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ACTIVE DATABASE SYSTEMS

INTRODUCTION AND MOTIVATION

Traditionally, the database management system (DBMS)
has been viewed as a passive repository of large quantities
of data that are of interest for a particular application,
which can be accessed/retrieved in an efficient manner. The
typical commands for insertion of data records, deletion of
existing ones, and updating of the particular attribute
values for a selected set of items are executed by the
DBMS upon the user’s request and are specified via a
proper interface or by an application program. Basic units
of changes in the DBMS are the transactions, which corre-
spond to executions of user programs/requests, and are
perceived as a sequence of reads and/or writes to the
database objects, which either commit successfully in their
entirety or abort. One of the main benefits of the DBMS is
the ability to optimize the processing of various queries
while ensuring the consistency of the database and
enabling a concurrent processing of multiple users trans-
actions.

However, many applications that require management
of large data volumes also have some behavioral aspects as
part of their problem domain which, in turn, may require an
ability to react to particular stimuli. Traditional exemplary
settings, which were used as motivational scenarios for the
early research works on this type of behavior in the DBMS,
were focusing on monitoring and enforcing the integrity
constraints in databases (1–4). Subsequently, it was recog-
nized that this functionality is useful for a wider range of
applications of DBMS. For example, a database that man-
ages business portfolios may need to react to updates from a
particular stock market to purchase or sell particular
stocks (5), a database that stores users preferences/profiles
may need to react to a location-update detected by some
type of a sensor to deliver the right information content to a
user that is in the proximity of a location of interest (e.g.,
deliver e-coupons when within 1 mile from a particular
store) (6).

An active database system (ADBS) (1,7) extends the
traditional database with the capability to react to various
events, which can be either internal—generated by the
DBMS (e.g., an insertion of a new tuple as part of a given
transaction), or external—generated by an outside DBMS
source (e.g., a RFID-like location sensor). Originally, the
research to develop the reactive capabilities of the active
databases was motivated by problems related to the main-
tenance of various declarative constraints (views, integrity
constraints) (2,3). However, with the evolution of the
DBMS technologies, novel application domains for data
management, such as data streams (8), continuous queries
processing (9), sensor data management, location-based
services, and event notification systems (ENS) (10), have
emerged, in which the efficient management of the reactive
behavior is a paramount. The typical executional paradigm

adopted by the ADBS is the so-called event-condition-action
(ECA) (1,7) which describes the behavior of the form:

ON Event Detection
IF Condition Holds
THEN Execute Action

The basic tools to specify this type of behavior in com-
mercially available DBMS are triggers—statements that
the database automatically executes upon certain modifi-
cations. The event commonly specifies the occurrence of (an
instance of) a phenomenon of interest. The condition, on the
other hand, is a query posed to the database. Observe that
both the detection of the event and the evaluation of the
condition may require access not only to the current
instance of the database but also to its history. The action
part of the trigger specifies the activities that the DBMS
needs to execute—either a (sequence of) SQL statement(s)
or stored procedure calls. As a motivational example to
illustrate the ECA paradigm, consider a scenario in which a
particular enterprise would like to enforce the constraint
that the average salary is maintained below 65K. The
undesired modifications to the average salary value can
occur upon: (1) an insertion of a new employee with above-
average salary, (2) an update that increases the salaries of a
set of employees, and (3) a deletion of employees with below-
average salary. Hence, one may set up triggers that will
react to these types of modifications (event) and, when
necessary (condition satisfied), will perform corrective
actions. In particular, let us assume that we have a relation
whose schema is Employee(Name, ID, Department, Job-
Title, Salary) and that, if an insertion of a new employee
causes the average salary-cap to be exceeded, then the
corrective action is to decrease everyone’s salary by 5%.
The specification of the respective trigger1 in a typical
DBMS, using syntax similar to the one proposed by the
SQL-standard (11), would be:

CREATE TRIGGER New-Employee-Salary-Check
ON INSERT TO Employee
IF (SELECT AVG Employee.Salary) > 65,000
UPDATE Set Employee.
Salary = 0.95�Employee.Salary

This seemingly straightforward paradigm has gener-
ated a large body of research, both academic and indus-
trial, which resulted in several prototype systems as well
as its acceptance as a part of the SQL99 (11) standard that,
in turn, has made triggers part of the commercially avail-
able DBMS. In the rest of this article, we will present some
of the important aspects of the management of reactive
behavior in ADBS and discuss their distinct features. In
particular, in the section on formalizing and reasoning, we

1Observe that to fully capture the behavior described in this
scenario, other triggers are needed—ones that would react to
the UPDATE and DELETE of tuples in the Employee relation.
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motivate the need to formalize the active database beha-
vior. In the section on semantic dimensions, we discuss the
various parameters and the impact of the choice of their
possible values, as they have been identified in the litera-
ture. In the overview section we present the main features
of some prototype ADBS briefly, along with the discussion
of some commercially available DBMS that provide the
triggers capability. Finally, in the last section, we outline
some of the current research trends related to the reactive
behavior in novel application domains for data manage-
ment, such as workflows (12), data streams (8,9), moving
objects databases (13,14), and sensor networks (6).

