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Abstract 
 

Topic models such as pLSA, LDA and their variants have 
been widely adopted for visual recognition. However, most 
of the adopted models, if not all, are unsupervised, which 
neglected the valuable supervised labels during model 
training. In this paper, we exploit recent advancement in 
supervised topic modeling, more particularly, the DiscLDA 
model for object recognition. We extend it to a part based 
visual representation to automatically identify and model 
different object parts. We call the proposed model as 
Spatial-DiscLDA (S-DiscLDA). It models the appearances 
and locations of the object parts simultaneously, which also 
takes the supervised labels into consideration. It can be 
directly used as a classifier to recognize the object. This is 
performed by an approximate inference algorithm based on 
Gibbs sampling and bridge sampling methods. We examine 
the performance of our model by comparing its 
performance with another supervised topic model on two 
scene category datasets, i.e., LabelMe and UIUC-sport 
dataset. We also compare our approach with other 
approaches which model spatial structures of visual 
features on the popular Caltech-4 dataset. The 
experimental results illustrate that it provides competitive 
performance.  

 

1. Introduction 
Originated from statistical natural language processing, 

topic model has been widely adopted for solving visual 
recognition problems. The representatives of them are the 
probabilistic Latent Semantic Analysis (pLSA) of Hofmann 
[1], and the Latent Dirichlet Allocation (LDA) of Blei [3]. 
Both are generative models for modeling the statistical 
relationships among documents, topics and vocabularies. 
Specifically, each document can be factorized into a 
probability distribution of topics, each of which is 
represented with a probability distribution of words. Hence 
they are also related to nonnegative matrix factorization and 
dimensionality reduction algorithms. 

To employ topic models for image recognition, each 
image is represented by a set of quantized image features 

such as the SIFT features [12], namely visual words.  
Therefore, each image is considered to be a visual document 
composed of a bag of visual words [9], to which topic 
models such as pLSA [5], LDA [6], and corr-LDA [4] can 
be directly applied.  

Nevertheless, most of adopted topic models for visual 
recognition in the past, if not all, are unsupervised. During 
training, important object category labels are neglected, 
which is undesired. This is the reason that they usually adopt 
the topic models for visual representation [2], and pose 
another layer of discriminative classifiers for recognition, 
e.g., k-nearest neighbor classifiers or SVM classifiers. This 
treatment is less desirable because the two model training 
steps are performed in a separate fashion with different 
objectives, which may result in inferior results to a unified 
model. 

Feifei and Perona [6] proposed a Bayesian hierarchical 
model based on LDA with the category label as a hidden 
variable. Fritz and Schiele [7] use LDA to learn a compact 
and low dimensional representation for multiple visual 
categories from multiple view points in an unsupervised 
fashion. Nevertheless, the training of the model is still 
unsupervised. Another issue of naively applying topic 
models to a bag-of-words representation is that important 
spatial structure of the object is discarded. As already 
manifested by several previous work [9][8][22][24][25], 
spatial structure modeling can not only improve recognition 
in static images, but also enable object discovery and 
localization in video sequences. For describing visual 
scenes, Sudderth et al. [8] proposed a Transformed 
Dirichlet Process to model the expected spatial locations of 
objects, and the appearance of visual features 
corresponding to each object. 

To address the two issues discussed above, we extend a 
recent advancement of supervised topic models, namely the 
DiscLDA [21], to a part based visual representation for 
object category recognition. It explicitly introduces the 
discriminative category information in the generative topic 
model. In essence, it naturally defines multiple generative 
models pertaining to each specific visual category, which 
are all cast under a unified Bayesian model. 

Our proposed representation also simultaneously models 
statistics of the appearances and locations of the different 
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parts of the object, which are automatically learnt without 
any manual specification. Comparing with previous part 
based representation such as the constellation model [10] 
and k-fans model [11], which all strive for modeling the 
spatial relationships among different parts, our part based 
representation only models the spatial distribution of each 
of the parts, which largely avoids the combinatory 
explosion of the hypothesis space. We call our proposed 
model to be Spatial-DiscLDA (S-DiscLDA). 

