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Abstract We address the problem of optimizing the maintenance of continuous
queries in Moving Objects Databases, when a set of pending continuous queries
need to be reevaluated as a result of bulk updates to the trajectories of moving
objects. Such bulk updates may happen when traffic abnormalities, e.g., accidents or
road works, affect a subset of trajectories in the corresponding regions, throughout
the duration of these abnormalities. The updates to the trajectories may in turn
affect the correctness of the answer sets for the pending continuous queries in much
larger geographic areas. We present a comprehensive set of techniques, both static
and dynamic, for improving the performance of reevaluating the continuous queries
in response to the bulk updates. The static techniques correspond to specifying
the values for the various semantic dimensions of trigger execution. The dynamic
techniques include an in-memory shared reevaluation algorithm, extending query
indexing to queries described by trajectories and query reevaluation ordering based
on space-filling curves. We have completely implemented our system prototype
on top of an existing Object-Relational Database Management System, Oracle
9i, and conducted extensive experimental evaluations using realistic data sets to
demonstrate the validity of our approach.
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1 Introduction

Recent advances in wireless communication, miniaturization of computing devices
and Global Positioning Systems (GPS) have resulted in a large number of novel
application domains in which an important aspect is the mobility of the end users.
Location-Based Services (LBS) integrate a mobile device’s location or position
with other information, so as to provide added value to a user, and their crucial
functionalities depend on the management of the location-in-time information of the
participants [30]. The problems related to efficient storage and query processing of
the moving objects have recently spurred a tremendous amount of research in the
emerging field of Moving Objects Databases (MOD) [14], [16], [19], [22], [35], [36].

One of the peculiarities of the MOD settings is that, due to the constantly evolving
nature of the users’ location-in-time information, many of the queries of interests are
continuous [35], i.e., their answers change over time and, consequently, may need to
be reevaluated. In order to efficiently maintain the correctness of the answer sets of
such queries, it is desirable to develop specialized data storage/access mechanisms
and processing algorithms [22], [24], [36]. The main distinguishing properties of both
the indexing structures and the algorithms are a consequence of the model adopted
for representing the spatio-temporal nature of the moving objects [12], [22]. When it
comes to representing and reasoning about the future states of the mobile entities,
relative to the ever-evolving now time, three models are most frequently used in the
existing MOD literature:

1. Stream-like updates of (location, time) tuples whose values are obtained, for
example, via on-board GPS devices, and are periodically reported to the MOD
by the moving objects (model I in Fig. 1). Due to the high frequency of
updates, intelligent methodologies are necessary to avoid constant reevaluation
of the pending continuous queries while still ensuring the correctness of their
answers [24].

2. A sequence of (location, time, velocity) updates which are sent to the MOD only
when an object deviates from its expected motion according to the previous
update (model I I in Fig. 1) [35]. One objective of this model is to reduce the

Fig. 1 Modelling the motion
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communication overhead between the moving objects and the server, while
ensuring a bounded error on the MOD representation of the objects’ motion [14],
[19], [41].

3. A trajectory, which is a sequence of 3D points (x1, y1, t1), (x2, y2, t2), . . .,
(xn, yn, tn), (t1 < t2 < . . . < tn), is used to represent the entire future motion plan
of an object (model I I I in Fig. 1). Between any two consecutive points, the object
is assumed to move along a straight line with a constant speed. This is a realistic
model for many entities in practical settings when representing future motion
plans, e.g., public transportation vehicles, police patrol cars, delivery trucks and
individuals travelling back-and-forth between home and work. Furthermore,
many individuals rely on certain online trip planning services, such as Mapquest,
Yahoo! Maps and Google Maps,1 to provide driving directions(essentially future
trajectories). It has been reported by Forbes.com [3] that the number of distinct
users that request future trajectory generation monthly reaches 46.4 million for
Mapquest, 20 million for Yahoo! Maps and 19.1 million for Google Maps. A
distinguishing feature of the trajectory model is that it enables the MOD to
answer predictive queries pertaining to the locations of the moving objects in
future time intervals, which can be useful for various planning purposes.

Note that when it comes to the past location-in-time information, all three models
converge in typical MOD settings, in the sense that the historical data is often stored
as trajectories.

1.1 Motivation

In this article we assume that the future motion plans of the moving objects are
represented as trajectories and consider a problem that is inherent to continuous
query management in such settings, which has not been addressed formally before.
Namely, when constructing a trajectory for the future movement of a given object,
the MOD relies on certain speed-distribution information regarding the individual
road segments. The MOD constantly manages a large number of such trajectories
and answers predictive continuous queries like, for example: Q1: retrieve all the mov-
ing objects that will be within the Northwestern University campus (sometimes/always)
between 4 pm and 5 pm. When an unexpected traffic abnormality happens, e.g., an
accident or a road work, it may affect the future portions of the trajectories passing
through the abnormality region throughout its duration. This, in turn, affects the
correctness of the pending continuous queries in a much larger geographic area. The
key problem is how to efficiently reevaluate such a set of pending queries so that
their answer sets can be brought up to date with the new traffic conditions.

To better illustrate the main aspects of the problem addressed in this article,
let us consider the scenario in Fig. 2. It consists of six trajectories and two static
regions. In particular, trajectories Tr1, . . . , Tr5 depicted by solid polylines represent
the expected motion plans of five moving objects. QR1 and QR3 are two static
range queries represented as prisms in the three dimensional space (two spatial
dimensions plus the temporal dimension). On the other hand, QR2 is a dynamic range

1Mapquest is an online map service provided by Time Warner through its AOL service, Yahoo!
Maps is a similar service provided by Yahoo! Inc. and Google Maps by Google Inc.
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Fig. 2 Trajectories, updates and continuous queries

query defined with respect to trajectory Tr6, its query volume is represented by the
two sheared cylinders over the time interval of interest (a formal definition of the
continuous queries will be presented in Section 2).

In this example, we assume that the preliminary query answers have been
computed and the queries are being monitored until some future time of interest.
Suppose an accident occurs at some time t1 on a particular road segment after the
initial answer sets of the queries have been computed (cf. Fig. 2b), which affects
the traffic patterns in a neighboring region (the base of the shaded cylinder in
Fig. 2c), and its impact on the traffic persists until time t2 (the top of the shaded
cylinder in Fig. 2c). The objects moving through the abnormality zone during this
time period will have to be slowed down from their original expected speed used as
a parameter when constructing their trajectories. Hence, the future portions of the
affected trajectories need to be updated, which is the case for Tr1, Tr2, Tr3 and Tr6.
As illustrated in Fig. 2c, the dashed lines depict the original trajectories while the
solid lines depict the updated trajectories. Now it becomes obvious that the updates
affect the answers to the pending queries. First, observe that Tr1 is no longer an
answer to QR1 , but Tr2 becomes an answer to QR1 . In addition, since trajectory Tr6

for query QR2 is delayed by the accident, the whole volume of interest (the two
sheared cylinders) changes. Hence, QR2 also needs to be reevaluated, upon which
it turns out that Tr4 is not its answer any more, but Tr3 becomes an answer. Another
important observation is that QR3 does not need to be reevaluated at all, since the
accident has no impact on its answer set. Clearly, it is necessary to reevaluate only
the affected pending queries upon updating the trajectories. The key issue of efficient
maintenance of these queries is minimizing the cost of various overheads, e.g., disk
I/Os, context-switching among processes etc.

1.2 Main contributions

One may observe that the aforementioned query maintenance in MOD exhibits a
reactive pattern that can be accommodated by the event-condition-action (ECA)
rules of active database systems [26], [40], which has been well-studied over the
last decade and implemented in existing commercial Object-Relational Database
Management Systems (ORDBMS). However, a MOD-like functionality that couples
the reactive behavior with the spatio-temporal data management is still missing. One
of the main contributions of this work stems from the fact that we demonstrate that
a MOD system can be integrated into a traditional ORDBMS, where many benefits
of mature and reliable technologies are readily available.
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In this article we present an integrated approach towards the optimization of con-
tinuous query reevaluation in MOD that covers two popular categories of queries:
range queries and k-Nearest Neighbor (kNN) queries, and we create a seamless
framework which facilitates scalable execution when a set of mixed continuous
queries are posed to the system. Upon a detection of an abnormality, we reduce
the unnecessary database table accesses and computations for each type of the
query and, moreover, we share the spatio-temporal context information among the
queries to increase the overall efficiency of the reevaluation. As we will demonstrate,
further improvements can be achieved when the process of updating the affected
trajectories is intelligently intermixed with that of updating the answers to the
pending continuous queries. For this purpose, we propose a set of specifications for
the triggers that perform the desired reactive behavior along with techniques for
ordering their execution. Our main goal is to reduce the processing time spent from
the moment a particular abnormality is presented to the MOD, up to the point when
all the pending continuous queries’ answer sets are brought up-to-date. In summary,
the contributions of this article are as follows:

1. We provide a framework for efficiently maintaining continuous queries on future
trajectories when a subset of them are subject to bulk updates.