FORMALIZING AND REASONING ABOUT THE ACTIVE
BEHAVIOR

Historically, the reactive behavior expressed as a set of
condition!action rules (IF condition holds, THEN execute
action) was introduced in the Expert Systems literature
[e.g., OPS5 (15)]. Basically, the inference engine of the
system would ‘‘cycle’’ through the set of such rules and,
whenever a left-hand side of a rule is encountered that
matches the current status of the knowledge base (KB), the
action of the right-hand side of that rule would be executed.
From the perspective of the ECA paradigm of ADBS, this
system can be viewed as one extreme point: CA rules,
without an explicit event. Clearly, some kind of implicit
event, along with a corresponding formalism, is needed so
that the ‘‘C’’-part (condition) can reflect properly and moni-
tor/evaluate the desired behavior along the evolution of the
database. Observe that, in general, the very concept of an
evolution of the database must be defined clearly for exam-
ple, the state of the data in a given instance together with
the activities log (e.g., an SQL query will not change the
data; however, the administrator may need to know which
user queried which dataset). A particular approach to
specify such conditions in database triggers, assuming
that the ‘‘clock-tick’’ is the elementary implicit event,
was presented by Sistla and Wolfson (16) and is based on
temporal logic as an underlying mechanism to evaluate and
to detect the satisfiability of the condition.

As another extreme, one may consider the EA type of
rules, with a missing condition part. In this case, the detec-
tion of events must be empowered with the evaluation of a
particularset of facts in a given stateof the database [i.e., the
evaluation of the ‘‘C’’-part must be embedded within the
detection of the events (5)]. A noteworthy observation is that
even outside the context of the ADBS, the event manage-
ment has spurred a large amount of research. An example is
the field known as event notification systems in which
various users can, in a sense, ‘‘subscribe’’ for notifications
that, in turn, are generated by entities that have a role of
‘‘publishers’’—all in distributed settings (10). Researchers
have proposed various algebras to specify a set of composite
events, based on the operators that are applied to the basic/
primitive events (5,17). For example, the expression E¼E1
^ E2 specifies that an instance of the event E should be
detected in a state of the ADBS in which both E1 and E2 are
present. On the other hand, E ¼ E1;E2 specifies that an
instance of the event E should be detected in a state in which

the prior detection of E1 is followed by a detection of E2 (in
that order). Clearly, one also needs an underlying detection
mechanism for the expressions, for example, Petri Nets (17)
or tree-like structures (5). Philosophically, the reason to
incorporate both ‘‘E’’ and ‘‘C’’ parts of the ECA rules in ADBS
is twofold: (1) It is intuitive to state that certain conditions
should not always be checked but only upon the detection of
certain events and (2) it is more cost-effective in actual
implementations, as opposed to constant cycling through
the set of rules.2 Incorporating both events and conditions in
the triggers has generated a plethora of different problems,
such as the management of database state(s) during the
execution of the triggers (18) and the binding of the detected
events with the state(s) of the ADBS for the purpose of
condition evaluation (19).

The need for formal characterization of the active rules
(triggers) was recognized by the research community in the
early 1990s. One motivation was caused by the observation
that in different prototype systems [e.g., Postgres (4) vs.
Starburst (2)], triggers with very similar syntactic struc-
ture would yield different executional behavior. Along with
this was the need to perform some type of reasoning about
the evolution of an active database system and to predict
(certain aspects of) their behavior. As a simple example,
given a set of triggers and a particular state of the DBMS, a
database/application designer may wish to know whether
a certain fact will hold in the database after a sequence of
modifications (e.g., insertions, deletions, updates) have
been performed. In the context of our example, one may
be interested in the query ‘‘will the average salary of the
employees in the ‘Shipping’ department exceed 55K in any
valid state which results via salary updates.’’ A translation
of the active database specification into a logic program was
proposed as a foundation for this type of reasoning in
Ref. (20).

Two global properties that have been identified as desir-
able for any application of an ADBS are the termination and
the confluence of a given set of triggers (21,22). The termi-
nation property ensures that for a given set of triggers in
any initial state of the database and for any initial mod-
ification, the firing of the triggers cannot proceed indefi-
nitely. On the other hand, the confluence property ensures
that for a given set of triggers, in any initial state of the
database and for any initial modification, the final state of
the database is the same, regardless of the order of execut-
ing the (enabled) triggers. The main question is, given the
specifications of a set of triggers, can one statically, (i.e., by
applying some algorithmic techniques only to the triggers’
specification) determine whether the properties of termi-
nation and/or confluence hold? To give a simple motivation,
in many systems, the number of cascaded/recursive invoca-
tions of the triggers is bounded by a predefined constant to
avoid infinite sequences of firing the triggers because of a
particular event. Clearly, this behavior is undesirable, if
the termination could have been achieved in a few more
recursive executions of the triggers. Although run-time

2A noteworthy observation here is that the occurrence of a parti-
cular event is, strictly speaking, different from its detection, which
is associated with a run-time processing cost.
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termination analysis is a possible option, it is preferable to
have static tools. In the earlier draft of the SQL3 standard,
compile-time syntactic restrictions were placed on the
triggers specifications to ensure termination/confluence.
However, it was observed that these specifications may
put excessive limitations on the expressive power on the
triggers language, which is undesirable for many applica-
tions, and they were removed from the subsequent SQL99
draft.

For the most part, the techniques to analyze the termi-
nation and the confluence properties are based on labeled
graph-based techniques, such as the triggering hyper
graphs (22). For a simplified example, Fig. 1a illustrates
a triggering graph in which the nodes denote the particular
triggers, and the edge between two nodes indicates that the
modifications generated by the action part of a given trigger
node may generate the event that enables the trigger
represented by the other node. If the graph contains a cycle,
then it is possible for the set of triggers along that cycle to
enable each other indefinitely through a cascaded sequence
of invocations. In the example, the cycle is formed among
Trigger1, Trigger3, Trigger4, and Trigger5. Hence, should
Trigger1 ever become enabled because of the occurrence of
its event, these four triggers could loop perpetually in a
sequence of cascading firings. On the other hand, figure 1b
illustrates a simple example of a confluent behavior of a set
of triggers. When Trigger1 executes its action, both Trig-
ger2 and Trigger3 are enabled. However, regardless of
which one is selected for an execution, Trigger4 will be
the next one that is enabled. Algorithms for static analysis
of the ECA rules are presented in Ref. (21), which addresses
their application to the triggers that conform to the SQL99
standard.