In [9], another supervised topic model, namely sLDA has 
been examined for simultaneous image classification and 
annotation. It largely focuses on modeling the relationship 
between the class labels, e.g., scene categories such as 
“outdoor”, and image annotation, e.g., object categories 
such as “tree”, “flower”, and “sky”. So it is proper to model 
a scene, where there are several objects in a scene.  However, 
the S-DiscLDA model explicitly exploits the probability 
distribution over vocabulary for different categories and 
hence may bear more capacity for object recognition then 
sLDA.  

Our S-DiscLDA can be directly used as a classifier for 
visual recognition, where inference is performed by an 
approximate inference algorithm based on Gibbs sampling 
and bridge sampling methods [20]. Our contributions are 
hence three folds: 

• We extended a recently developed supervised 
topical model, DiscLDA, to spatial modeling for 
solving visual recognition problems. 

• We presented an effective part based visual 
representation, which simultaneously model the 
statistics of the appearances and locations of 
different parts of a visual object. 

• Our model explicitly exploits the probability 
distribution over the vocabulary for different parts 
of different visual categories, and present more 
modeling capacity. 

The remainder of the paper is organized as the following: 
Section 2 illustrates the part-based visual representation 
based on the proposed S-DiscLDA model. The inference 
and learning algorithms are presented in Section 3. Detailed 
experimental results are summarized and discussed in 
Section 4. Finally, we conclude with remarks on future work 
in Section 5. 

2. Image representation for S-DiscLDA Model  
It is common observation that an object is usually 

comprised of parts at different spatial locations. The 
appearances of the different parts are usually different. So 
an object can be naturally characterized by a set of parts 
with a certain spatial arrangement, while each part can also 
be represented by visual appearances of the corresponding 
set of image patches. Our model is intended to find where 
these parts are statistically located for an object category, 

and exploit the probability distribution of patch appearances 
for different parts.  

The idea behind our model is that we use latent variables, 
i.e., topics in S-DiscLDA model to characterize the object 
parts. The value of a latent variable for every image patch 
indicates which object part it comes from. By parameter 
estimation of our model, we can discover how the parts of 
an object are spatially arranged, and what the visual 
appearance is for each object part. 

As shown in Fig.1, for an object recognition task 
(Fig.1(a)), the motorbike contains several parts, i.e., wheel, 
seat, tail, etc. These parts present consistent spatial 
relationships, e.g., seat is usually at the top, wheel is usually 
at the bottom, etc. For scene recognition task, we can 
consider the visual scene as an “object” in a general sense, 
and consider the different visual elements of the scene 
image as the “part”. Take “coast” scene image as an 
example (Fig.1(b)), it contains several “parts”, such as sky, 
beach, sea, etc. Regarding the spatial arrangement of parts, 
sky is usually on the top, and sea is usually at the bottom; 
regards the appearances of parts, the color of sea is usually 
blue, and the color of beach is usually white. 

For each part, it consists of image patches with different 
visual appearances, which are described by the local 

 
 

(a) (b) 
Fig.1 The spatial arrangement of (a) parts for an object and (b) 
elements for a scene. The appearances for different parts or 
elements are different. 
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Fig.2. The graphical model of (a) DiscLDA and (b) the proposed 
S-DiscLDA model. In S-DiscLDA, the location of image patch 
is modeled with variable dnl  and parameter set R .  
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features of the patches. SIFT [12] is a local descriptor for 
image matching, in which it extracts a visual descriptor from 
each image patch surrounding a scale invariant keypoint for 
matching, which has been widely used for visual 
recognition problems [6][24][25][26].  

The S-DiscLDA model can be illustrated by a graphical 
model as shown in Fig.2(b). We proceed to present the 

detailed mathematics of the proposed S-DiscLDA model. 
The notations of the variables and parameters in the model 
are presented in Table 1. The generative process of an 
image with our model can be described in Table 2. 

For ease of presentation, we employ the notations similar 
to those in [21]. There are C  kinds of objects to be 
recognized, and it is assumed that each object consists of 

0K parts. Each image dI  is divided into dN  image patches 
denoted as , ( 1, 2,..., )dn dp dn N= . Each patch is described 
by its appearance and location. Each patch’s appearance is 
represented by its corresponding visual word 1{ }V

dn i iw vw =∈ , 
where 1{ }V

i ivw =  is the codebook which is obtained by 
running the k-means algorithm on local features extracted 
from patches sampled from all images. The location of the 
patch is represented by its image 
coordinates ( , )dn dn dnl x y= . 