2. We identify three distinct phases required for the complete reevaluation of
the pending queries and propose appropriate techniques that can improve the
reevaluation performance in each phase, by intelligently combining the updates
to the trajectories with the updates to the query answers. In particular, we: (a)
propose an in-memory shared reevaluation scheme that interleaves mapping on
the spatial dimensions with a sweep-plane approach on the temporal dimension
to avoid unnecessary computation, (b) adapt the query indexing technique to the
trajectory data to limit the search space and (c) utilize ordering based on space-
filling curves to improve the I/O efficiency.

3. As a proof of concept, we have fully implemented our system on top of an
existing commercial ORDBMS—Oracle 9i [5].

4. We have conducted an extensive set of experiments to validate our approach
and obtained quantitative analysis of the benefits of the proposed optimization
techniques.

The rest of this article is organized as follows: Section 2 provides an overview
of the problem and reviews the preliminary background. Section 3 presents the
architecture of our system prototype and explains the essential features of the
reevaluation procedures for continuous queries. Section 4 and section 5 elaborate
on our optimization techniques and their impact on query reevaluation. Section 6
discusses the experimental evaluation results and Section 7 positions our work
with respect to the related literature. Section 8 concludes the article and outlines
directions for future work.

2 Preliminaries

In this section we formally introduce the trajectory data model and the semantics
of the continuous queries considered in this work. We also examine some of the
semantic dimensions of the triggers in active database systems.



260 Geoinformatica (2008) 12:255–288

2.1 Trajectory model for moving objects

As mentioned in Section 1, there are three frequently used models for representing
the objects’ future motion plans: a sequence of (location, time) updates, a sequence
of (location, time, velocity) updates and a full trajectory. In this article, we adopt the
trajectory model and handle the problems for query maintenance that are specific
under this model.

A trajectory [39], is a continuous piece-wise linear function f : T → R
2 from

the temporal dimension to the two dimensional Euclidean space, connecting a
sequence of points (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn) (t1 < t2 < ... < tn). For a
given trajectory Tr, its projection on the X-Y plane is called the route of Tr. This
representation entails that the object is at position (xi, yi) at time ti, and that during
each time interval (ti, ti+1), the object moves along a straight line from (xi, yi) to
(xi+1, yi+1) and with a constant speed. The expected location of the object at any
time t ∈ (ti, ti+1) (1 ≤ i < n) is obtained by a linear interpolation between (xi, yi) and
(xi+1, yi+1). Throughout the text, we will also refer to the portion of a given trajectory
between two consecutive points as a line segment.

Relative to now, a trajectory can represent both the past and the future motion of
objects. In this article, we are only interested in trajectories that pertain to the future.
Each trajectory corresponds to the motion plan of a moving object and is constructed
as follows. We assume that before travelling, each moving object submits to MOD
its start location, start time, destination location and, optionally, a sequence of other
to-be-visited points. Besides these information, the MOD also utilizes two additional
sources [39]:

– Information available from the electronic maps, representing the road segments
and intersections as a connected graph. Such maps are available from various
sources like, for example, the Geographic Data Technology Co. [4];

– Knowledge about the time-varying distribution of the traffic patterns for each
road segment during a given time of the day.

With these data, the MOD server can apply an A*-like [10] variant of the time-aware
Dijkstra’s algorithm to generate the shortest path for the moving object where the
cost of an edge in a graph depends on the start time to travel along that edge. Observe
that the shortest path can be defined in terms of travel-time or travel-distance. When
it comes to minimizing the total travel time, the time-dependency is due to the fact
that road conditions may vary during different times of a day. For each straight line
segment of the constructed trajectory, the object’s expected arrival times at its end
points are computed. This pre-computed trajectory is then sent back to the moving
object as travelling instructions and is used by the MOD for generating the initial
answer sets of the pending queries [39].

2.2 Continuous queries for trajectories

A continuous query in LBS is logically associated with two distinct categories of
entities:

– Querying object, which is the object that defines the semantics of the query and
is denoted by Qi. Note that a querying object may be different from the entity
that actually submits the query, e.g., a web-based user or another moving object,
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which determines where and how the query answer set is to be transmitted.
However, we do not consider this aspect of the problem in this article.

– Candidate objects, which include all the objects that are relevant to the particular
query reevaluation and are evaluated against the query predicates. All the
candidate objects that satisfy the query predicate of a given query Qi constitute
the answer set to the query, denoted as A_Qi.

Each querying object and candidate object has its future motion described by
a trajectory. The trajectory of a querying object Qi is simply called a querying
trajectory. The trajectory of a candidate object is called a candidate trajectory. An
object can be either static or dynamic (mobile). In case the object is static, its location
is a static point which implies a trivial trajectory consisting simply of a vertical line.
In the following sections, when no ambiguity arises, we may use the terms querying
object and query trajectory interchangeably and denote both of them as Qi. Similarly,
we may interchange the terms candidate object and candidate trajectory and refer to
them as Tri.

The two most common types of continuous queries in MOD that we consider are
range queries and k-nearest neighbor queries:

– A range query QR retrieves all objects that are within a specified region with
respect to the querying object, during a given time interval of interest. The
starting and ending time stamps of interest of the query are defined by tsi and tei,
respectively. A range query can be further classified as either static or dynamic.
A static range query is specified with a fixed spatial region of interest rR. For
example, query Q1 in Section 1.1 represents a static range query where the region
rR for this query is the geographic extent of the campus, tsi equals 4 pm and
tei equals 5 pm. On the other hand, if the querying object is dynamic, then its
motion is described by a non-trivial trajectory TrR. For example, a police patrol
car may ask for other patrol cars within 1 mile of its trajectory in the next hour,
when there are suspicious criminal activities. In real applications, a user may
be interested in whether the objects are sometimes or always inside the region
rR [39]. Without loss of generality, in the rest of this article we assume that the
sometimes temporal semantics is used for generating the query answer sets.

– A k-Nearest Neighbor query QkNN retrieves the k closest objects to a given
querying object, between the time stamps tsi and tei. As an example of this type
of query, a tourist who is visiting attractions in downtown Chicago, may ask for
the 5 nearest buses to his planned route, within the next 1 hour from now.

In this article, we consider finding time-parameterized query answers [36], i.e.,
each query answer is a triple of the form (oid, tas, tae) where oid is the id of the object,
tas is the time when the object starts to become an answer and tae is the time after
which the object is no longer an answer to the query.

2.3 Triggers, semantic dimensions and context awareness

Triggers in active databases couple the database technology with rule-based pro-
gramming in order to achieve reactive capabilities in response to various database
(and possibly external) events. In this work, we will make extensive use of such
reactive behavior to maintain the correctness of the answers to continuous spatio-
temporal queries. A trigger is specified in the form of an event-condition-action rule,
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which stipulates that an action will be executed upon the occurrence of a particular
event, provided that a given condition holds [2]. One of the early observations in
the active database literature [13], [26] was that in many prototype systems, triggers
with similar specifications were exhibiting different executional behavior. In order
to better categorize the declarative aspects of the triggers’ specifications and enable
more precise reasoning about their behavior, researchers have identified a number
of so-called semantic dimensions and a set of values that may be chosen for each
dimension, many of which have become part of the latest SQL standard [2]. For
example, one semantic dimension is the granularity of updates: upon detection of
certain event, the reaction of the ORDBMS can be in a per-tuple manner, i.e., exe-
cute the action part of the trigger for each individual tuple that has been modified,
or per-set manner, i.e., execute the action only once for the entire set of the modified
tuples. As another example, one can specify different coupling modes: e.g., should the
condition evaluation immediately follow the detection of the event, or should it be
deferred until the end of the current transaction. A total of 13 different semantic di-
mensions have been identified in [13], and later in the corresponding sections we will
elaborate in detail on the semantic dimensions of the triggers that we use in this work.

