditions, there
may be a large communication overhead between the nodes
in NodeGroup1 and NodeGroup2.

75                     87                     88                     85                     89                   86                88

75        78         81        77         81        76        79         80         78         75       81      82      83

Temperature

Light

FF FF

Fig. 3. Communication Pattern Example

An illustrating scenario is presented in Figure 3. Recalling
the request Rq1 (cf. Section1), the top part of the figure shows
the average temperature values sampled every 60 seconds by
the temperature-sensors, corresponding to NodeGroup1. On
the other hand, the bottom part of the Figure illustrates the
average of the light readings obtained by the light-sensors
(NodeGroup2), sampled every 30 seconds. What can be
observed is that the root/cluster head of the NodeGroup1
has sent a total of five messages to the root/cluster head of the
NodeGroup2 requesting the value of the average readings in
the last 1 minute, and the first four such messages resulted in
False (F ).

Clearly, the source of the problem is that the processing
of the trigger is done in the pull mode, in the sense that
with every new primitive temperature-event, that satisfies the
composite continuous temperature event, NodeGroup1 needs
to know whether the condition of the trigger has been satisfied.
However, with a slight modification of the original trigger,
the entire communication between the NodeGroup1 and the
NodeGroup2 can be set to a push mode, thereby reducing
the traffic of unnecessary messages.

The meta-trigger module is essentially a translator which:
(1) Takes a trigger-like request (e.g., Rq1) as an input;
(2) Generates a collection of triggers as an output.

The triggers thus generated introduce some additional
events, that may be derived from the one(s) in the input
trigger. An illustration of the meta-trigger module is presented
in Figure 2. As shown, as a result of the input trigger, four
new triggers are generated in the output, three of which (Out-
putTrigger11, OutputTrigger12 and OutputTrigger13) pertain
to the NodeGroup1, and one (OutputTrigger21) pertains to
the NodeGroup2. The new events are as follows:
• ALERT_SENT(NodeGroup2), associated with Output-
Trigger11, signaling that when the EVENT was detected for
the first time, a notification was also sent to the NodeGroup2
that the result of the Condition is needed;
• NOTIFICATION_RECEIVED, associated with OutputTrig-
ger11 is an event generated by the NodeGroup2 (due to
OutputTrigger12, signaling that the result of the Condition is
T (true).
• ALERT_RECEIVED is a local event of OutputTrigger21,
signifying that the NodeGroup1 has requested a notification
whenever the Condition is satisfied. Note that the OutputTrig-
ger21 will send the notification only if the outcome of the
Condition is still of interest for the NodeGroup1, which is
indicated via the event NOT (STOP ALERT RECEIVED), as
a result of SEND STOP ALERT (cf. OutputTrigger13). Also
note that the main role of the OutputTrigger12 and OutputTrig-
ger13 is to ensure that the NodeGroup2 is properly notified
that the value of Condition that they monitor is or is no-longer
needed. Lastly, observe that the events are parameterized for
the purpose of distinguishing among different instances of the
same type of event (denoted by e in Figure 2).

C. Proof of Concept

We have implemented the ECA-like triggers in nesC, on
top of TinyOS1. Our network setup, illustrated in Figure 4,
consisted of seven TelosB motes, one of which was the sink,
attached to a PC. For this setup, we have applied the principles
of the meta-trigger, and generated an equivalent collection
of nesC programs representing the set of OutputTriggers,
which we used to program the TelosB motes. To monitor
the effects, we used the Oscilloscope application, readily

1Publicly available at http://www.tinyos.net/
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Node Group1
(Temperature)

Node Group 2
(Light)

Fig. 4. ECA-triggers in nesC – TelosB motes (Configuration)

Fig. 5. ECA-triggers execution (pull mode)

available with the TinyOS distribution. Figure 5 illustrates the
communication load when the ECA-like behavior is executed
in a ”brute-force” (pull) manner, whereas Figure 6 shows
large decrease in the communication when the meta-trigger
is employed to ensure a correct execution in a push-based
manner2.

IV. LARGE SCALE EXPERIMENTAL EVALUATION

We performed our experiments for large networks using
SIDnet-SWANS [21], a simulator and integrated development
environment for wireless sensor network, built on top of the
JiST-SWANS [22]. The simulation testbed contains 500 nodes,
randomly distributed using a uniform distribution function in
an area of 15000x15000 sqft. Nodes are homogeneous, sharing
the same configuration: 40000 bps transmission/reception rate,
5 seconds time-to-sleep interval and power consumption char-
acteristics that are based on the Mica2 Motes specs, which,
for completeness, are summarized in Table I. A small battery
powers each node, with an initial capacity of 35 mAh which,
given the power consumption characteristics from Table I,
is expected to provide energy to a node for several tens of
hours, depending on the load. A smaller battery (in terms
of initial capacity) has been chosen in order to reduce the
simulation time while still preserving the correctness of the

2Since the original Oscilloscope application provides a black background,
for clarity we are actually showing the ”negative” in Figure 5 and 6. The actual
screen-shots, as well as the source code of the implementation is available at
http://www.eecs.northwestern.edu/˜goce/MetaTriggers.