We use latent variables, i.e., topic dnz  and dnu  in 
S-DiscLDA to characterize the object parts. Specifically, 
topic dnz  for the patch dnp  indicates which object part it 
comes from without considering the object category. Since 
every image patch must come from either background or 
part of an object, so the latent topic dnz  is used to indicate 
where dnp comes from. More specifically, if dnp  comes 
from the -thm part of object (no matter which category of 
the object belongs to), we have  0, ( 1, 2,..., )dnz m m K= = ,  
and if it comes from background, we have 0 1dnz K= + . 
So dnz takes a number of 0( 1)K + values, and it has no 
relationship with object category.  
 To discriminatively model different parts of different 
objects, we introduce another latent topic dnu . Specifically, 
if dnp comes from the -thm part of the -thc  object category, 
we have 0( 1)dnu c K m= − ⋅ + , and if it comes from 
background, we have 1 1dnu K= + , where 1 0K C K= ⋅ . So 

dnu  has a number of 1( 1)K + values, which directly relates 
to the object categories.  

The relationship between topic dnz  and topic dnu  can be 
described by mapping matrices 1:{ }c C

cT = , which maps the 
object parts for any object category to the corresponding 
object parts for a specific object category dy c= , 
i.e., :c

dn dnT z u→  . cT  is a 0 0( 1) ( 1)CK K+ × + matrix. 
Take 2C =  as an example, , ( 1, 2)cT c = is as  

0 0

0 0

0 0 0 0

1 2

(2 1) ( 1) (2 1) ( 1)

0 0 0

0 0 , 0

0 1 0 1

K K

K K

K K K K

I

T T I

+ × + + × +

   
   

= =   
   
   

(1) 

where 
0KI is a 0K  dimension identity matrix. 

Table 1. The notations of variables and parameters in S-DiscLDA, 
similar to those in [21] 
variable/parameters notations 

,( 1,2,..., )dn dp dn N=  The dn-th patch in image dI  
{1,2,..., }dy C∈  The supervised label of dI  

π  The parameter of the prior distribution 
of dy  

,α β  The parameters of Dirichlet 
distribution. 

: ( )d d Dirθ θ α  The instance of Dirichlet distribution 
for dI , which is also the parameter of 
multinomial distribution of dnz . 

0{1,2,..., 1}
where ( )

dn

dn d

z K
z Multi θ

∈ +


 
The latent topic of dnp  without 
considering dy  , which obeys 
multinomial distribution. 

1

1 0

{1,2,..., 1}
where ( ),

and ( )d

dn

y
dn d

u K
K CK

u Multi T θ

∈ +

=



 
The latent topic of dnp  
considering dy , which obeys 
multinomial distribution. 

1:{ }c C
cT =  The mapping matrices between dnz  

and dnu  for image category dy c= . 

1{ }
where ( )

V
dn i i

dn k

w vw
w Multi φ

=∈


 
The visual word of dnp , which obeys 
multinomial distribution. 

1 1
1:{ }

where ( )

K
k k

k Dir
φ
φ β

+
=Φ


 
The instance of Dirichlet distribution 
for dnu k= , which is also the 
parameter of multinomial distribution   
of dnw .  

( , )dn dn dnl x y=  The location of dnp , which obeys 
distribution as equation (2). 

1
1 : { , }K

k k kR µ σ =  The parameter of Gaussian 
distribution of  dnl  for dnu k= . 

Table.2. The generative process of an image. 
1. Draw topic proportions ( )d Dirθ α ; 
2. For each patch dnp , choose its topic dnz  drawn from the 

multinomial distribution, ( )dn dz Multi θ ; 

3. For each patch dnp , choose its topic dy
dn dnu T z=  based on the 

image category {1,2,..., }dy C∈ . It indicates that topic dnu  
drawn from the multinomial distribution, 

| , , ( )d dy y
dn d d du y T Multi Tθ θ ; 

4. For each patch , {1,2,..., }dn dp dn N∈ ： 

a)    Draw its visual word ( )dn kw Multi φ for dnu k= ; 
b) Draw its location ( , ) dn dn dnl x y=  from ( | , )dn dnprob l u R   
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For example, if the patch dnp  comes from the -thm part, 
i.e., the value of its topic dnz is m , and the object belongs to 
category dy c= , then the value of its topic dnu  is 

0( 1)c K m− + . This also applies to the appearance and 
location of image patches from background for all object 
categories except that it is an one-to-one mapping because 

0 01 1dn dnz K u CK= + → = + .  
In our model, the dnw  is drawn from a distribution over 

the codebook, which is a multinomial distribution with 
parameters 1 1

1:{ }K
k kφ +

=Φ .  The parameter kφ  describes what 
the appearance looks like for background ( 1 1k K= + ) or 
for object parts ( 11, 2,...,k K= ).  