Analogous to trigger semantic dimensions, we can also speak of query semantic
dimensions. These include the motion patterns of queries (dynamic or static), seman-
tics of query predicates (range or kNN), locations of queries, spatio-temporal extents
of queries, etc. Together with the semantic dimensions of the triggers, the correlation
among these context dimensions can highly impact the efficiency of the reevaluation
and should be orchestrated to obtain further performance gains. The values of some
of these dimensions can be determined at specification time, whereas the others need
to be determined at run-time. In subsequent sections we will discuss how to decide
the best values for these semantic dimensions to improve the performance of query
maintenance.

3 Trajectory processing of continuous queries

The trajectory model, when applicable, alleviates the problem of frequent updates
to the MOD and enables currently available answers for spatio-temporal queries
which pertain to any future time interval. However, as we discussed in Section 1,
the main problem here is due to the fact that the changes to the motion plans of
individual objects, which may occur at any time between requesting an answer set
to a particular query from the MOD and the end time of interest for that query in
the future, could change the initially calculated answer set. This raises the question
of how to maintain efficiently the answer sets to the queries on trajectories against
changes to the future motion plans of the moving objects. In this section, we first
discuss the relevant aspects of the reactive behavior of MOD, then introduce the
overall architecture of our system. Based on these we outline the basic procedure
and methodology for maintaining continuous queries.

3.1 Reactive query maintenance

Once the MOD server receives a request for processing a new query, its interface
extracts the elements of the query syntax necessary for query maintenance, e.g.,
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tei (end time of interest) that specifies the time after which the query no longer
needs to be monitored and can be purged from the system. The basic paradigm for
maintaining the answer set to a given continuous query can be described as follows:

1. Upon receiving a new query Qnew, process Qnew and set its answer set A_Qnew;
2. Transmit A_Qnew to the user who posed the query;
3. Create a trigger T R_Qnew of the form:

EVENT: on update to MOD
CONDITION: if A_Qnew affected
ACTION: reevaluate Qnew and update A_Qnew

In terms of the actual execution model, the step of checking if A_Qnew was
affected requires reevaluating the query on the modified trajectories. A_Qnew is
subsequently updated with the new results, and the user is notified of the changes.

Since we assume that the sources for the reactive behavior are bulk updates to the
trajectory data in the database, we also set up a trigger T R_T AT that continuously
monitors for any new traffic abnormality:

EVENT: on insert/update of a new traffic abnormality event
CONDITION: if a moving object trajectory Tr is affected
ACTION: update Tr to reflect the traffic abnormality

The problem of spatio-temporal query processing on trajectories for the purpose
of generating the initial answer set has already been addressed in the literature [16],
[22], [23] and is not the main topic of this work. Our objective is to reduce the
processing time spent from the moment a particular abnormality is presented to
the MOD up to the point when all the pending continuous queries’ answer sets
are brought up-to-date. Towards this goal, we focus on orchestrating the execution
of the respective triggers, based on intelligent usage of the dependencies among
various context/semantic dimensions. When applicable our system also interleaves
the evaluation of condition parts and the execution of action parts of different
triggers, in order to reduce the overall response time.

3.2 System architecture

The main components of our system are depicted in Fig. 3:

– Moving Object Table (MOT) stores information about the moving objects: their
spatio-temporal trajectories plus some other non-spatial attributes of interest
such as name, license plate number, model etc. The main attribute traj_shape
is a User Defined Type (UDT) [2] conforming to the object-relational model. It
contains a handle to the actual trajectory coordinates. The actual trajectories
are stored as Large Object (LOB) data [2] outside the MOT and can be
accessed via the handles in the respective tuples of the table. More specifically,
every trajectory is uniformly split into a number of sub-trajectories, each of
which contains a fixed number of line segments, and these sub-trajectories are
organized as a linked list. The handle in the MOT table points to the first
sub-trajectory of the trajectory, from which the entire trajectory can be visited
following the subsequent links. A spatio-temporal variant of the R-tree [17]
index such as the STR tree or TB-tree [28], [16] is created on the set of
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sub-trajectories independently, based on their minimum bounding boxes
(MBBs), in order to facilitate efficient accesses for updates and query reevalua-
tion. As such, the uniform splitting strategy of the trajectories aims at striking a
balance between the selectivity of the index and the size of the index structures,
which may lead to a better overall performance [32]. More complex splitting
schemes for trajectory data may be employed to improve the performance of the
index for certain types of queries [18], [32]. However, the problem of optimal
splitting of the trajectories is beyond the scope of this work.

– Traffic Abnormality Table (TAT) stores information about the effects of the
traffic abnormalities. The disturbance_zone attribute records the spatial region
affected by an abnormality, while the time_duration attribute records the start
and end time of an abnormality. The disturbance_type attribute is also a UDT
that specifies the impact that a particular disturbance has on the road segments
in the region of its disturbance_zone, in terms of the relative slow down effect on
each road segment.

– Query Table (QT) stores information about the pending queries posed to the
MOD, and contains the attributes such as query id, start time, end time of
the query, etc. The two important attributes are the query_region and the
current_answer. According to the semantics of the various queries, the
query_region attribute represents the spatial area for a static range query or
the querying trajectory for a dynamic range query or a kNN query. It is organized
in a manner similar to the MOT table: each tuple only contains a handle to the
actual data which is stored as a LOB outside of QT. The current_answer attribute
is a UDT storing the list of the time-parameterized (oid, tas, tae) answer tuples for
a particular query.
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3.3 Procedural framework

In a MOD, the trajectories affected by a traffic abnormality must be retrieved into
main memory and updated, which includes both the trajectories of candidate moving
objects as well as the trajectories of querying objects. Hence, upon a new traffic
abnormality, at any point of the query reevaluation there are four distinct categories
of entities to be considered, as shown in Fig. 4.

In particular, the four categories are: the unaffected pending queries and the
unaffected candidate objects which reside on the hard disk, the affected queries and
the affected candidate objects that have been retrieved into main memory for update.
In order to bring the answers of the pending queries up-to-date again, the query
reevaluation is carried out in three phases among these entities:

– In phase 1, the updated queries are reevaluated against the updated candidate
objects;

– In phase 2, the updated candidate objects are checked against the unaffected
pending queries;

– In phase 3, the updated queries are reevaluated against the unaffected candidate
objects;

Algorithm 1 describes the basic procedural semantics of our approach, and
outlines the sequence of procedures invoked, once the trigger T R_T AT is fired
(recall that T R_T AT is fired on an insert or update of a new traffic abnormality).
First, function FindAffectedTrajectories and FindAffectedQueries are
called to retrieve the trajectories from the databases that intersect with the cur-
rent traffic abnormality region, throughout the specified duration (line 1–2). All
these trajectories are subsequently updated in procedures UpdateTrajectory and
UpdateQuery using the new speed profile for their future portions, taking the
effects of the abnormality into account (line 3–8).

At this point, the query maintenance proceeds in the three phases sequentially.
Each phase is handled by the respective ReevaluateQuery procedure. One may
observe that the signatures of all three procedures: ReevaluateQuery_i (i=1,2,3)
are quite similar. However, as we will elaborate in the following sections, they

Fig. 4 The three phases of
query reevaluation
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Algorithm 1 Reactive Behavior to TAT Update

Input: Traffic abnormality TAnew, moving objects table MOT, query table QT
1: T ⇐ select FindAf f ectedTrajectories(TAnew, MOT) from MOT
2: Q ⇐ select FindAf f ectedQueries(TAnew, QT) from QT
3: for all Tri ∈ T do
4: UpdateTrajectory(TAnew, Tri)

5: end for
6: for all Q j ∈ Q do
7: UpdateQuery(TAnew, Q j)

8: end for
9: for all Tri ∈ T do

10: for all Q j ∈ Q do
11: ReevaluateQuery_1(Q j, Tri) //phase 1
12: end for
13: end for
14: for all Tri ∈ T do
15: ReevaluateQuery_3(Tri, QT) //phase 2
16: end for
17: for all Q j ∈ Q do
18: ReevaluateQuery_2(Q j, MOT) //phase 3
19: end for
20: return

are different with respect to the applicable techniques that are specific to the
context/semantic dimensions of the triggers and queries.

The algorithm for finding the trajectories that need to be updated due to the new
traffic abnormality is relatively straightforward. First, the index on the MOT table
is accessed and the set of MBBs of the sub-trajectories that spatially intersect the
abnormality region throughout the time interval of the abnormality are subsequently
retrieved. Next, each of these sub-trajectories is checked against the abnormality
region to validate if they are actually affected. If so, the entire future portion of
the trajectory to which this sub-trajectory belongs is retrieved into main memory
for update.