Fig. 6. ECA-triggers execution (push mode)

experimental results. The experimental platform was Intel
Dual Core 3.2GHz Extreme Ed. with 2GB RAM.

TABLE I
ENERGY CHARACTERISTICS OF Mica2 Mote (MPR500CA)

State Based on Energy requirement
Sensing Active Is = 10mA 0.03mJ/ms
Sensing Passive Is = 0mA 0mJ/ms
CPU Active Ip = 8mA 0.024mJ/ms
CPU Idling Ii = 0.015mA 4.5 ∗ 10−5mJ/ms
RADIO Transmitting It = 27mA 0.081mJ/ms
RADIO Receiving Ir = 10mA 0.03mJ/ms
RADIO Listening Il = 3mA 0.009mJ/ms
RADIO Off-Mode Islp = 0.5mA 0.0015mJ/ms

The triggers span across two distinct, equally sized regions
of the network (R1 and R2), similar to the illustration provided
in Figure 1. A TAG-based [23])aggregation tree was built in
each of the regions. The data values from R1 and R2 are
aggregated periodically for the duration of the query and used
for evaluation of the Event (specified as Q1(t, T ) > Qth1),
where T is the duration of the time-window (fixed to 60 sec-
onds) and the corresponding Condition (IF Q2(t, T ) > Qth2).
The thresholds Qth1 and Qth2 are expressed as percentages
relative of the maximum of the measurement-values for the
corresponding phenomena.

Experiments are based on a configuration space which
takes into consideration: – different sampling rates – different
thresholds for Qth1 and Qth2; – and different patterns of the
phenomena fluctuations. A summary of the experimental space
is given in Table II.

TABLE II
SUMMARY OF EXPERIMENTAL CONFIGURATION SPACE

Query Sampling Phenomena Qth1 Qth2

Processing Interval speed > >
Mode seconds
PULL 5 1x 25% (L) 25% (L)
PUSH 20 10x 50% (M) 50% (M)

100x 75% (H) 75% (H)

All the possible combination of Qth1 and Qth2 have been
considered. The average measurement-values of the phenom-
ena over the entire network, throughout the duration of the
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Fig. 7. Overall performance in terms of the number of messages, PULL vs.
PUSH modes

experiments is 50%, with isolated samples covering the full
scale. The phenomena ”speed” is expressed in terms of a
time-constant, with the following meaning: – ”1x” represents
the base time-constant of 10 minutes; – ”10x” represents
the mode in which the fluctuations of the values of the
physical phenomena are changing 10-times faster (e.g., every
minute); – ”100x” respectively represents a speed-up of the
phenomena by reducing the base time-constant 100-times. The
total number of experiments, corresponding to each possible
combination of settings and conforming to Table II within
one run, is 108. These experiments have been repeated 50
times with a different, but still uniformly distributed, node
placement. Thus, a total of 5400 experiments were performed.

Figure 7 confirms the observations obtained in the small-
scale WSN consisting of TelosB motes (cf. Section3), re-
garding the benefits of the meta-trigger concept in terms of
the number of packets that were communicated between the
roots of the R1 (Event) and R2 (Condition) during processing
of a trigger. Clearly, in the ”PULL” settings, which do not
incorporate the meta-trigger, the number of packets that were
communicated through the network grows linearly with the
time, very much along the lines of our TinyOS implementation
(cf. Figure 5). On the other hand, the ”PUSH” mode (meta-
triggers used) yields almost-constant communication over-
heads throughout the duration of the time-interval of interest.

Figure 8 and Figure 9 show the impact of the threshold
values Qth1 and Qth2 of the phenomena, in terms of detection
of the events’ occurrence, and the condition evaluation, with
and without the application of the meta-triggers. Looking at
the rightmost part of each Figure (Q1 enabled 75% of the
time, with a Low threshold-value), we observe that when Qth2

is low, the benefits of the meta-triggers in terms of packets-
transmission range within a factor of 50-100.

The next group of the experiments, illustrated in Figure
10 and Figure 11 illustrates the benefits of the meta-triggers
in terms of ”sensitivity” of the communication overhead,
with respect to the frequency of fluctuations of the values
of the phenomena that generate the detection of the event
and the satisfiability of the query predicate. As can be seen,
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the PUSH-mode resulting from the application of the meta-
triggers is indeed growing proportionally to the number of
the fluctuations, whereas the PULL-mode not only completely
insensitive, but still has an order of magnitude higher overhead,
while transmitting almost constant high amount of packets.