SEMANTIC DIMENSIONS OF ACTIVE DATABASES

Many of the distinctions among the various systems stem
from the differences in the values chosen for a particular
parameter (23). In some cases, the choice of that value is an

integral part of the implementation (‘‘hard wired’’),
whereas in other cases the ADBS provide a declarative
syntax for the users to select a desired value. To better
understand this concept, recall again our average salary
maintenance scenario from the introduction. One of the
possible sources that can cause the database to arrive at an
undesired state is an update that increases the salary of a
set of employees. We already illustrated the case of an
insertion, now assume that the trigger that would corre-
spond to the second case is specified as follows:

CREATE TRIGGER Update-Salary-Check
ON UPDATE OF Employee.Salary
IF (SELECT AVG Employee.Salary) > 65,000
UPDATE Employee
SET Employee.Salary ¼ 0.95�Employee.Salary

Assume that it was decided to increase the salary of
every employee in the ‘‘Maintenance’’ department by 10%,
which would correspond to the following SQL statement:

UPDATE Employee
SET Employee.Salary ¼ 1.10�Employee.Salary
WHERE Employee.Department ¼ ‘Maintenance’

For the sake of illustration, assume that three employ-
ees are in the ‘‘Maintenance’’ department, Bob, Sam, and
Tom, whose salaries need to be updated. Strictly speaking,
an update is essentially a sequence of a deletion of an old
tuple followed by an insertion of that tuple with the updated
values for the respective attribute(s); however, for the
purpose of this illustration, we can assume that the updates
execute atomically. Now, some obvious behavioral options
for this simple scenario are:

� An individual instance of the trigger Update-Salary-
Check may be fired immediately, for every single
update of a particular employee, as shown in Fig. 2a.

� The DBMS may wait until all the updates are com-
pleted, and then execute the Update-Salary-Check,
as illustrated in Fig. 2b.

Trigger2

Trigger3

Trigger4

Trigger7
Trigger6

Trigger5

Trigger1

Trigger1

Trigger2 Trigger3

Trigger4

(b) Confluent triggers(a) Non terminating cascading triggers 
Figure 1. Triggering graphs for termination
and confluence.
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� The DBMS waits for the completion of all the updates
and the evaluation of the condition. If satisfied, the
execution of the action for the instances of the
Update-Salary-Check trigger may be performed
either within the same transaction as the UPDATE
Employee statement or in a different/subsequent
transaction.

These issues illustrate some aspects that have moti-
vated the researchers to identify various semantic dimen-
sions, a term used to collectively identify the various
parameters whose values may influence the executional
behavior of ADBS. Strictly speaking, the model of the
triggers’ processing is coupled closely with the properties
of the underlying DBMS, such as the data model, the
transaction manager, and the query optimizer. However,
some identifiable stages exist for every underlying DBMS:

� Detection of events: Events can be either internal,
caused by a DBMS-invoked modification, transaction
command, or, more generally, by any server-based
action (e.g., clicking a mouse button on the display);
or external, which report an occurrence of something
outside the DBMS server (e.g., a humidity reading of
a particular sensor, a location of a particular user
detected by an RFID-based sensor, etc). Recall that
(c.f. formalizing and reasoning), the events can be
primitive or composite, defined in terms of the primi-
tive events.

� Detection of affected triggers: This stage identifies the
subset of the specified triggers, whose enabling events
are among the detected events. Typically, this stage is
also called the instantiation of the triggers.

� Conditions evaluation: Given the set of instantiated
triggers, the DBMS evaluates their respective condi-
tions and decides which ones are eligible for execution.
Observe that the evaluation of the conditions may
sometimes require a comparison between the values
in the OLD (e.g., pretransaction state, or the state just
before the occurence of the instantiating event) with
the NEW (or current) state of the database.

� Scheduling and execution: Given the set of instan-
tiated triggers, whose condition part is satisfied, this
stage carries out their respective action-parts. In
some systems [e.g., Starburst (2)] the users are
allowed to specify a priority-based ordering among
the triggers explicitly for this purpose. However, in

the SQL standard (11), and in many commercially
available DBMSs, the ordering is based on the time
stamp of the creation of the trigger, and even this may
not be enforced strictly at run-time. Recall (c.f. for-
malizing and reasoning) that the execution of the
actions of the triggers may generate events that
enable some other triggers, which causes a cascaded
firing of triggers.

In the rest of this section, we present a detailed discus-
sion of some of the semantic dimensions of the triggers.

Granularity of the Modifications

In relational database systems, a particular modification
(insertion, deletion, update) may be applied to a single
tuple or to a set of tuples. Similarly, in an object-oriented
database system, the modifications may be applied to a
single object or to a collection of objects—instances of a
given class. Based on this distinction, the active rules can
be made to react in a tuple/instance manner or in a set-
oriented manner. An important observation is that this
type of granularity is applicable in two different places in
the active rules: (1) the events to which a particular rule
reacts (is ‘‘awoken’’ by) and (2) the modifications executed
by the action part of the rules. Typically, in the DBMS
that complies with the SQL standard, this distinction is
specified by using FOR EACH ROW (tuple-oriented) or
FOR EACH STATEMENT (set-oriented) specification in
the respective triggers. In our motivational scenario, if
one would like the trigger Update-Salary to react to the
modifications of the individual tuples, which correspond
to the behavior illustrated in Fig. 2a, its specification
should be:

CREATE TRIGGER Update-Salary-Check
ON UPDATE OF Employee.Salary
FOR EACH ROW
IF SELECT(...)
...