In the remainder of this section, we briefly describe the reevaluation semantics
for the types of queries considered and their impact on the bottlenecks in the
reevaluation. A more detailed description is available in [6].

– Range Query If the range query is a static one, only the second phase need to be
considered for its reevaluation. This involves checking whether each updated
trajectory intersects with the spatial query region during the time interval of
interest. The process is similar to finding the trajectories affected by the traffic
abnormality, except that now the updated trajectories reside in main memory
and no index structure is available.
When the range query is a dynamic one, all three phases in Algorithm 1 must be
executed for the complete query reevaluation, since a querying trajectory may
be affected by the traffic abnormality as well. Given a querying trajectory and
a candidate trajectory, in order to reevaluate the spatio-temporal predicate of
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the query, the two trajectories need to be broken down into segments and the
calculation is performed at the line segments level using the linear functions of
the segments [23].

– kNN Query Similar to dynamic range queries, kNN queries are reevaluated at
the line segments level. The main difference is that for each kNN query, we must
check the current answer set list against every new candidate object. To reduce
the number of comparisons made, we adopt the idea of windowing the kNN
query [19] by maintaining a roof value for each querying trajectory segment,
which is obtained during the initial query evaluation. The roof value is the
maximum distance of the kth nearest neighbor to that line segment. It minimizes
the number of candidate trajectories/segments that need to be examined in
order to find out the answer set of the kNN query. During the reevaluation, we
retrieve the candidate segments which are within roof distance of the querying
segment. In case we cannot find enough nearest neighbors within the retrieved
data, we increase the roof value by certain percentage to retrieve more candi-
date segments. This iteration continues until we have completely updated the
answer set.

4 System-level context-aware optimization

In this section, we present our static optimization techniques at the system level, i.e.,
how to select the proper values for the respective semantic dimensions of the triggers
to minimize the context-switching overhead.

One of the semantic dimensions that may have different values in a particular
trigger is the granularity of execution, i.e., whether to execute the action part
of the trigger at set level or at instance level [26]. Recall from our discussion in
Section 2.3, to achieve the behavior corresponding to the values of update granularity
options, generally one needs to use one of the clauses: FOR EACH ROW or FOR EACH
STATEMENT respectively in the specification of T R_Qi [2].

If the executional granularity specified is at instance level, whenever a particular
trajectory Tr j is updated, the corresponding instance of T R_Qi will evaluate it
against Qi, in order to check if the modifications to Tr j affect the answer set A_Qi.
If so, A_Qi will be updated accordingly. This cycle will be repeated for each of the
subsequent trajectories that are affected by the update to the TAT. However, at each
cycle, we have at least three major context-switchings that the ORDBMS2 needs to
do, and these will be reflected at the Operating System level:

1. From the update mode of MOT to checking if A_Qi is affected;
2. From checking if A_Qi is affected to eventually updating the answer set;
3. From updating A_Qi, back to the update mode of MOT for processing and

completing the modification to another trajectory Trk.

On the other hand, if T R_Qi is specified to execute at the set level, all the tra-
jectories affected by the traffic abnormality will be updated in the MOT first before

2The specification of the SQL99 standard distinguishes between statement execution context, routine
execution context, and trigger execution context [2].



268 Geoinformatica (2008) 12:255–288

the ORDBMS proceeds towards evaluation of the condition part of the T R_Qi for
all the updated rows. This achieves some savings in the context-switching overhead
which are far from negligible, as will be illustrated by our experimental results.

From the perspective of the user who submitted a given query Qi, the most
important issue is that the answer set A_Qi be brought to current state as soon
as possible. Part of that race can be won if one observes that the modifications
of the trajectories that are affected by the traffic abnormality need not be actually
completed in the database table MOT, in order to bring the queries’ answers up-to-
date. Once the trajectories that are affected are identified and brought into the main
memory and their new shapes are calculated, the information needed to reevaluate
Qi is already available.

The context dimension of the triggers that will determine whether this kind of
behavior can be utilized to optimize the response time of the pending queries in the
MOD is the time coupling of the event, condition and action part of the triggers.
More specifically, one can specify whether the update of the tables will take place
BEFORE or AFTER the action part of the triggers [2]. Both specifications will generate
correct updates of A_Qi. However, the ordering of the operations that will take place
inside the MOD is different, and the BEFORE option yields much faster response
time. This is due to the savings in context-switching as the BEFORE mode avoids an
extra cycle of access to the disk for update that could potentially affect some of the
pending queries.

5 Context-aware query reevaluation

In this section, we present our proposed techniques for optimizing each of the three
phases of the query reevaluation process at run-time. Based on the discussion from
Section 4, we assume that the FOR EACH STATEMENT and BEFORE values have
been selected as the static/non-runtime options. In the following, we first describe
how to perform shared in-memory execution in phase 1, how to apply query indexing
in phase 2 to restrict the search space and how to decide on the query reevaluation
order in phase 3 to reduce disk accesses. We then address the extension needed to
handle the case when the data processed during the reevaluation cannot fit into the
main memory.

5.1 Phase 1: In-memory shared reevaluation

When considering the phase of the reevaluation where both the querying objects
and the candidate objects are affected by the traffic abnormality, the trajectories of
both types of objects must be updated with respect to the impact of the abnormality.
The query reevaluation is carried out for these two groups of updated trajectories
in memory. We assume for now that these updated trajectories can fit in the main
memory and we consider the optimization of the query reevaluation in this phase.

Given a set of affected querying trajectories and a set of affected candidate
trajectories that have been updated in memory, a naive approach is to perform the
reevaluation in a nested loop where each affected query is checked against each
affected candidate object. However, a great deal of the computation involved in
the nested loop is unnecessary and can be avoided by utilizing the spatio-temporal
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context information embedded in the individual querying and candidate objects. We
propose an in-memory shared reevaluation scheme that can handle a simultaneous
reevaluation for a group of various types of queries and is scalable to large data sets.

5.1.1 The in-memory shared reevaluation algorithm

The main idea is to exploit the spatio-temporal relationships between the querying
and candidate objects by applying two filtering techniques, a mapping step based
on the spatial dimensions and a sorting step based on the temporal dimension,
followed by a refinement step. The mapping step utilizes a uniform grid structure
that is virtually imposed over the entire region of interest [18], which maps objects
from a spatial region to a particular grid cell. Hence, only queries and objects that
are spatially close to each other will be mapped to the same cell and considered
as candidates in the refinement step. The sorting step orders the objects based
on their temporal attributes and uses a sweep-plane approach [10] to perform
the reevaluation sequentially. The important observation is that these two steps
are interleaved to effectively reduce a large number of false hits. The refinement
step applies computational geometry algorithms on the objects that passed the two
filtering steps to obtain the exact final answer set. For example, to determine whether
a candidate line segment is within a given distance to a dynamic range query line
segment, a quadratic equation based on their time-parameterized linear functions is
solved to obtain the answer [15].

The in-memory reevaluation phase is carried out at the segment level and the
mapping function for the segments is as follows:

– Each candidate trajectory segment will be mapped to the grid cells that intersect
with the segment.

– For each querying trajectory segment, we consider the semantics of the query
and one of the following actions is performed:

• For a static range query, a Minimum Bounding Rectangle (MBR) is created
for the spatial region of the query and the query will be mapped to all the
grid cells that intersect with the MBR.

• For a dynamic range query, each querying segment will be mapped to the
grid cells that are within the distance specified by the query.

• For a kNN query, each querying segment will be mapped to the grid cells that
are within the distance specified by the roof value, which is the maximum
distance of the kth nearest neighbor calculated during the initial query
evaluation.

By performing the grid mapping, we only need to consider the reevaluation of a
particular querying segment against the candidate segments that are mapped to the
same grid cells. One important issue is how to decide upon the size of the grid cells.
If the size of the cells is too large, many querying and candidate trajectory segments
will be mapped to the same cell, resulting in a large number of false hits. On the
other hand, if the size is too small, every segment is likely to be mapped to many
cells and this will incur an extra computational overhead. The optimization of the
grid cell size for an efficient mapping is also related to the problem of segmenting
a given trajectory for the purpose of minimizing the volume of dead space in the
index structure and improving the query performance, which has been addressed
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in the literature [18]. However, a detailed investigation of this topic is beyond the
scope of this article. In this work, we set the width/height of the cells equal to two
times the average length of the trajectory segments. According to the results of
the Buffon–Laplace needle problem [9], the probability of a segment with length l
landing on at least one of the grid cell boundaries whose width and height are a and
b respectively, is 2l(a+b)−l2

πab . In our case, this means that an average-length segment
with randomly chosen coordinates, has less than 48% chance of intersecting two
grid cells, and moreover, it has less than 8% chances of intersecting more than two
grid cells.