The dnl  is drawn from a distribution ( | , )dn dnprob l u R , 
which depends on its topic dnu . The location distribution of 
patches from background ( 1 1k K= + ) is modeled by a 
uniform distribution, and the location distribution of 
patches from an object part ( 11, 2,...,k K= ) is modeled by a 
Gaussian model with parameter set 1

1 : { , }K
k k kR µ σ = , i.e., 

 1

1

( , ) , 1, 2,...,
( | , )

  , 1
k k

dn dn

N k K
prob l u k R

Uniform k K
µ σ =

= =  = + (2) 

The position and scale of each object part can be 
described by the Gaussian parameter 1

1 : { , }K
k k kR µ σ = .  With 

parameter estimation algorithm (cf. Section 3.1), we can 
discover where the parts are spatially arranged for an object.  

3. Learning and inference algorithms 

3.1. Parameter learning 
Given a corpus of image data with class 

labels 1{( , , )}D
d d d dy =Α = w l , we find the maximum 

likelihood estimation for the distribution of visual word for 
each topic, i.e., Φ ; and the distribution of location for each 
topic, i.e., R .  

* *

,
{ , } arg max ( , , | , , )d d d

R d

R P y R
Φ

 
Φ = Φ 

 
∏ w l  (3) 

We proposed an iterative learning algorithm using EM 
for parameter estimation of S-DsicLDA, as summarized in 
Algorithm-1. Specifically, given 1iR − , the posterior 
distribution over the assignments of words to topics for each 
image dI , i.e., 1( , | , , , , )i

d d d d dP y R −z u w l   is evaluated 
firstly; then the iΦ  and iR  are estimated by examining this 
posterior distribution. After some iterative steps, the two 
parameter set will converge to * *{ , }RΦ .  

We use the Rao-Blackwellized version of Gibbs 
sampling method (RB Gibbs sampling) [19] to sample from 

the distribution ( , | , , , , )d d d d dp y Rz u w l  . To sample from 
it, we need to compute 

( )
,

,( )
( ) ,

( , | , , , , , , )

( )
( ) ( | , )

( )

dn

dn

dn dn dn dn d d d
w

w h dn h y
hk k dn k dn dn

h dn h

p z h u k y R

m
T n p l u R

m
β

α
β

− −

−
−

−

= = ∝

+
+

+ 



z u w l 
  (4) 

where ( )
,

dnw
dn hm−  is the number of patches with dnw and 

dnz h= in image dI except for dnp , and ,dn kn− is the number 
of patches with dnu k= in image dI  except for dnp . Here 
we omit certain details of the derivation due to the space. 
The reader may refer to the Appendix 6.1 for details. 

Given the samples from the posterior distribution, we can 
estimate parameter set{ , }RΦ . Since the posterior is 

( )
1( | , ) ({ } )v V

k vk k vp Dir mφ β == +u w      (5) 
where 1{ }D

d d ==u u , 1{ }D
d d ==w w  and ( )v

km is the number of 
patches with dnw v= and dnu k= in all images 1{ }D

d dI = . So 

the { } 1 1

1

K
k kφ +

=
Φ =  can be estimated as the posterior mean 

of ( | , )kp φ u w , which is simply the normalized Dirichlet 
parameters. 

The spatial arrangement and the scale of different object 
parts are characterized by the mean values and variance of a 
Gaussian distribution, respectively. These form the 
parameter set 1

1 : { , }K
k k kR µ σ = . With the samples generated 

from the posterior distribution ( , | , , )d d d d dp yz u w l , we 
evaluate the probability ( | , , )d d d dp yu w l  by marginalizing 
out the topic variable dz . The probability  

( ) ( | , , )dn dn d d dk p u k yω = w l   indicates how likely the 
patch that comes from the object part k . In the learning 
algorithm, we take the weighted means and weighted 
variances as the robust estimation of the locations and scales, 
i.e., 

Algorithm1: The training of S-DiscLDA 
Input:  Image data with class labels 1{( , , )}D

d d d dy =Α = w l  

Output: The estimated parameters of the S-DiscLDA { , }L LRΦ . 