Figure 12 illustrates yet another benefit of the meta-triggers
– in terms of the missed notifications. Namely, due to ”race”
conditions, it may be very possible that:
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implementation is prone to)

(1) At t = t1, the sensors that are in charge of evaluating the
condition part have received the NOTIFICATION REQUEST;
(2) Upon evaluation (completed, e.g., at t = t1 + ε), it was
found that the condition is False, which is transmitted back to
the sensors monitoring the event.
(3) The condition changes from False to True at some time
t = t2 ≥ (t1 + ε)
(4) The notification received at t = t2 + δ by the sensors
evaluating the condition is STOP ALERT RECEIVED.

Under this scenario, a firing of the action that should have
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Fig. 14. Energy benefits of meta-triggers in the relay nodes

occurred at t2 has been missed, which is a false-negative
type of error. As shown in Figure 12, the number of false-
negatives grows proportionally with the time in the PULL-
mode, whereas it is almost constant in the PUSH-mode when
meta-triggers are used. A detailed illustration of the miss-ratio
for the different frequencies of the phenomena-fluctuation is
presented in Figure 13.

The last experimental evaluation that we present actually
gives an idea of the energy-savings induced by the meta-
triggers. Namely, when processing a trigger, it is not only
the nodes that detect the event and evaluate the query that
are spending energy due to the communication. In addition,
whenever the corresponding roots of the trees in each group
of nodes need to exchange packets, the relay-nodes on the
route between them are also subject to energy-consumption.
Figure 14 illustrates the amount of the residual energy left in
the relay-nodes between the respective roots (averaged over all
simulation runs). As can be seen, after 3 hours of continuous
operation, the meta-triggers yield almost 20% higher energy-
reserves.

V. RELATED WORK

The topic of active databases has been extensively studied
for a long time [24], [25], [26], [11], [12] and various aspects
have been investigated: – termination and confluence [27]; –
coupling modes between transactions which generated events
vs. condition evaluation and actions execution [26]; – event
processing and consumption [28], [29]; – expressiveness issues
[30] and semantics of the active rules behavior, for which
several formalisms have been used, e.g., action theories [31]
and temporal logic [14]. In particular, the Extended Event-
Condition-Action (EECA) model in [26] took a step towards
more “event-aware” active rules. However, most of these work
did not consider the peculiarities of the WSN settings, where
the communication among the nodes had to be considered as
an important factor of the overall processing.

The application of the active rules in WSN was proposed in
[32], where the authors suggested the potential benefits of the
ECA-like triggers, however, the work that is closest in spirit
to ours, is the TinyDB project [10]. As we already mentioned,
the TinyDB framework does provide a reactive behavior that
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is very similar to the ECA paradigm, except the main focus of
the work was on efficient query processing. Hence, the specific
issues of the triggers (syntax, semantics, efficient management
of communication) were not investigated in detail. Specifically,
the problem of communication overheads between the nodes
that are responsible for the detection of an event and the
ones that are in charge of evaluating the condition, was not
addressed from the perspective that we presented in this paper.

VI. CONCLUDING REMARKS AND FUTURE WORK

We addressed the problem of efficient management of the
reactive behavior in WSN for the case when it is specified
via rules conforming to the ECA paradigm. Specifically,
we focused on the settings in which both the event and
the condition are continuous, in the sense that their valid-
ity/values change over time. We argued that one aspect that
cannot be neglected, when it comes to the overall energy
consumption in the network, is the communication between
the two sets of nodes that are processing the detection of
the events and the evaluation of the queries. Towards that
end, we proposed the concept of the meta-trigger, a module
that translates the ECA-based trigger into a collection of
triggers that cooperatively execute the intended behavior, while
reducing the communication overhead. We presented a proof-
of-concept implementation demonstrating the feasibility of the
proposed methodology, and we also showed through extensive
simulation-experiments that the meta-triggers can indeed bring
substantial savings in the number of transmitted packets which,
implicitly, reduces the energy expenses of the nodes, thereby
prolonging the network lifetime.

There are several extensions of the current work that we
are planning to address in the future. Firstly, we would like to
build the trigger-like capabilities (in terms of syntax) on top
of the available SQL syntax of TinyDB [10], and integrate
the meta-trigger module with the overall query processing
”engine” of the TinyDB. In addition, we would also like to
extend the ECA-like triggers in WSN settings with the higher-
level (ECA)2 (Evolving and Context-Aware Event Condition
Action) triggers [33]. In the lieu of the recent works on
bringing the logic-based paradigm in the WSN context, we
hope to extend the existing efforts in Declarative Networking
[34] with the geometric constructs (e.g., Region R), that can
be incorporated in the queries and triggers processing.
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