Coupling Among Trigger’s Components

Because each trigger that conforms to the ECA paradigm
has three distinct parts—the Event, Condition, and
Action—one of the important questions is how they are
synchronized. This synchronization is often called the cou-
pling among the triggers components.

Figure 2. Different options for triggers
execution.
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� E-C coupling: This dimension describes the tem-
poral relationship among the events that enable
certain triggers and the time of evaluating their
conditions parts, with respect to the transaction in
which the events were generated. With immediate
coupling, the conditions are evaluated as soon as the
basic modification that produced the events is com-
pleted. Under the delayed coupling mode, the eva-
luation of the conditions is delayed until a specific
point (e.g., a special ‘‘event’’ takes place such as an
explicit rule-processing point in the transaction).
Specifically, if this special event is the attempt to
commit the transaction, then the coupling is also
called deferred.

� C-A coupling: Similarly, for a particular trigger, a
temporal relationship exists between the evaluation
of its condition and (if satisfied) the instant its action
is executed. The options are the same as for the E-C
coupling: immediate, in which case the action is
executed as soon as the condition-evaluation is com-
pleted (in case it evaluates to true); delayed, which
executes the action at some special point/event; and
deferred, which is the case when the actions are
executed at the end (just before commit) of the trans-
action in which the condition is evaluated.

A noteworthy observation at this point is that the
semantic dimensions should not be understood as isolated
completely from each other but, to the contrary, their
values may be correlated. Among the other reasons, this
correlation exists because the triggers manager cannot be
implemented in isolation from the query optimizer and
the transaction manager. In particular, the coupling
modes discussed above are not independent from the
transaction processing model and its relationship with
the individual parts of the triggers. As another semantic
dimension in this context, one may consider whether the
conditions evaluation and the actions executions should
be executed in the same transaction in which the trigger-
ing events have occurred (note that the particular trans-
action may be aborted because of the effects of the triggers
processing). In a typical DBMS setting, in which the
ACID (atomicity, consistency, isolation, and durability)
properties of the transactions must be ensured, one would
like to maintain the conditions evaluations and actions
executions within the same transaction in which the
triggering event originated. However, if a more sophisti-
cated transaction management is available [e.g., nested
transactions (24)] they may be processed in a separate
subtransaction(s), in which the failure of a subtransac-
tion may cause the failure of a parent transaction in
which the events originated, or in two different transac-
tions. This transaction is known commonly as a detached
coupling mode.

Events Consumption and Composition

These dimensions describe how a particular event is trea-
ted when processing a particular trigger that is enabled due
to its occurrence, as well as how the impact of the net effect
of a set of events is considered.

One of the differences in the behavior of a particular
ADBS is caused by the selection of the scope(23) of the event
consumptions:

� NO consumption: the evaluation and the execution of
the conditions part of the enabled/instantiated trig-
gers have no impact on the triggering event. In
essence, this means that the same event can enable
a particular trigger over and over again. Typically,
such behavior is found in the production rule systems
used in expert systems (15).

� Local consumption: once an instantiated trigger has
proceeded with its condition part evaluation, that
trigger can no longer be enabled by the same event.
However, that particular event remains eligible for
evaluation of the condition the other triggers that it
has enabled. This feature is the most common in the
existing active database systems. In the setting of our
motivational scenario, assume that we have another
trigger, for example, Maintain-Statistics, which also
reacts to an insertion of new employees by increasing
properly the total number of the hired employees in
the respective departmental relations. Upon inser-
tion of a set of new employees, both New-Employee-
Salary-Check and Maintain-Statistics triggers will
be enabled. Under the local consumption mode, in
case the New-Employee-Salary-Check trigger exe-
cutes first, it is no longer enabled by the same inser-
tion. The Maintain-Statistics trigger, however, is left
enabled and will check its condition and/or execute its
action.

� Global consumption: Essentially, global consumption
means that once the first trigger has been selected for
its processing, a particular event can no longer be
used to enable any other triggers. In the settings of
our motivational scenario, once the given trigger
New-Employee-Salary-Check has been selected for
evaluation of its condition, it would also disable the
Maintain-Statistics despite that it never had its con-
dition checked. In general, this type of consumption is
appropriate for the settings in which one can distin-
guish among ‘‘regular’’ rules and ‘‘exception’’ rules
that are enabled by the same event. The ‘‘exception’’
not only has a higher priority, but it also disables the
processing of the ‘‘regular’’ rule.

A particular kind of event composition, which is
encountered in practice, frequently is the event net effect.
The basic distinction is whether the system should con-
sider the impact of the occurrence of a particular event,
regardless of what are the subsequent events in the
transaction, or consider the possibility of invalidating
some of the events that have occurred earlier. As a parti-
cular example, the following intuitive policy for computing
the net effects has been formalized and implemented in
the Starburst system (2):

� If a particular tuple is created (and possibly updated)
in a transaction, and subsequently deleted within
that same transaction, the net effect is null.
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� If a particular tuple is created (respectively, updated)
in a transaction, and that tuple is updated subse-
quently several times, the net effect is the creation of
the final version of that tuple (respectively, the single
update equivalent to the final value).

� If a particular tuple is updated and deleted subse-
quently in a given transaction, then the net effect is
the deletion of the original tuple.