Initialization: 
Initializing the 0 0 0 { , }k kR µ σ  manually.  

Training: 
For 1,2,...,i L=  
1. Sample from the posterior distribution. Given 1iR − , 

Sample N RB Gibbs steps for each image dI  

from 1( , | , , , , )i
d d d d dp y R −z u w l   with Eq.(4) 

2. Estimate iΦ  and iR  
a) Estimate iΦ  with last sample ( )Nu  with Eq.(5) 
b) For each dI  , estimate 1( | , , , , )i

dn d d dp u y R −w l   with N 

samples ( ) ,( 1,2,..., )t
d t N=u , and Estimate iR  with Eq.(6) 
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1 1
1

2 2

1 1

1 1

( ) ( )
,   1,...,

( ) ( )( )

    where ( ) 1/ ( )

d

d

d

ND

k dn dn
d dn

ND

k dn dn k
d dn

ND

dn
d dn

k k l
k K

k k l

k k

µ ϖ ω

σ ϖ ω µ

ϖ ω

= =

= =

= =


= ⋅

 =
 = ⋅ −

=

∑∑

∑∑

∑∑

  (6) 

3.2. Approximate Inference 
To recognize an object in a new image, we first divide the 

new image into patches just as the training process, and 
extract the local features for each patch. For each patch dnp , 
we get its corresponding image coordinate dnl , and quantify 
its local feature into visual words dnw with the codebook we 
obtained in the training process. With the known model 
parameters{ , , }RΦ  in the training process, we can predict 
the image’s label ˆdy  by maximum a posteriori estimation, 

( )
{1,2,..., }

ˆ arg max ( | , , , , )
d

d d d d
y C

y P y R
∈

= Φw l .    (7) 
We propose an approximate inference algorithm to 

predict the label ˆdy , as shown in Algorithm-2. By 
employing the notations as in [22], we define a function as 

( ) ( , | , , , , ) ( )c d d d d d dq p y c R p= Φz w l z z , and we denote 

its normalization constant as ( )c c d dZ q d∫ z z . It is obvious 
that we have the relationship between the posterior 
probability ( | , , , , )d d dP y RΦw l  and cZ  as 

1

( | , , , , ) ( )
, 2,3,...,

( 1 | , , , , ) ( 1)
d d d d c

d d d d

p y c R p y c Z
c C

p y R p y Z
= Φ =

= =
= Φ =

w l
w l




(8) 

To estimate the posterior ( | , , , , )d d dP y RΦw l , we need 
to estimate the ratio 1/ , 2,3,...,cZ Z c C= . As an extension 
of importance sampling to estimate the ratio between two 
normalization factors, we leverage bridge sampling [19] to 
estimate it.  

Define , , ( , | , , , , )d

dn dn dn

y
w z l dn dn dn dp w l z y R∆ Φ  , we have 

( )1
11

( )
1 11

( )
, 2,3,...,

( )

M i
c dc i

M i c
c di

hZ
c C

Z h
=

=

≈ =∑
∑

z

z
         (9) 

where , ,

, ,

d

dn dn dn

d

dn dn dn

y a
w z l

ab y b
dn w z l

h
=

=

∆
=

∆∏ . The reader may refer to the 

Appendix 6.2 for detailed derivation.  
To sample from ( )c dq z , we need to compute 

,

( | , , , , , , )

( ) ( | , )d d

dn dn d d d
y y

h dn h wh kh dn dn
k

p z h y R

n T p l u k Rα
−

−

= Φ

∝ + Φ =∑
z w l 

  (10) 

Again, detailed derivation is available in Appendix 6.3. 

4. Experiments 
We evaluate our method with two experiments using 

three datasets, i.e., the LabelMe dataset [11], the 
UIUC-Sport dataset [11], and the Caltech-4 dataset [16], 
followed by detailed discussions.  The LabelMe dataset in 
[11] is obtained by an on-line tool with the following 8 
scene categories, namely “highway”, “inside city”, “tall 
building”, “street”, “forest”, “coast”, “mountain”, and 
“open country”. The UIUC-Sport dataset has 8 scene 
categories, i.e., “badminton”, “bocce”, “croquet”, “polo”, 
“rockclimbing”, “rowing”, “sailing”, and “snowboarding”. 
The Caltech-4 dataset has 5 categories, i.e., “face”, 
“motorbike”, “airplane”, “car” and “background”.   

