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ABSTRACT

We study decentralized power markets with strategic power
generators. In decentralized markets, each generator submits
its supply function (i.e., the amount of electricity it is will-
ing to produce at various unit prices) to the independent sys-
tem operator (ISO), who takes the submitted supply functions
as the true marginal cost functions, and dispatches the gen-
erators to clear the market. If all generators reported their
true marginal cost functions, the market outcome would be
efficient (i.e., the total generation cost is minimized). How-
ever, when generators are strategic and aim to maximize their
own profits, the reported supply functions are not necessar-
ily the marginal cost functions, and the resulting market out-
come may be inefficient. The efficiency loss depends on the
topology of the underlying transmission network, because the
topology sets constraints on the feasible power supply from
generators. This paper provides an analytical upper bound
of the efficiency loss due to strategic generators. Our upper
bound sheds light on how the efficiency loss depends on the
(mesh) transmission network topology (e.g., the degrees of
buses, the admittances and flow limits of transmission lines).

Index Terms— Power markets, supply function bidding,
price of anarchy

1. INTRODUCTION

A special feature of the power system is that the supply and
the demand must be balanced at any time, because imbalance
may cause serious consequences such as blackout [1]. There-
fore, due to the lack of large-scale energy storage, electricity
markets become the major instrument in balancing supply and
demand and maintaining the stability of power systems.

In decentralized electricity markets, the power generators
submit bids to the independent system operator (ISO). A bid,
also called a supply function, specifies the amounts of elec-
tricity a generator is willing to produce at different prices.
After receiving the bids from the generators, the ISO consid-
ers the bids as their marginal cost functions, calculates the
cost functions (by integration), and dispatches the generators
such that the demand is met and the total generation cost is
minimized. This procedure is called economic dispatch.

If the generators submitted their true marginal cost func-
tions as their bids, the economic dispatch would result in the
socially optimal outcome that minimizes the true total cost.
However, the generators aim to maximize their own profits,
and for this purpose, may choose bids that are different from
their true marginal cost functions. In this case, the outcome
of the economic dispatch is inefficient. The goal of this pa-
per is to analytically quantify this inefficiency due to strategic
behavior of generators.

To analyze the efficiency loss in decentralized electric-
ity markets, we first characterize the supply function equi-
librium (SFE) of the market. We show that the supply profile
(i.e., the amounts of electricity produced by each generator)
at the equilibrium is unique. Following the game theory liter-
ature, we define the efficiency loss as price of anarchy (PoA),
namely the ratio of the total generation cost at the SFE to the
total cost at the social optimum. Then we provide an ana-
lytical upper bound of the PoA. This upper bound depends
on the capacity limits of generators, and more importantly,
the topology of the underlying transmission networks (e.g.,
the numbers of outgoing lines from each generator, the ad-
mittances and flow limits of transmission lines). Our results
provide insights on how to optimize the transmission network
in order to reduce the efficiency loss caused by strategic gen-
erators. Finally, we will show that our bound generalizes and
is tighter than existing bounds in prior work.

The rest of this paper is organized as follows. We discuss
related works in Section 2. In Section 3, we will describe our
model of electricity markets and define the supply function
equilibrium. We analyze the equilibrium in general electricity
networks in Section 4. Finally, Section 5 concludes the paper.

2. RELATION TO PRIOR WORK

Two models have been used in most of the works that study
strategic behavior in decentralized electricity markets. The
first model is the Cournot competition model, where each
generator submits the amount of electricity to produce (i.e., a
quantity) [2][3]. These works suggest that the network topol-
ogy plays an important role in the efficiency loss. However, in
the Cournot competition model, the generators act quite dif-
ferently from the way they bid in reality. Hence, we want to
analyze the efficiency loss under a more realistic model.



The second model commonly used in the literature is
the supply function equilibrium model, where each genera-
tor submits the amounts of electricity to produce at different
prices (i.e., a curve of price versus quantity) [4][5][6][7]. The
SFE model is closer to the real bidding formats in electricity
markets. However, most existing works using the SFE model
do not study the impact of the transmission network topology
on the efficiency loss [4][5][6]. Their upper bounds of the
PoA depend on the number of generators only [4], or on the
number and the capacity limits of generators [5][6].

The work that is most closed to this paper is our prior
work [7], where we analyze the efficiency loss using the SFE
model, and quantify the impact of certain aspects of the trans-
mission network topology. Specifically, in the analysis in [7],
we treated the transmission network as a radial network by
ignoring the cycles. Consequently, the upper bound of the
PoA in [7] does not depend on the admittances of transmis-
sion lines, and is not tight when there are cycles in the trans-
mission network. However, it is well known that the trans-
mission network is a mesh network with cycles. Hence, we
will obtain a tighter upper bound of the PoA in this paper by
considering the cycles in the network.