Combining the computation of the net effects in sys-
tems that allow specification of composite events via an
event algebra (5,17) is a very complex problem. The main
reason is that in a given algebra, the detection of a parti-
cular composite event may be in a state in which several
different instances of one of its constituent events have
occurred. Now, the question becomes what is the policy for
consuming the primitive events upon a detection of a
composite one. An illustrative example is provided in
Fig. 3. Assume that the elementary (primitive) events
correspond to tickers from the stockmarket and the
user is interested in the composite event: CE ¼ (two
consecutive increases of the IBM stock) AND (two conse-
cutive increases of the General Electric [GE] stock). Given
the timeline for the sequence of events illustrated in Fig. 3,
upon the second occurrence of the GE stock increase
(GE2þ), the desired composite event CE can be detected.
However, now the question becomes which of the primi-
tive events should be used for the detection of CE (6 ways
exist to couple IBM-based events), and how should the rest
of the events from the history be consumed for the future
(e.g., if GE2þ is not consumed upon the detection of CE,
then when GE3þ occurs, the system will be able to detect
another instance of CE). Chakravarthy et al. (5) have
identified four different contexts (recent, chronicle, con-
tinuous, and cumulative) of consuming the earlier occur-
rences of the primitive constituent events which enabled
the detection of a given composite event.

Data Evolution

In many ADBSs, it is important to query the history con-
cerning the execution of the transaction(s). For example, in
our motivational scenario, one may envision a modified
constraint that states that the average salary increase in
the enterprise should not exceed 5% from its previous value
when new employees are and/or inserted when the salaries
of the existing employees are updated. Clearly, in such
settings, the conditions part of the respective triggers
should compare the current state of the database with
the older state.

When it comes to past database states, a special syntax is
required to specify properly the queries that will retrieve
the correct information that pertains to the prior database
states. It can be speculated that every single state that
starts from the begin point of a particular transaction

should be available for inspection; however, in practice,
only a few such states are available (c.f. Ref. (23)):

� Pretransaction state: the state of the database just
before the execution of the transaction that generated
the enabling event.

� Last consideration state: given a particular trigger,
the state of the database after the last time that
trigger has been considered (i.e., for its condition
evaluation).

� Pre-event state: given a particular trigger, the state of
the database just before the occurrence of the event
that enabled that trigger.

Typically, in the existing commercially available DBMS
that offers active capabilities, the ability to query the past
states refers to the pretransaction state. The users are
given the keywords OLD and NEW to specify declaratively
which part needs to be queried when specifying the condi-
tion part of the triggers (11).

Another option for inspecting the history of the active
database system is to query explicitly the set of occurred
events. The main benefit of this option is the increased
flexibility to specify the desired behavioral aspects of a
given application. For example, one may wish to query
not all the items affected by a particular transaction, but
only the ones that participated in the generation of the
given composite event that enabled a particular trigger (5).
Some prototype systems, [e.g., Chimera (25) offer this
extended functionality, however, the triggers in the
commercially available DBMS that conform to the SQL
standard are restricted to querying the database states only
(c.f., the OLD and NEW above).

Recent works (26) have addressed the issues of extend-
ing the capabilities of the commercially available ORDBMS
Oracle 10g (27) with features that add a flexibility for
accessing various portions (states) of interest throughout
the evolution of the ADBS, which enable sophisticated
management of events for wide variety of application
domains.

Effects Ordering

We assumed that the execution of the action part of a
particular trigger occurs not only after the occurrence of
the event, but also after the effects of executing the mod-
ifications that generated that event have been incorpo-
rated. In other words, the effects of executing a
particular trigger were adding to the effects of the mod-
ifications that were performed by its enabling event.
Although this seems to be the most intuitive approach,
in some applications, such as alerting or security monitor-
ing, it may be desirable to have the action part of the
corresponding trigger execute before the modifications of
the events take place, or even instead of the modifications.

Figure 3. Composite events and
consumption.
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Typical example is a trigger that detects when an unauthor-
ized user has attempted to update the value of a particular
tuple in a given relation. Before executing the user’s
request, the respective log-file needs to be updated prop-
erly. Subsequently, the user-initiated transaction must be
aborted; instead, an alert must be issued to the database
administrator. Commercially available DBMS offer the
flexibility of stating the BEFORE, AFTER, and INSTEAD
preferences in the specification of the triggers.

Conflict Resolution and Atomicity of Actions

We already mentioned that if more than one trigger is
enabled by the occurrence of a particular event, some
selection must be performed to evaluate the respective
conditions and/or execute the actions part. From the
most global perspective, one may distinguish between
the serial execution, which selects a single rule according
to a predefined policy, and a parallel execution of all the
enabled triggers. The latter was envisioned in the HiPAC
active database systems (c.f. Ref. (28)) and requires sophis-
ticated techniques for concurrency management. The
former one can vary from specifying the total priority
ordering completely by the designer, as done in the Postgres
system (4), to partial ordering, which specifies an incom-
plete precedence relationship among the triggers, as is the
case in the Starburst system (20). Although the total order-
ing among the triggers may enable a deterministic behavior
of the active database, it may be too demanding on the
designer, who always is expected to know exactly the
intended behavior of all the available rules (23). Commer-
cial systems that conform with the SQL99 standard do not
offer the flexibility of specifying an ordering among the
triggers. Instead, the default ordering is by the timestamp
of their creation.