4.1. Object recognition 
In the first experiment on Caltech-4, we compare our 

method with other object recognition methods which also 
conduct spatial modeling over either a set of object parts 
[10], or a set of local features. The constellation model [10] 
attempts to represent an object by a set of parts under mutual 
geometric constraints, which simultaneously learns shape, 
appearance and relative scale represented by Gaussian 
densities using EM. It is an unsupervised model with high 
computation cost, which neglects the valuable labels during 
training.  

In [16], the authors model the spatial relationship 
between visual words by extracting higher-order spatial 
features. It focuses on how to select lower order features and 
how to build higher order features. The authors use spatial 
histogram with distance approximately in log scale to build 
second order feature, and illustrate that the algorithm can 
avoid exhaustive computation. However, the spatial 
histogram is relatively coarse, and it cannot explicitly 
indicate the spatial arrangement of object parts. 

We extract SIFT descriptors from densely sampled image 
patches for the S-DiscLDA model for this recognition task. 
Our S-DiscLDA uses the latent variables to discover the 
spatial arrangement of object parts, and it is a supervised 
model by exploiting the object category information. It can 
model the spatial relationship of all image patches, while the 

Algorithm2: The inference of S-DiscLDA 
Input: The visual words and corresponding locations for the 
new image ( , )d dw l   
Output: The  posterior  probability ( | , , , , )d d dP y RΦw l  

1. Sample ( ) , 1,2,...,i c
d i M=z  from ( | , , , , , )d c d dp y RΦz w l  

with Eq.(10). 
2. Compute the ratio 1/ , 2,3,..,cZ Z c C=  with Eq.(9). 
3. Estimate the  ( | , , , , )d d dP y RΦw l  with Eq.(8). 
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higher-order spatial features [16] can only model the 
relative relationships among several image patches.  

For comparison, we followed the same experimental 
setting as those adopted in [16] and [12]. The data of each 
category was randomly splitted into two subsets of equal 
size. The model was then trained on the first subset and 
tested on the second subset. For the S-DiscLDA model, 
β and α are set to 0.01 and 050 / K  respectively, 

1:{ }y C
yT =Τ is set according to Equation (1), where 2C = for 

this task and we set 0 15K = . These parameter settings will 
be further discussed in more detail in Section 4.3.  

Similar to [12]  and [16], we use ROC equal error rate 
(EER) to evaluate the classification performance, as shown 
in Table. 3. The experimental results demonstrate that the 
proposed model significantly outperforms the method [12], 
and also outperforms the method [16], except for the car 
category, where we obtain only slightly worse result. The 
slightly inferior result in the car category may be attributed 
to the large variation of the car size, which presents large 
spatial variation among the different parts.  

4.2. Scene classification 
Our model can also be used for scene classification. The 

scene image can be regarded as containing scene elements 
in different spatial locations, and the spatial arrangement of 
these elements is usually relatively consistent for images 
from same scene category and is diverse for images from 
different scene categories. In [11], Wang et al. exploited a 
supervised topic mode, i.e., the sLDA for scene image 
classification. It focuses on modeling the relationships 
between the scene categories and image annotations. The 
image annotation in [11] is similar to the concept of scene 
element or part in S-DiscLDA. However, it does not 
explicitly exploit the spatial relationship of the different 
image annotations.  

Our S-DiscLDA model is also a supervised model which 
models the appearance and location of image patches 
simultaneously. To compare with this sLDA based scene 
classification method, we followed the same experimental 

protocol adopted in [11], and performed the scene 
classification experiment on the LabelMe dataset and 
UIUC-Sport dataset.  Similar to [11], we use the SIFT 
region descriptors extracted from a sliding grid ( 5 5× ). We 
report results on a codebook of 800 codewords (larger 
codebook sizes gave similar performance).  For the 
S-DiscLDA model, we set 0 15K = , and 8C = for this task, 
other parameters are similar to the setting in the previous 
section.  