3. SYSTEM MODEL

We model a power system as a graph (N , E), where each
node in N is a bus1 with a generator or a load or both, and
each edge in E is a transmission line connecting two buses.
A representative power system, called IEEE 14-bus system,
is shown in Fig. 1 [11]. Denote the set of buses that have
a generator by Ng ⊆ N (For the IEEE 14-bus system, we
have Ng = {1, 2, 3, 6, 8}). Since the majority of the load
in the electricity market is inelastic [12], we assume that the
load is inelastic, and denote the inelastic load profile by d =
(d1, . . . , d|N |). The total demand is then D ,

∑
j∈N dj .

Each generator n ∈ Ng has a cost of cn(sn) in provid-
ing sn unit of electricity. We make the following standard
assumption about cost functions.

Assumption 1 For each generator n, the cost function
cn(sn) is strictly convex, increasing, and continuously differ-
entiable in sn ∈ [0,+∞).

Due to physical constraints, each generator n’s supply sn
must be in a range [sn, s̄n]. In addition, the supply profile
s = (sn)n∈Ng

must satisfy physical constraints of the electri-
cal network. First, in a power system, it is crucial to balance
the supply and the demand at all time for the stability of the
system [1]. Hence, we need to have∑

n∈Ng
sn = D. (1)

Second, the flow on each transmission line, which depends
on the supply profile, cannot exceed the flow limit of the line.

1We will use “node” and “bus” interchangeably.

Fig. 1. Illustration of the IEEE 14-bus system, which will
serve as a running example and be used in the simulation.

In economic dispatch, the ISO uses the linearized power flow
model, where the flow on each line is the linear combination
of injections from each node [1][3]. Hence, the line flow con-
straints can be written as follows:

−f ≤ Ag · s + A` · d ≤ f , (2)

where f ∈ R|E| is the vector of flow limits, Ag ∈ R|E|×|Ng|

and A` ∈ R|E|×|N| are shift-factor matrices. The shift-factor
matrices Ag and A` depend on the underlying transmission
network topology (e.g., the degrees of nodes and the admit-
tance of transmission lines).

3.1. Benchmark - Social Optimum

Suppose that the ISO knows the true cost functions of each
generator. Then it determines the optimal supply profile s∗

that minimizes the total generation cost subject to the afore-
mentioned constraints. We summarize the optimization prob-
lem to solve as follows:

maxs

∑
n∈Ng

cn(sn) (3)

s.t.
∑

n∈Ng
sn = D,

sn ≤ sn ≤ s̄n, ∀n ∈ Ng,

−f ≤ Ag · s + A` · d ≤ f .

To avoid triviality, we assume that the feasible set of
power generation is non-empty and is not a singleton.

Assumption 2 There exists a strictly feasible allocation of
power generation s.

Since the cost functions are strictly convex, the optimiza-
tion (3) has a unique solution. We write this solution as s∗ =
(s∗n)n∈Ng , and call it the socially optimal supply profile.



3.2. Deregulated Markets and Supply Function Bidding

In practice, each generator submits a supply function (i.e., a
bid) to the ISO. A supply function is a mapping from the unit
selling price of electricity to the amount of electricity pro-
duced by a generator. In practice, the supply function is usu-
ally a step function. For analytical tractability, we assume
that each generator n submits a parametrized supply function
of the following form: [4][5][7]

Sn(p, wn) = D − wn

p
,

where wn ∈ R+ is generator n’s strategic action, and p ∈ R+

is the unit price of electricity. To clear the market, (i.e., to find
the price p satisfies the condition

∑
n∈Ng

Sn(p, wn) = D),
the ISO sets the price p as follows:

p(w) =

∑
n∈Ng

wn

(|Ng| − 1)D
.

where w = (wn)n∈Ng
∈ R|Ng|

+ is the bidding profile.
Each generator n aims to maximizes its profit, written as

un (wn,w−n). Here, we write w−n as the action profile of
all the generators other than generator n. We can calculate
generator n’s profit as follows:

un (wn,w−n) = p (wn,w−n) · Sn [p (wn,w−n) , wn]

− cn (Sn [p(wn,w−n), wn]) .

Now we formally define the supply function equilibrium.

Definition 1 An action profile w∗∗ is a supply function equi-
librium, if each generator n’s action w∗∗n is a solution to the
following profit maximizing problem:2

max
wn

un

(
wn,w

∗∗
−n
)

s.t. sn ≤ Sn

[
p
(
wn,w

∗∗
−n
)
, wn

]
≤ s̄n,

−f ≤ [Ag]∗n · Sn

[
p(wn,w

∗∗
−n), wn

]
+
∑

m∈Ng

m6=n

{
[Ag]∗m · Sm

[
p(wn,w

∗∗
−n), w∗∗m

]}
+A` · d ≤ f .

In a SFE, each generator’s action maximizes its own profit
given the others’ actions. Note that the set of feasible actions
of each generator depends on the others’ actions. Therefore,
the SFE is a generalized Nash equilibrium [13].

4. EFFICIENCY LOSS AT SUPPLY FUNCTION
EQUILIBRIUM

4.1. Uniqueness of Equilibrium Supply Profile

Now we will show that the SFE exists and that there is a
unique equilibrium supply profile at any SFE.

2We denote the nth column of a matrix A by [A]∗n.