When executing the action part of a given trigger, a
particular modification may constitute an enabling event
for some other trigger, or even for a new instance of the
same trigger whose action’s execution generated that
event. One option is to interrupt the action of the currently
executing trigger and process the triggers that were ‘‘awo-
ken’’ by it, which could result in cascaded invocation where
the execution of the trigger that produced the event is
suspended temporarily. Another option is to ignore the
occurrence of the generated event temporarily, until the
action part of the currently executing trigger is completed
(atomic execution). This action illustrates that the values in
different semantic dimensions are indeed correlated.
Namely, the choice of the atomicity of the execution will
impact the value of the E-C/C-A coupling modes: one cannot
expect an immediate coupling if the execution of the actions
is to be atomic.

Expressiveness Issues

As we illustrated, the choice of values for a particular
semantic dimension, especially when it comes to the rela-
tionship with the transaction model, may yield different
outcomes of the execution of a particular transaction by
the DBMS (e.g., deferred coupling will yield different
behavior from the immediate coupling). However, another

subtle aspect of the active database systems is dependent
strongly on their chosen semantic dimensions – the
expressive power. Picouet and Vianu (29) introduced a
broad model for active databases based on the unified
framework of relational Turing machines. By restricting
some of the values of the subset of the semantic dimen-
sions and thus capturing the interactions between the
sequence of the modifications and the triggers, one can
establish a yardstick to compare the expressive powers of
the various ADBSs. For example, it can be demonstrated
that:

� The A-RDL system (30) under the immediate cou-
pling mode is equivalent to the Postgres system (4) on
ordered databases.

� The Starburst system (2) is incomparable to the
Postgres system (4).

� The HiPAC system (28) subsumes strictly the Star-
burst (2) and the Postgres (4) systems.

Although this type of analysis is extremely theoretical
in nature, it is important because it provides some
insights that may have an impact on the overall applica-
tion design. Namely, when the requirements of a given
application of interest are formalized, the knowledge of
the expressive power of the set of available systems may
be a crucial factor to decide which particular platform
should be used in the implementation of that particular
application.

OVERVIEW OF ACTIVE DATABASE SYSTEMS

In this section, we outline briefly some of the distinct
features of the existing ADBS—both prototypes as well
as commercially available systems. A detailed discussion
of the properties of some systems will also provide an
insight of the historic development of the research in the
field of ADBS, can be found in Refs. (1) and (7).

Relational Systems

A number of systems have been proposed to extend the
functionality of relational DBMS with active rules. Typi-
cally, the events in such systems are mostly database
modifications (insert, delete, update) and the language to
specify the triggers is based on the SQL.

� Ariel (31): The Ariel system resembles closely the
traditional Condition ! Action rules from expert
systems literature (15), because the specification of
the Event part is optional. Therefore, in general, NO
event consumption exists, and the coupling modes
are immediate.

� Starburst (2): This system has been used extensively
for database-internal applications, such as integrity
constraints and views maintenance. Its most notable
features include the set-based execution model and
the introduction of the net effects when considering
the modifications that have led to the occurrence
of a particular event. Another particular feature
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introduced by the Starburst system is the concept of
rule processing points, which may be specified to
occur during the execution of a particular transaction
or at its end. The execution of the action part is
atomic.

� Postgres (4): The key distinction of Postgres is that the
granularity of the modifications to which the triggers
react is tuple (row) oriented. The coupling modes
between the E-C and the C-A parts of the triggers
are immediate and the execution of the actions part is
interruptable, which means that the recursive
enabling of the triggers is an option. Another notable
feature of the Postgres system is that it allows for
INSTEAD OF specification in its active rules.

Object-Oriented Systems

One of the distinct features of object-oriented DBMS
(OODBMS) is that it has methods that are coupled with
the definition of the classes that specify the structure of the
data objects stored in the database. This feature justifies
the preference for using OODBMS for advanced application
domains that include extended behavior management.
Thus, the implementation of active behavior in these sys-
tems is coupled tightly with a richer source of events for the
triggers (e.g., the execution of any method).

� ODE (32): The ODE system was envisioned as an
extension of the C++ language with database cap-
abilities. The active rules are of the C-A type and are
divided into constraints and triggers for the efficiency
of the implementations. Constraints and triggers are
both defined at a class level and are considered a
property of a given class. Consequently, they can be
inherited. One restriction is that the updates of the
individual objects, caused by private member func-
tions, cannot be monitored by constraints and trig-
gers. The system allows for both immediate coupling
(called hard constraints) and deferred coupling
(called soft constraints), and the triggers can be
declared as executing once-only or perpetually (reac-
tivated).

� HiPAC (28): The HiPAC project has pioneered many
of the ideas that were used subsequently in various
research results on active database systems. Some of
the most important contributions were the introduc-
tion of the coupling modes and the concept of com-
posite events. Another important feature of the
HiPAC system was the extension that provided
the so called delta-relation, which monitors the
net effect of a set of modifications and made it
available as a part of the querying language. HiPAC
also introduced the visionary features of parallel
execution of multiple triggers as subtransactions
of the original transaction that generated their
enabling events.

� Sentinel (5): The Sentinel project provided an active
extension of the OODBMS, which represented the
active rules as database objects and focused on
the efficient integration of the rule processing mod-

ule within the transaction manager. One of the main
novelties discovered this particular research project
was the introduction of a rich mechanism for to
specify and to detect composite events.

� SAMOS (18): The SAMOS active database prototype
introduced the concept of an interval as part of the
functionality needed to manage composite events. A
particular novelty was the ability to include the
monitoring intervals of interest as part of the speci-
fication of the triggers. The underlying mechanism to
detect the composite events was based on Colored
Petri-Nets.