This task is a multi-class classification problem. The 
results are illustrated in the confusion matrix of Fig. 3, 
where Fig. 3(a) and Fig. 3(c) are the classification results 
from the sLDA method quoted from [11] on LabelMe and 
UIUC-Sport dataset respectively. And Fig. 3(b) and Fig. 3(d) 
presented the results of S-DiscLDA on corresponding 
datasets respectively. On LabelMe dataset, S-DiscLDA can 
reduce the error of sLDA [11] by at least 4% and achieve 
better results in 7 out of the 8 scene categories. On 
UIUC-Sport dataset, our models can reduce the error of 
sLDA [11] by at least 3% and also achieve better results in 7 
out of the 8 scene categories. 

4.3. Discussion on S-DiscLDA 
The original DiscLDA model can also be directly 

employed for object recognition. More specifically, we 
utilize the DiscLDA as a classifier, and use the bag of visual 
words as the visual representation for an image, and use the 
object category label as the class label. Given a corpus of 
image data with class labels, 1{( , )}D

d d dB y == w , we train the 
DiscLDA with the learning algorithm proposed in [21] and 
obtain the model parameter set { }Φ . For a test image, we 
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(a)  sLDA [11]. LabelMe:  
avg. accuracy: 76%. 

(b) S-DiscLDA. LabelMe: 
avg. accuracy: 80% 

(c)   sLDA [11]. UIUC-Sport: 
avg. accuracy: 65% 

(d) S-DiscLDA. UIUC-Sport: 
avg. accuracy: 68% 

Fig 3. Comparison with method [11] using confusion matrices. The rows denote true label and the columns denote the estimated 
label. All the numbers stand for percentage (%). 

Table 3. Comparison to method [12] and method [16]. The 
table gives ROC equal error rate (EER) on the Caltech-4 
dataset. 
Class Method [12] Method [16] Our method 
Face 3.6% 0.92% 0.5% 
Motorbike 7.5% 1.0% 0.9% 
Airplane 9.8% 1.75% 1.0% 
Car 11.5% 0.5% 0.9% 
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get its visual words as the feature and predict the image 
label with the trained DiscLDA. In this way, the latent topic 
variables dz  and  du  have no spatial meaning, and the 
image patch location dl  is not modeled.  

In this experiment, we provide a comparison between 
DiscLDA and S-DiscLDA model in object recognition. It 
can evaluate how much the spatial information improves the 
performance of object recognition. As shown in Fig.4(a), 
we use the face dataset in Caltech-4 to illustrate the 
performance difference. The experiments on the other three 
categories have similar results. In this experiment, we also 
explore the different configuration of shareK for DiscLDA.   

The performance is evaluated by the error rate, 

i.e., FP FNError
Total
+

= . From Fig.4(a), we can clearly 

observe that the classification error of both models will 
decrease with the increase of 0K .  This is because the 
dimension of parameters 1 1

1:{ }K
k kφ +

=Φ  and 1
1 : { , }K

k k kR µ σ =  
depends on 0K . Hence the appearance and location of 
object parts can be characterized more precisely with large 

0K than that with small 0K . However, the classification 
error of S-DsicLDA will decrease faster than that of 
DiscLDA. So spatial modeling in S-DiscLDA can 
significantly improve its capacity for object recognition. 
From Fig.4(a), we can also observe that the performance 
only improves slightly after the number of parts increased 
beyond 15, i.e., after 0 15K > . So in our experiments 
presented in Section 4.1 and 4.2, we set 0 15K = . Fig. 4(b) 
shows some samples that can be correctly recognized with 
S-DiscLDA but incorrectly recognized with DiscLDA. In 
these images, the background is cluttered, and it contains 
many patches with various appearances. So it is difficult to 
recognize the face without modeling the spatial structure. 

The parameter β andα of Dirichlet distribution are the 
hyper parameters of both DiscLDA and S-DiscLDA. They 
can be interpreted as the virtual samples contributing to the 
smoothing of kφ and θ  respectively, which are set 
according to the setting in [19].  

For the computational cost of S-DiscLDA, since the 
appearances and locations for different parts are modeled 
with conditional independent latent variables, S-DiscLDA 
is very efficient to model a large number of object parts. So 
it can be used for objects with many parts and complex 
structure.  