There is another context dimension that can be exploited to further improve the
reevaluation performance: the time interval of each segment. A candidate trajectory
segment only needs to be considered for a querying trajectory segment if the time
intervals of the two intersect. Based on this observation, we sort the segments
according to their begin times and process the sorted segments using the sweep-
plane approach [10]. The sorting further reduces the number of false hits along the
temporal dimension.

The main data structure involved in this algorithm is an in-memory grid table
with N2 elements corresponding to the N2 grid cells, where N is the number of
grid cells along each spatial dimension. Each element in the table points to two
linked lists, one for the querying trajectory segments and the other for the candidate
trajectory segments that are mapped to it, denoted as QList and OList, respectively.
We also maintain an event list E which is essentially a priority queue that keeps the
starting and ending times of the segments as events to be processed. The processing
procedure is illustrated in Algorithm 2.

The algorithm takes as input the segments of the updated querying trajectories
and candidate trajectories. The starting times of all segments are treated as event
points and initially inserted into the event list E (line 1). These events are sorted
based on their time of occurrence. Note that since the starting times of the segments
on the same trajectory are naturally sorted based on their time attribute, the creation
of the event list can be accomplished by merging all the affected trajectories. Next,
each event on the list is examined sequentially and the algorithm differentiates
among the following three cases:

1. When a starting time event of a querying trajectory segment, say segQ, is
encountered, we use the mapping function described earlier in this section to
identify the grid cells that are of interest to the segment. segQ is then inserted
into the respective QLists of the grid cells. All candidate trajectory segments
that are currently on the OLists of the respective cells are then evaluated
against segQ to produce the query answers (line 3–8), by invoking the function
EvaluateQ(segQ, cij.OList). Lastly, the ending time event of segQ is inserted into
the event list (line 9).

2. When a starting time event of a candidate trajectory segment, say segTr, is
encountered, the grid cells with which it intersects are identified. Consequently,
segTr is considered a potential answer to all querying trajectories segments
currently on the QLists of those cells identified by the mapping. The refinement
step is then carried out by invoking the function EvaluateTr(segTr, cmn.QList)
in order to determine whether any new answer will be produced. Finally, segTr is
also inserted into the respective lists of the grid cells it intersects and the ending
time event of segTr is inserted into the event list (line 10–16).
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Algorithm 2 In-memory Shared Reevaluation
Input: STr ∼ segment set of affected candidate trajectories, SQ ∼ segment set of

affected querying trajectories
Output: Ainmem ∼ Partial answer set of in-memory reevaluation phase

1: E ⇐ the starting time events of segments in STr ∪ SQ, in sorted order
2: for each event e in E do
3: if e is the starting time of a querying trajectory segment segQ then
4: CQ ⇐ the set of grid cells that segQ is mapped to
5: for each cell cij ∈ CQ do
6: Ainmem ⇐ Ainmem∪ EvaluateQ(segQ, cij.OList)
7: insert segQ.id into cij.QList
8: end for
9: insert ending time event of segQ into E

10: else if e is the starting time of a candidate trajectory segment segTr then
11: CTr ⇐ the set of grid cells that segTr is mapped to
12: for each cell cmn ∈ CTr do
13: Ainmem ⇐ Ainmem∪ EvaluateTr(segTr, cmn.QList)
14: insert segTr.id into cmn.OList
15: end for
16: insert ending time event of segTr into E
17: else if e is an ending time event then
18: delete the respective segment from the grid cells where it was mapped to
19: end if
20: end for
21: return

3. When the ending time event of a segment is encountered, the segment is
removed from the corresponding grid cells (the OLists/QLists). This is needed
to eliminate reevaluating querying and candidate segments that do not intersect
in the temporal dimension (line 17–19).

As an example, Fig. 5a illustrates the reevaluation of three queries against four
candidate trajectories, all of which have been updated in memory due to a traffic ab-
normality T Anew. The polylines represent the trajectories, where solid lines highlight
the portions of the trajectories considered in this example. The octagon represents
the new traffic abnormality. The shaded regions around the querying trajectory
segments illustrate the mapping regions for the respective queries. The starting and
ending time value of each segment of the trajectories are labelled next to the vertex.
For simplicity, we align the time stamps to start from 0. QR1 and QR2 are two dynamic
range queries whose querying trajectories are Tr5 and Tr6, respectively. QkNN1 is a
k-nearest neighbor query described by trajectory Tr7. We consider only one segment
from each querying trajectory and denote them as Qi.seg. The respective distance
parameter for QR1 and QR2 are d1 and d2. The roof value of QkNN1 shows the
maximum distance to the kth nearest neighbor currently maintained. Trajectories
Tr1 through Tr4 describe the motion of four candidate objects and their segments
are denoted as Tri.seg j as shown.
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Fig. 5 In-memory shared reevaluation example

First, all starting times of the segments are inserted into the event list E: 0,
1, 2, 3, 4, 5, 6, 8, . . .. Then the algorithm sweeps over the priority queue and processes
each event sequentially. To better illustrate the algorithm, Fig. 5b shows the states
of the relevant data structures before and after processing actions are taken at the
selected time stamps. For clarity, we only show the grid cells that are of interest to
the reevaluation, and the first few elements currently stored in the event list E at
each time stamp.

– At time 0, QkNN1 .seg is inserted into the QLists of the grid cells intersecting with
the shaded regions for QkNN1 .seg. Since all OLists of these cells are empty at
time 0, no further evaluation is necessary.

– At time 1, segment Tr4.seg1 is inserted into the c7d.OList. Since c7d.QList
contains QkNN1 .seg, the segment-wise computational geometry calculation is
carried out to determine whether Tr4 is an answer to QkNN1 .
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– At time 3 QR1 .seg is inserted into the QLists for grid cell c4a, c4b . At this time
Tr1.seg1 is in c4a.OList, thus it is evaluated against QR1 . Note also that the ending
time event for Tr1.seg1 has already been inserted into E.

– At time 10, QkNN1 .seg and Tr1.seg2 (not shown) are removed from their respec-
tive grid cells (QLists/OLists).

– At time 12, Tr2.seg1 and Tr4.seg2 are removed from the OLists of the inter-
secting cells. Tr4.seg3 is mapped to c7 f .OList and c8 f .OList. However, since
QkNN1 .seg has been removed from c7 f .QList at time 10, no further reevaluation
is needed.

– Finally, the algorithm stops at time stamp 25 when the event list E becomes
empty.

To determine the time complexity of Algorithm 2, observe that when initially
creating the event list in which the segments are sorted according to their starting
time stamps, the total cost is linear in the total number of segments since each
individual trajectory already has its segments sorted. Let k denote the number of
querying trajectory segments and let n denote the number of candidate trajectory
segments, the worst case complexity of Algorithm 2 is bounded by O(kn). In practice,
however, one may expect a better bound because as a consequence of the sorting
of the segments and the mapping of the segments into the grid cells (which is also
linear in the number of segments), the pairwise evaluation of many segments will be
avoided.

5.2 Phase 2: Selecting the relevant subset of triggers

In phase 2, we need to reevaluate the updated moving object trajectories that are
in the main memory against the unaffected queries that are on the hard disk. Let
us recall our example from Section 2: query QR3 did not need to be reevaluated
since none of the trajectories in A_QR3 were affected by the traffic abnormality, and
vice-versa, none of the trajectories affected by the given traffic abnormality impact
the correctness of A_QR3 . In order to utilize this kind of intelligent behavior in
our settings we perform some extra preprocessing work when a particular query is
submitted, which will enable our system to behave in an output sensitive manner
when executing the respective triggers.