� Chimera (25): The Chimera system was envisioned as
a tool that would seamlessly integrate the aspects of
object orientation, deductive rules, and active rules
into a unified paradigm. Its model has strict under-
lying logical semantics (fixpoint based) and very
intuitive syntax to specify the active rules. It is based
on the EECA (Extended-ECA) paradigm, specified in
Ref. (23), and it provides the flexibility to specify a
wide spectrum of behavioral aspects (e.g., semantic
dimensions). The language consists of two main com-
ponents: (1) declarative, which is used to specify
queries, deductive rules, and conditions of the active
rules; and (2) procedural, which is used to specify the
nonelementary operations to the database, as well as
the action parts of the triggers.

Commercially Available Systems

One of the earliest commercially available active database
systems was DB2 (3), which integrated trigger processing
with the evaluation and maintenance of declarative con-
straints in a manner fully compatible with the SQL92
standard. At the time it served as a foundation model for
the draft of the SQL3 standard. Subsequently, the standard
has migrated to the SQL99 version (11), in which the
specification of the triggers is as follows:

<trigger definition> ::=
CREATE TRIGGER <trigger name>
{BEFORE|AFTER}<trigger event> ON
<table name>

[REFERENCING <old or new values alias list>]
[FOR EACH {ROW | STATEMENT}]
[<trigger condition>]
<trigger action>

<trigger event> ::= INSERT | DELETE | UPDATE
[OF <column name list>]

<old or new values alias list> ::= {OLD | NEW}
[AS] <identifier>|{OLD_TABLE|

NEW_TABLE} [AS] <identifier>

The condition part in the SQL99 triggers is optional and,
if omitted, it is considered to be true; otherwise, it can be
any arbitrarily complex SQL query. The action part, on the
other hand, is any sequence of SQL statements, which
includes the invocation of stored procedures, embedded
within a single BEGIN – END block. The only statements
that are excluded from the available actions pertain
to connections, sessions, and transactions processing.
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Commercially available DBMS, with minor variations,
follow the guidelines of the SQL99 standards.

In particular, the Oracle 10g (27), an object-relational
DBMS (ORDBMS), not only adheres to the syntax speci-
fications of the SQL standard for triggers (28), but also
provides some additions: The triggering event can be
specified as a logical disjunction (ON INSERT OR
UPDATE) and the INSTEAD OF option is provided for
the action’s execution. Also, some system events (startup/
shutdown, server error messages), as well as user events
(logon/logoff and DDL/DML commands), can be used as
enabling events in the triggers specification. Just like in
the SQL standard, if more than one trigger is enabled by
the same event, the Oracle server will attempt to assign a
priority for their execution based on the timestamps of
their creation. However, it is not guarantees that this case
will actually occur at run time. When it comes to depen-
dency management, Oracle 10g server treats triggers in a
similar manner to the stored procedures: they are inserted
automatically into the data dictionary and linked with the
referenced objects (e.g., the ones which are referenced by
the action part of the trigger). In the presence of integrity
constraints, the typical executional behavior of the Oracle
10g server is as follows:

1. Run all BEFORE statement triggers that apply to the
statement.

2. Loop for each row affected by the SQL statement.

a. Run all BEFORE row triggers that apply to the
statement.

b. Lock and change row, and perform integrity con-
straint checking. (The lock is not released until the
transaction is committed.)

c. Run all AFTER row triggers that apply to the
statement.

3. Complete deferred integrity constraint checking.

4. Run all AFTER statement triggers that apply to the
statement.

The Microsoft Server MS-SQL also follows closely the
syntax prescribed by the SQL99 standard. However, it has
its own additions; for example, it provides the INSTEAD
OF option for triggers execution, as well as a specification of
a restricted form of composite events to enable the parti-
cular trigger. Typically, the statements execute in a tuple-
oriented manner for each row. A particular trigger is asso-
ciated with a single table and, upon its definition, the server
generates a virtual table automatically for to access the old
data items. For example, if a particular trigger is supposed
to react to INSERT on the table Employee, then upon
insertion to Employee, a virtual relation called Inserted
is maintained for that trigger.

NOVEL CHALLENGES FOR ACTIVE RULES

We conclude this article with a brief description of some
challenges for the ADBSs in novel application domains, and
with a look at an extended paradigm for declaratively
specifying reactive behavior.

Application Domains

Workflow management systems (WfMS) provide tools to
manage (modeling, executing, and monitoring) workflows,
which are viewed commonly as processes that coordinate
various cooperative activities to achieve a desired goal.
Workflow systems often combine the data centric view of
the applications, which is typical for information systems,
with their process centric behavioral view. It has already
been indicated (12) that WfMS could benefit greatly by a full
use of the tools and techniques available in the DBMS when
managing large volumes of data. In particular, Shankar
et al. (12) have applied active rules to the WfMS settings,
which demonstrates that data-intensive scientific work-
flows can benefit from the concept of active tables associated
with the programs. One typical feature of workflows is
that many of the activities may need to be executed by
distributed agents (actors of particular roles), which need
to be synchronized to optimize the concurrent execution.
A particular challenge, from the perspective of triggers
management in such distributed settings, is to establish
a common (e.g., transaction-like) context for their main
components—events, conditions, and actions. As a conse-
quence, the corresponding triggers must execute in a
detached mode, which poses problems related not only to
the consistency, but also to their efficient scheduling and
execution (33).