5. Conclusions 
In this paper, we propose a novel model S-DiscLDA for 

visual recognition. Our model aims to bridge the gap 
between bag of words model and visual modeling by taking 
spatial structure modeling into consideration. By 
considering the spatial relationships among local image 
features, we extend a recent supervised topic model, the 
DiscLDA to spatial modeling. Our model captures the 
appearance and location of the different object parts 
simultaneously, and leverages the supervised label 
information to facilitate automatic learning of different 
parts. Our experiments on both object recognition and scene 
recognition demonstrated the effectiveness of the proposed 
model.  As we have noticed, there are some prior constraints 
on the spatial relationships of object parts. In our future 
work, we plan to further explore to augment the proposed 
model with this kind of prior knowledge, and hence improve 
the richness of the proposed model in knowledge 
representation. 
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7. Appendix  

7.1. The derivation of Equation (4) 
It is obvious that we have  

( , | , , , , , , )
( , , , | , , )

( , , , | , , )

dn dn dn dn d d d

d d d d d

dn dn dn dn d

p z u y R
p y R

p y R

− −

− − − −

=

z u w l
z u w l

z u w l





.              (11) 

Based on S-DiscLDA, the joint probability can be factorized as  
( , , , | , , , , )

( | ) ( | , , ) ( | , ) ( | , )
d d d d d

d d d d d d d d

p y R
p p y p p R

α β
α β=

z u w l
z u z w u l u




. (12) 

The distributions of image patch locations are assumed 

 

 

 

 

 

 
(a) (b) 

Fig.4 (a) The performance comparison of object recognition 
between DiscLDA and S-DiscLDA on face dataset in Caltech-4. 
(b) Some samples that can be correctly recognized with 
S-DiscLDA but incorrectly recognized with DiscLDA. 
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independent to each other in S-DiscLDA, so we have 
( | , ) ( | , )d d dn dn

dn

p R p l u R=∏l u              (13) 

Combining these equations together we get Equation (4). 
7.2. The derivation of Equation (9) 

With the definition of the normalization 
constant ( )c c d dZ q d∫ z z , we have 

( )1
1

1

( )1
1

( )
, 2,3,...,

( )

M ib
di

c

M i cb
di

c

q
Z q c CqZ

q

=

=

≈ =
∑

∑

z

z
              (14) 

where ( ) , 1,2,...,i c
d i M=z  are M independent distribution samples 

from the distribution ( )c dq z , and the ( )b dq z  is the bridge 
distribution. In our algorithm, we use a geometric bridge [20], i.e., 

1( ) ( ) ( )b d d c dq q q=z z z . 

The joint distribution ( , , , | , , , , )d d d d dp y Rα βz u w l   can be 
factorized as shown Equation (12). By marginalizing out variable 

du , we have  

, , ( , | , , , , )

( | , , ) ( | , ) ( | , )

d

dn dn dn

y
w z l dn dn dn d

dn dn d dn dn dn dn
k

p w l z y R

p u k z y p w u k p l u k R

∆ Φ

= = = Φ =∑
 

  (15) 

Given dz , the dw and dl are conditional independence, we have 

, ,

( ) ( ) ( , | , , , , )

( ) d

dn dn dn

c d d d d d d
y

d w z l
dn

q p p y R

p

Φ

= ∆∏
z z w l z

z


           (16) 

Using geometric bridge 1( ) ( ) ( )b d d c dq q q=z z z , we have 

( )1( )1
11

11

( ) ( )1 1
1 1

( )( )

( ) ( )

MM ii cb
dd ii

c

M i c Mb i c
di di

c c

qq
qZ q

qZ q
q q

==

= =

≈ =
∑∑

∑ ∑

zz

z z
             (17) 

Combining Equation (16) and (17), we have Equation (9). 
7.3. The derivation of Equation (10) 

It is obvious that we have  

         

( | , , , , , , )
( , , | , , , )

( , , | , , , )

dn dn d d d

d d d d

dn dn dn d

p z y R
p y R
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                 (18) 

Expand Equation (12), we have 
( , , | , , , )

( ) ( | , , ) ( | , )d

dn dn

d d d d
y

d w z dn dn d dn dn
kdn dn

p y R

p p u k z y p l u k R

Φ

= Φ = =∑∏ ∏
z w l

z




(19) 
Combining Equation (18) and (19), we have Equation (10). 
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