The basic idea is to also maintain an index on the queries, as they are being
posed to the system. In our system we implement an R-tree like index on the
query_region attribute of the query table. After updating the TAT due to a traffic
abnormality, as each trajectory is being accordingly modified, we maintain on the
fly a two dimensional MBR of the updated portions of the trajectory routes, as well
as a bounding time interval during which updates to the trajectories occur. When
determining the triggers that need to be fired in order to reevaluate their respective
pending queries, we only choose a subset of them. This subset consists of the triggers
associated with the queries whose regions of interest actually intersect the MBR
constructed when updating the trajectories during the bounding time interval. If
a particular trajectory is not affected, it will not contribute to the construction of
the MBR. This will prevent reevaluation of queries like QR3 in our motivational
scenario. The query reevaluation only needs to be performed between a subset of
the unaffected queries and the affected trajectories that will lead to query answer
updates.
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Fig. 6 Space-filling curves
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a   Peano curve (Z-curve)
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Note that the queries indexed are a mixture of spatial regions for static range
queries and querying trajectories for dynamic range queries and kNN queries. For
the latter two types of queries, when constructing the index, the querying trajectories
are uniformly split into sub-trajectories using the exact same strategy for splitting the
trajectories in MOT (cf. Section 3).

5.3 Phase 3: Ordering among the triggers

Ordering can be specified for a set of triggers that will fire upon the same enabling
event, i.e., one can express when a particular trigger will have its condition evaluated
and its action executed. 3 In phase 3 where we reevaluate updated queries in the main
memory against unaffected candidate object trajectories on the hard disk, we propose
to order the triggers (and consequently the reevaluation of the set of queries) based
on space-filling curves, in order to further reduce the total reevaluation time by
exploiting the spatial proximity of the corresponding queries’ geometries. This is due
to the fact that the LRU policy is usually used for swapping the pages between the
disk and the main memory. By enforcing an order based on the space-filling curves,
we increase the chances that the same pages of data be utilized for the reevaluation
of several consecutive queries, and minimize the page swapping overhead [20], [25].

As discussed before in Section 5.1, we utilize the same grid structure that is
conceptually imposed over the entire region of interest and order the cells according
to their positions in the sequence based on the space-filling curve chosen (cf. Fig. 6).
In our study, we have considered the Peano curve (also referred to as Z-curve) [25]
and the Hilbert curve, since it has been shown in previous studies that the orderings
generated by the Z-curve and the Hilbert curve outperform the others in preserving
spatial proximity [20], [25]. To determine the position of a particular trigger in the
precedence order, we use the cell to which the geometric centroid of the region R
of the associated query belongs. In case that the centroids of two (or more) query
regions fall in the same cell, we order these queries based on their starting time
of interests. For dynamic range queries and kNN queries, the ordering is based

3The detailed analysis of the impact of the coupling modes [26] of the different parts of a particular
trigger (Event, Condition or Action) among themselves and with the transaction that generated its
enabling Event is beyond the scope of this article.
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on the individual sub-trajectories, i.e., each sub-trajectory forms a “sub-query” and
its reevaluation ordering is determined by the centroid of the MBR of this sub-
trajectory. Hence, the reevaluation of a number of queries is actually an intermixed
process: part of one query is reevaluated followed by the reevaluation of part of
another query which is spatially close based on the space filling curve.

In order to effectively benefit from the ordering of the triggers’ execution, we
enforce an ordering on the candidate objects data as well. The basic idea is to
organize the LOB data for the trajectories in the MOT table according to their spatial
proximity. This guarantees that the trajectories that are close to one another will be
stored in the same or consecutive disk pages. Hence, portions of different trajectories
that are relevant to a particular query will be retrieved with fewer page accesses. In
addition, as we order the triggers such that consecutive queries will pertain to spatial
regions close to each other, pages that were recently read into memory can be fully
utilized before swapped back to disk and thus can further reduce the number of I/Os.

More specifically, when the trajectories of the moving objects are initially bulk
loaded into the MOD, they are split into sub-trajectories using the uniform splitting
strategy introduced in Section 3.2. These sub-trajectories are then ordered based the
same space-filling curve used for ordering the queries. We use the centroid of each
sub-trajectory’s 2D projection to decide their relative ordering. Subsequently, the
sorted sub-trajectories are stored into MOT in this order. This ensures that the data
in the MOT is more or less “spatially clustered” on the hard disk, i.e., a disk page is
filled with sub-trajectories that are spatially close according to the space-filling curve.
Note that the ordering of the sub-trajectories takes place during initial bulk loading,
and hence it will not incur extra overhead to the reevaluation of the queries.

5.4 Scalable reevaluation for large data sets

The techniques presented in the previous sections utilize the spatio-temporal context
information embedded into the trajectories to minimize the unnecessary pairs of
(querying trajectory segment, candidate trajectory segment) that are reevaluated,
in each of the three phases. However, since the techniques are main memory based,
they cannot handle the cases when the data set is too large to fit entirely into the
main memory for the reevaluation. This will cause extra data transfer due to page
swapping and can become a source of performance degradation.

Strictly following the phases of Algorithm 1 and converting it into a secondary
storage based algorithm is not a suitable choice. To say the least, this may cause
some data items to be purged back to the disk during the reevaluation of a particular
phase. However, the same data may be needed from the disk, when executing the
next phase of reevaluation. Aside from the page swapping penalty, the observation
that we just made has another consequence: in effect, we have lost the benefit of the
BEFORE option for the semantic dimension of the triggers.

To address this issue, we adapt the divide-and-conquer paradigm and partition the
entire MOD data into smaller portions where each one of them alone can be handled
using Algorithm 1. In our system, this is achieved via table partitioning [2]. More
specifically, we utilize a priori knowledge about the distribution of the trajectory
data, which we collected by performing a preprocessing step that samples over the
large data set, to determine the number of partitions along each spatial dimension.
We ensure that the trajectory data contained in each resulting spatial partition can be
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handled using Algorithm 1 without causing extra memory page swapping. Once we
obtain the spatial partitioning, we will partition the MOT such that each partitioned
table contains only data that spatially falls into a single partition. Trajectories
that intersect with more than one partition are split and stored separately in each
individual partition. The spatial partitioning need not be uniform in size, i.e., the
data distribution may be skewed and partitions may have a smaller spatial extent
where the trajectory distribution is dense, as illustrated in Fig. 7. Observe that
due to the density of the data, the lower-left portion of the region of interest is
further partitioned with a higher granularity than the rest. Furthermore, Tr1 and Tr2

intersect with more than one cell. Consequently, they are split and stored in each of
the intersected cells respectively. The query table QT is partitioned using the same
spatial partitioning.

Both the MOT table that stores the candidate trajectories and the query table QT
are specified to be partitioned following the same spatial partitioning upon creation.
The partitioning is decided by mapping based on the route of the trajectories (spatial
projection of the trajectories). Two trajectories whose routes belong to the same
spatial partition will be mapped to the same partitioned table.

Now when a new traffic abnormality is inserted into the database, we first identify
the spatial partitions that are affected by the abnormality. As illustrated in Fig. 7,
these are the partitions which intersect the shaded ellipse (the dashed lines represent
its MBR) representing the abnormality region. We consider the fractions of the
abnormality region that is contained in each individual partition region, and perform
the reevaluation sequentially on each table partition. Within each partition, we use
the particular fraction of the abnormality region to identify the affected queries and
candidate objects, and perform the three phase reevaluation over the data belonged
to that partition. This ensures that no memory page swapping will occur while
reevaluating the portion of continuous queries pertaining to a given partition and
guarantees the query reevaluation is scalable to very large data sets.

6 Experimental evaluation

In order to assess the effectiveness of the various aspects of our proposed method-
ology, we have fully implemented our system on top of Oracle 9i, a mature and

Fig. 7 Table partitioning
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commercially available ORDBMS which, among the others, offers the following
features:

– Triggers, the mechanism which enables declarative specification of reactive
behavior in ORDBMS for the maintenance of continuous queries and part of
the SQL99 standard [2].

– PL/SQL, a programming language that enables the specification of the pro-
cedural aspects of the applications. Our query evaluation and reevaluation
algorithms have been completely implemented using PL/SQL.

– Oracle Spatial [33], which defines what is essentially an abstract data type that
conforms to the object-relational model and is used for modelling various spatial
objects in the database. In our system, we have utilized and extended the
data type to model and represent spatial-temporal trajectories and continuous
queries. More details about our implementation can be found in [6], [11].

6.1 Experimental setup

The experiments were performed on a PC with an Intel Pentium IV CPU 3.6 GHz
processor, 1 GB of DDR2 memory, an 80 GB SATA hard disk, and with Windows
XP Professional installed. The ORDBMS system that we used is Oracle Release 2,
version 9.2.0.1.0.