Unlike traditional database applications, many novel
domains that require the management of large quantities of
information are characterized by the high volumes of data
that arrive very fast in a stream-like fashion (8). One of the
main features of such systems is that the queries are no
longer instantaneous; they become continuous/persistent
in the sense that users expect the answers to be updated
properly to reflect the current state of the streamed-in
values. Clearly, one of the main aspects of the continuous
queries (CQ) management systems is the ability to react
quickly to the changes caused by the variation of the
streams and process efficiently the modification of the
answers. As such, the implementation of CQ systems
may benefit from the usage of the triggers as was demon-
strated in the Niagara project (9). One issue related to the
scalability of the CQ systems is the very scalability of the
triggers management (i.e., many instances of various trig-
gers may be enabled). Although it is arguable that the
problem of the scalable execution of a large number of
triggers may be coupled closely with the nature of the
particular application domain, it has been observed that
some general aspects of the scalability are applicable
universally. Namely, one can identify similar predicates
(e.g., in the conditions) across many triggers and group
them into equivalence classes that can be indexed on
those predicates. This project may require a more involved
system catalog (34), but the payoff is a much more efficient
execution of a set of triggers. Recent research has also
demonstrated that, to capture the intended semantics of
the application domain in dynamic environments, the
events may have to be assigned an interval-based seman-
tics (i.e., duration may need to be associated with
their detection). In particular, in Ref. (35), the authors
have demonstrated that if the commonly accepted

ACTIVE DATABASE SYSTEMS 9



instantaneous semantics for events occurrence is used in
traffic management settings, one may obtain an unin-
tended meaning for the composite events.

Moving objects databases (MODs) are concerned with
the management of large volumes of data that pertain to the
location-in-time information of the moving entities, as well
as efficient processing of the spatio-temporal queries that
pertain to that information (13). By nature, MOD queries
are continuous and the answers to the pending queries
change because of the changes in the location of the mobile
objects, which is another natural setting for exploiting an
efficient form of a reactive behavior. In particular, Ref. (14)
proposed a framework based on the existing triggers in
commercially available systems to maintain the correct-
ness of the continuous queries for trajectories. The problem
of the scalable execution of the triggers in these settings
occurs when a traffic abnormality in a geographically small
region may cause changes to the trajectories that pass
through that region and, in turn, invalidate the answers
to spatio-temporal queries that pertain to a much larger
geographic area. The nature of the continuous queries’
maintenance is dependent largely on the model adopted
for the mobility representation, and the MOD-field is still
very active in devising efficient approaches for the queries
management which, in one way or another, do require some
form of active rules management.

Recently, the wireless sensor networks (WSNs) have
opened a wide range of possibilities for novel applications
domains in which the whole process of gathering and mana-
ging the information of interest requires new ways of per-
ceiving the data management problems (36). WSN consist of
hundreds, possibly thousands, of low-cost devices (sensors)
that are capable of measuring the values of a particular
physical phenomenon (e.g., temperature, humidity) and of
performing some elementary calculations. In addition, the
WSNs are also capable of communicating and self-organiz-
ing into a network in which the information can be gathered,
processed, and disseminated to a desired location. As an
illustrative example of the benefits of the ECA-like rules in
WSN settings, consider the following scenario (c.f. Ref. (6)):
whenever the sensors deployed in a given geographic area of
interest have detected that the average level of carbon
monoxide in the air over any region larger than 1200 ft2

exceeds 22%, an alarm should be activated. Observe that
here the event corresponds to the updates of the (readings
of the) individual sensors; the condition is a continuous
query evaluated over the entire geographic zone of interest,
and with a nested sub-query of identifying the potentially-
dangerous regions. At intuitive level, this seems like a
straightforward application of the ECA paradigm. Numer-
ous factors in sensor networks affect the efficient implemen-
tation of this type of behavior: the energy resource of the
individual nodes is very limited, the communication
between nodes drains more current from the battery than
the sensing and local calculations,andunlike the traditional
systems where there are few vantage points to generate new
events, in WSN settings, any sensor node can be an event-
generator. The detection of composite events, as well as
the evaluation of the conditions, must to be integrated in
a fully distributed environment under severe constraints
(e.g., energy-efficient routing is a paramount). Efficient

implementation of the reactive behavior in a WSN-based
databases is an ongoing research effort.

The (ECA)2 Paradigm

Given the constantly evolving nature of the streaming or
moving objects data, along with the consideration that it
may be managed by distributed and heterogeneous
sources, it is important to offer a declarative tool in which
the users can actually specify how the triggers themselves
should evolve. Users can adjust the events that they
monitor, the conditions that they need to evaluate, and
the action that they execute. Consider, for example, a
scenario in which a set of motion sensors deployed around
a region of interest is supposed to monitor whether an
object is moving continuously toward that region for a
given time interval. Aside from the issues of efficient
detection of such an event, the application may require
an alert to be issued when the status of the closest air field
is such that fewer than a certain number of fighter jets are
available. In this setting, both the event detection and the
condition evaluation are done in distributed manner and
are continuous in nature. Aside from the need of their
efficient synchronization, the application demands that
when a particular object ceases to move continuously
toward the region, the condition should not be monitored
any further for that object. However, if the object in
question is closer than a certain distance (after moving
continuously toward the region of interest for a given
time), in turn, another trigger may be enabled, which
will notify the infantry personnel. An approach for
declarative specification of triggers for such behavior
was presented in Ref. (37) where the (ECA)2 paradigm
(evolving and context-aware event-condition-action) was
introduced. Under this paradigm, for a given trigger, the
users can embed children triggers in the specifications,
which will become enabled upon the occurrences of certain
events in the environment, and only when their respective
parent triggers are no longer of interest. The children
triggers may consume their parents either completely, by
eliminating them from any consideration in the future or
partially, by eliminating only the particular instance from
the future consideration, but allowing a creation of sub-
sequent instances of the parent trigger. Obviously, in
these settings, the coupling modes among the E-C and
C-A components of the triggers must to be detached, and
for the purpose of their synchronization the concept of
meta-triggers was proposed in Ref. (37). The efficient
processing of such triggers is still an open challenge.
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