The data set used in our experiments contains 5, 000 trajectories. They were
generated using 1, 000 real trajectories obtained from the DOMINO project [1],
which were constructed using the Chicagoland (Cook County) electronic map [4].
On the basis of these trajectories, we generated another 4, 000 trajectories, using road
segment endpoints from the source data set and adding randomized perturbations to
each endpoint. The distribution of trajectory length in terms of number of segments
per trajectory is shown in Fig. 8. Assuming that the average length of a block is about
1/8 mile, the length of the trajectories in our data set varied between 1 and 60 miles.
In our experiments, the data actually spanned an area that is bounded by a rectangle
of approximately 1, 780 miles2. The vertices of the trajectories were sampled every

Fig. 8 Trajectories length
distribution (1 segment
corresponds to 1 block, which
is approximately 1/8 mile)
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minute, and the duration of the trajectories varied between 20 and 400 min. In our
experiments, we transform the time measure into discrete units, where 10 time units
correspond to 1 min. Thus, the lifetime of MOD is 4, 000 time units.

For static range queries, the query regions were randomly generated within the
area of interest to the MOD, and the time interval spans were distributed evenly
throughout the lifetime of MOD. For dynamic range queries and kNN queries, the
querying trajectories were randomly selected from the 5, 000 trajectories in the data
set, and the radius of the circles for the range queries varied from 1.0 to 5.0 miles.
Traffic abnormalities had a duration of 200 time units and could cause the traffic
delay by up to 50% of the normal speed.

The metric that we used in the experimental evaluation is the response time for
reevaluating a set of pending continuous queries. We defined the response time to be
the duration from the time instance at which an INSERT request is specified to the
TAT table (reflecting a traffic abnormality), until the answer set (Current_Answer
attribute in the query table) of every pending query in the MOD is brought up-to-
date. The performance is measured using Oracle’s DBMS_PROFILER package.

6.2 Experimental results

First we demonstrate the effectiveness of each of our context-aware optimization
techniques in isolation. We then present a combined approach to compare the
overall performance of our optimized query reevaluation approach against a naive
approach, which works in a brute force manner without utilizing any of our proposed
techniques.

6.2.1 Semantic dimensions of the triggers

When it comes to the different semantic dimensions used in the specification of a
particular trigger, we investigated two of them: (1) BEFORE vs. AFTER execution,
which specifies the mode in which the modifications to the database are applied
with respect to the action part of the trigger; (2) SET vs. TUPLE execution, which
specifies the level of granularity of applying the modifications to the database and
its relationship with the trigger. Combining each of the values, we have four possible
options and we measured the running times for each of them. In the experiments, we
focused on one single query (consequently, one trigger) and we varied the number
of trajectories affected by the traffic abnormality from 8 to 200, by changing the
spatial location and time interval of the disturbance zone. For a static range query,
the average response times are shown in Fig. 9. The cases for the dynamic range
queries and kNN queries are shown in Fig. 10a and b, respectively. The dotted lines
represent the case when the querying trajectory is not affected by the abnormality,
where only the second phase of reevaluation need to be executed. The solid lines
represent the case when the query trajectory is also affected by the abnormality
and need to be updated, and all three phases of reevaluation are necessary. All
three groups of experiments have provided consistent outcomes. As expected, the
best performance is obtained when the BEFORE trigger executes in a SET oriented
manner, improving the response time by up to 85% compared with the worst case
running time. A noteworthy observation is that loading the Oracle Spatial package
incurs a substantial context-switching time penalty and this is part of the reason why
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Fig. 9 Semantic dimensions of
the triggers for static range
query
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the discrepancy between the set-based manner and the tuple-based manner in the
BEFORE context is somewhat diminished. However, as we will demonstrate shortly,
a significant contribution in the overall improvement of the response time yields
from combining the benefits of the SET and BEFORE semantic dimensions as we will
discuss later. All the following experiments on the run-time optimization techniques
assume the SET and BEFORE options are used.

6.2.2 Query indexing and query ordering

We first evaluated the impact of using query indexing on static range queries. We
randomly selected a number of queries that are distributed evenly in the area of
interest. We conducted two groups of experiments, where the number of affected
trajectories was fixed at 100 and 200, respectively. The number of pending queries
increases from 4 to 100 in both group of experiments. The result is shown in Fig. 11.

As indicated in Fig. 11, the usage of the query index for intersecting the MBR
of the affected trajectories achieves significant improvements in the response time.
This is due to the elimination of the triggers whose associated queries need not
be reevaluated. Observe that the improvements are greater as the number of the
pending queries increases.
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Fig. 10 Semantic dimensions of the triggers for dynamic range and kNN queries



280 Geoinformatica (2008) 12:255–288

Fig. 11 Query indexing for
static range queries
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Next we evaluate the case when query indexing is applied to dynamic range
queries and kNN queries. When reevaluating the queries whose trajectories are not
affected against the updated moving object trajectories, we use the MBR of the
updated trajectories constructed on the fly to retrieve intersecting sub-trajectories
from the query table. Subsequently we check each of these “sub-queries” against the
updated trajectories. The experimental results for dynamic range queries and kNN
queries are shown in Fig. 12a and b, respectively. The two figures suggest a similar
pattern of improvement when indices are created on the pending queries, by up to
75% compared to the case when query indexing is not utilized.

Our next group of experiments evaluates the impact of using query ordering.
Recall that query ordering applies to the third phase when the updated querying
trajectories are reevaluated against the unaffected candidate trajectories residing on
the disk. Hence only dynamic range queries and kNN queries are considered in this
step. We fix the values for the trigger semantic dimensions as suggested in Section 4,
to exclude their impact. Figure 13a and b verifies our hypothesis by showing that
using ordering among the triggers improves the response time, both for dynamic
range queries and kNN queries, the more than 10% improvement steadily comes
from the reuse of the data loaded into memory for reevaluating consecutive queries.

We have also studied the effects of the choice of different space-filling curves in
our experimental evaluation, by comparing the Hilbert curve with the Peano curve.
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Fig. 12 The impact of query indexing
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We observed that the Hilbert curve consistently outperforms the Peano curve during
the experiments, conforming with the observations in [20]. Geometry-based intuition
would tend to explain these observations as a consequence of the fact that the Hilbert
curve has fewer large space jumpings and irregularities than the Peano curve. Part of
the reason is likely to be due to the fact that the iterative process of constructing
the Hilbert space-filling curves maps the intervals of length 2−2n into squares of size
2−nx2−n, while the one for Peano’s curve is equivalent to mapping the interval of
length 3−2n into squares of size 3−nx3−n [34]. However, a further analysis of the
properties of different space filling curves is beyond the scope of this article. The
experimental results are shown in Fig. 13a as well.

6.2.3 In-memory shared reevaluation

In this section, we examine the performance of our in-memory shared reevaluation
approach for reevaluating a group of range queries and kNN queries, whose querying
trajectories are affected by the traffic abnormality. We compare the performance of
our in-memory shared reevaluation algorithm with the naive approach, which uses
a nested loop without any grid mapping and sorting based on the spatio-temporal
attributes of the trajectories. For both groups of experiments, we use the BEFORE
trigger processing semantics and the results of the evaluation are shown in Fig. 14.
It can be seen that the in-memory shared reevaluation approach which, viewed
in isolation, does not yield as much performance gain as the other optimization
methods that we have considered. The reason for this is that this algorithm optimizes
the first phase of the whole reevaluation process, which takes a relatively smaller
portion of the total reevaluation time. Hence it is harder to achieve a significant
performance gain.

6.2.4 Overall performance improvement

So far, we analyzed the impact on the response time for each semantic/context
dimension in isolation. Figure 15 presents our experimental observations when
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Fig. 14 Performance of
in-memory shared
reevaluation
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comparing our combined approach against the naive maintenance approach, i.e.,
TUPLE-level and AFTER trigger execution, no query indexing, no ordering among
triggers and no shared in-memory reevaluation. The experimental results show that
the optimized query reevaluation can execute as much as 4 times faster than the
naive approach.

Next, we studied the impact of the partitioning based approach for the data sets,
which are too large to be handled in memory all at the same time. To observe
the impact of the large size trajectory data, we conduct the following case study:
(1) we modified the Oracle database system parameter db_cache_size, which
determines the size of memory that is allocated to hold the data blocks after they
are retrieved from disk. In our simulation, db_cache_size is set to 1 MB. (2)
furthermore, we generated another 30, 000 trajectories, such that the total data size
became 33 MB. We fixed the number of pending queries to 80 and measured the total
reevaluation time when varying the number of affected trajectories. We compared
the performance when the relevant data tables are partitioned v.s the case when they
are not partitioned. We apply all the optimization techniques in both cases. The naive
approach is not fully shown simply because it takes too long for the reevaluation
process to terminate. The experimental results are shown in Fig. 16.

From the figure it can be seen that when the affected data set is small the
reevaluation performance of the two approaches are almost identical. However, as
the number of affected trajectories increases, the partitioned approach outperforms
the non-partitioned approach by up to 22%, when the size of the relevant data

Fig. 15 Performance of
optimized query maintenance
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Fig. 16 Performance of
table-partitioning approach
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is relatively large, i.e., 2, 500 affected trajectories. Observe that the non-partition
approach is not scalable, e.g., when the number of affected trajectories increases from
around 250 to 2, 500, the reevaluation time increases by more than 10 times.

7 Related work

An important aspect of our work is related to the well-studied field of active
databases [26], [40]. Besides the variety of prototype systems, triggers have become
a common feature of many commercial ORDBMS that comply with the SQL
standard [2]. In this work, we utilized the triggers for the particular problem of
maintaining continuous spatio-temporal queries for trajectories. More specifically,
we combined the values of various semantic dimensions [13] and focused on orches-
trating the triggers’ execution for the purpose of efficient reevaluation of a given set
of pending queries.

The field of MOD has generated a large body of research results in the past few
years, and the existing works address the problems of modelling and representation
of moving objects, algorithms for efficient management of spatio-temporal queries
as well as access/indexing methods. Most of these works use one of the three data
models that we presented in Section 2: a sequence of (location, time) updates, a
sequence of (location, time, velocity) updates or a full trajectory. Our work belongs
to the third category: we use trajectories to represent the future motion plans of
the mobile entities. The peculiarities of this model have been thoroughly inves-
tigated [12], [15], and the efficient algorithms for processing continuous queries
for the historical trajectories have been proposed in [23]. When it comes to the
portions of the trajectories representing the future motion plans of the objects,
the algorithms in [23] can be carried over verbatim for the initial evaluation of
the queries’ answers. However, a perturbation in the parameters that were used
to generate the future trajectories, even if applied to relatively small geographic
area, can affect the correctness of the pending queries’ answer sets pertaining to
the future in a much larger geographic region. This is precisely the problem that we
addressed: how to efficiently reevaluate the set of pending continuous queries when
traffic abnormalities cause updates to the future motion plans of the moving objects.

Perhaps the work that comes closest in spirit with ours is the SINA project [24],
[42], which has investigated the problem of efficient maintenance of spatio-temporal
queries for the model of continuous (location, time) updates. As a result of the
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different models, the underlying algorithms for maintaining the continuous queries
are different. In SINA, query maintenance has to be performed periodically at a high
frequency, whenever updates are available. Furthermore, the query maintenance
exhibits some spatial locality because a subsequent update is in general close to
the previous one, while in our case a local update may impact queries that span
over a much larger geographic regions. Its recent extensions have also considered
the lazy buffering approach for balancing the trade-offs between data updates and
query reevaluation [43]. If the adopted model is the (location, time, velocity) updates
to the MOD [35], the system can afford to “see” a bit further into the future and
avoid constant reevaluation of the pending queries. However, when updates arrive,
a larger set of spatio-temporally correlated queries may need to be reevaluated in a
bulk manner [19]. In this sense, our work covers the “far-end of the spectrum”: with
the trajectories pertaining to the future motions of the moving objects, one can pose
and obtain the answer sets to the various continuous queries pertaining to any future
time interval. However, the main penalty is the reevaluation due to the impact of
some potential traffic abnormality that may affect a large number of queries which
need not be in a close geographic proximity.

Investigation into the essential properties of efficient indexing structures in spatio-
temporal settings were presented by Theodoridis et al. [37]. It has also been observed
that straightforwardly using an R-tree [17] or its variants, e.g., the R∗ tree [7] on
spatio-temporal trajectory data will introduce a large amount of dead space. Several
indexing methods have been proposed that try to reduce the impact of the dead space
for trajectories. For example, Pfoser et al. [28] attempt to preserve the segments that
belong to the same trajectory, and the problem of obtaining an efficient splitting of
the trajectory segments has been further investigated in [8], [18], [32]. In our work,
we relied on the R∗ tree indexing mechanism that is readily available in Oracle
9i [33], for indexing the two dimensional routes of the trajectories. However, we
have adopted it for various needs, e.g., indexing the trajectory segments, using the
time information of trajectories in a refinement step etc.

The idea of indexing the queries instead of moving objects, for the purpose of
efficient spatio-temporal query processing was presented in [31], and was further
extended for in-memory evaluation in [21]. However, the motion model used there—
a sequence of (location, time) updates as the objects are moving—is different from
our data model of the trajectories. This in turn requires a different reactive behavior
and consequently processing algorithms. The utilization of space-filling curves to
impose a linear order on the spatial-temporal objects has been investigated by Jensen
et al. [20], which reports access efficiency obtained from the linear ordering. On the
other hand, we adopted the space-filling curves for sequencing the reevaluation of
the pending queries, in order to reduce the context switching costs among different
queries.

8 Conclusions and future work

The efficient maintenance of continuous queries over moving objects is essential
when providing location-based services. In this article, we addressed the issues that
arise when reevaluating a set of continuous queries over the trajectories that are used
to model the future motion plans of the moving objects, which is an extension of
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our earlier framework [38]. Towards this, we proposed a context-aware approach for
optimization and identified opportunities for performance tuning at various levels.
We proposed several context-aware optimization techniques that can substantially
reduce the query reevaluation time, and analyzed the impact that each of them has
on various continuous queries, e.g., range queries and kNN queries.

Our query reevaluation begins by setting up relevant triggers that watch the
moving objects table and the pending queries table, as new traffic abnormalities are
reported. We identified at least three major sources of context-switching overhead
and unnecessary disk I/Os incurred at the operating system level, if the triggers are
not specified properly. We analyzed the trigger execution process and found that the
optimal performance is expected when the triggers are specified to execute at the
SET level, and in the BEFORE manner.

The first step in the query reevaluation is to retrieve the affected querying
trajectories and candidate trajectories into main memory, and update them to reflect
the impact of the traffic abnormality. The unaffected queries and candidate objects
remain on the disk. Then, the query reevaluation takes three phases to complete:

– In the first phase, the affected queries are reevaluated against the affected can-
didate trajectories. We employed an in-memory shared reevaluation algorithm
to utilize the spatio-temporal information embedded in the data and effectively
reduce the amount of computation for reevaluating querying trajectory segments
against candidate trajectory segments.

– In the second phase, the affected candidate trajectories are checked against the
unaffected queries on disk. We utilized an R-tree index built on the queries
to reevaluate only the set of relevant queries and thus improve reevaluation
efficiency by limiting the search space.

– In the third phase, the affected queries are reevaluated against the unaffected
candidate trajectories on disk. We ordered the queries to be reevaluated as well
as the on-disk data (the segments of trajectories) based on a space-filling curve to
preserve spatial proximity. This reduces the number of disk pages to be retrieved
and avoids potential memory page swapping.

We also considered the case where the entire set of affected data cannot be
accommodated in the main memory at the same time. We proposed to partition the
relevant data tables according to a grid structure, such that each partition can fit into
the memory in order to avoid unnecessary memory page swapping. The reevaluation
cycles over all the partitions affected by the traffic abnormality executing each of the
three phases.

We have built our system prototype on top of an industry-strength ORDBMS—
Oracle 9i, making maximum use of the existing commercial database capability.
We have conducted extensive experiments to observe the benefits of our proposed
techniques. We would like to point out that our approach is not strictly limited to
Oracle 9i. In fact, any ORDBMS that conforms to the SQL-99 standard [2] and
supports specifying User-Defined Types (UDT) and implementing User-Defined
Functions (UDF) can be used as a foundation of our implementation.

There are a few potential opportunities for future research work. Currently we are
working on incorporate uncertainty into the query maintenance process, i.e., a user
who posed a continuous query may receive answers that come with a probabilistic
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attribute, which more realistically reflects the status of moving objects [29]. We are
also working on incorporating some other optimization techniques such as shared
memory buffer and data prefetching to improve the execution of the set of enabled
triggers in the ORDBMS. Another interesting problem is how to utilize in our
approach information of the underlying road networks [27] to further improve the
efficiency of the reevaluation procedure.
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