Proposition 1 The SFE exists. In addition, any SFE results
in an unique equilibrium supply profile s∗∗ = (s∗∗n )n∈Ng

.

Proof: Due to space limitation, the proof is in Appendix A of
the technical report [14].

Proposition 1 ensures that although there may be multiple
equilibrium bidding profiles, the resulting equilibrium supply
profile is always unique.

4.2. Analysis of Efficiency Loss

We quantify the efficiency loss by PoA defined below:

Definition 2 PoA is the ratio of the total cost at SFE to the
total cost at social optimum:∑

n∈Ng
cn(s∗∗n )∑

n∈Ng
cn(s∗n)

.

By definition, the PoA is never smaller than 1. A larger PoA
indicates that the efficiency loss at the equilibrium is larger.

We derive an upper bound of the PoA that depends on
the topology of the transmission networks. Before detailed
analysis, we need to introduce several useful concepts from
graph theory.

Definition 3 (Cycle) A cycle C of a graph is a sequence of
nodes n1, n2, . . . nk, n1 (k ≥ 3) that satisfies: 1) there is an
edge between every consecutive nodes (i.e., ni and ni+1 for
i = 1, . . . , k − 1) and between nk and n1, and 2) the nodes
n1, . . . , nk are distinct.

By definition, the nodes in a cycle need to be distinct. Take
the IEEE 14-bus system in Fig. 1 for example. The sequence
1, 2, 5, 1 forms a cycle, while the sequence 2, 1, 5, 2, 4, 3, 2
does not (although all consecutive nodes are connected).

Denote the set of node n’s neighbors by N (n). We then
define a partition of N (n), denoted by P(n) ⊂ 2N (n).

Definition 4 (Partition of neighbors) A partition P(n) is a
set of singletons and duples of nodes that satisfy:

1. the sets in P(n) are mutually exclusive, and the union
of all sets in P(n) is N (n);

2. any duple of nodes {i, j} ∈ P(n) are in a cycle with
node n, namely i, n, j or j, n, i are in a cycle;

3. any two singletones {i}, {j} ∈ P(n) are not in the
same cycle.

The partition P(n) divides node n’s neighbors into several
subsets. Roughly speaking, we divide the neighbors by their
affiliation to the cycles. Since node n appears only once in
a cycle, it has exactly two neighbors in the cycle. Therefore,
each subset is either a duple of two nodes (in the case these
two nodes are in the same cycle with node n), or a singleton



(in the case this node is not in a cycle with either node n or
node n’s remaining neighbors).

Note that the partition is not unique, but any partition can
be chosen for the purpose of deriving our upper bound on
PoA. In the following, we will assume that a partition P(n)
has been chosen for each node n ∈ Ng . Given a partition
P(n), we define a mapping Cn : {i, j} 7→ C for each du-
ple {i, j} ∈ P(n). The mapping indicates which cycle C
nodes i, j, n belong to. In the case that nodes i, j, n belong
to multiple cycles, this mapping selects one of them. Again,
this mapping is not unique, but any mapping can be chosen
for our purpose. Hence, we will fix one mapping Cn for each
node n ∈ Ng in the following.

Take the IEEE 14-bus in Fig. 1 for example again. Node 1
has two neighbors: nodes 2 and 5, which are in cycle 1, 2, 5, 1
with node 1. Hence, the partition of node 1’s neighbors is
simply P(1) = {{2, 5}}. Since nodes 1, 2 and 5 belong to
multiple cycles, the mapping C1 is not unique. In this case,
we can choose C1({2, 5}) to be either 1, 2, 5, 1 or 1, 2, 4, 5, 1.
Node 2 has four neighbors: nodes 1, 3, 4, 5. For node 2, the
partition of its neighbors is not unique. We could choose ei-
ther P(2) = {{1, 5}, {3, 4}} or P ′(2) = {{1}, {3}, {4, 5}}.
If we chooseP(2), we can set the mapping C2 as C2({1, 5}) =
1, 2, 5, 1 and C2({3, 4}) = 2, 3, 4, 2.

For each generator n ∈ Ng , we need the partition of its
neighbors and the association of neighbors with cycles in or-
der to define an “effective flow limit” for each outgoing link
from generator n. We write the effective flow limit of the
line from node n to node m as f̂nm. If node n’s neighbor m
is a singleton in the partition (i.e., {m} ∈ P(n)), the effec-
tive flow limit is the same as the original flow limit, namely
f̂nm = fnm. If node n’s neighbor i is in a duple in the parti-
tion (i.e., {i, j} ∈ P(n)), the effective flow limit is as follows:

f̂ni = min

fni,
∑

l,k∈Cn({i,j})
{l,k}6={n,i}

flk
Blk
·Bni

 . (4)

The effective flow limit is the minimum between the original
flow limit and another term that depends on the flow limits
and admittances of the other lines in the cycle. The latter
term is the flow from n to i when the other lines in the cycle
reach flow limits. The flow from n to i cannot exceed this
term, even if the flow limit fni allows.

Note that the effective flow limit depends on the direction
of the flow, namely f̂ni 6= f̂in in general. This is because the
partition of the neighbors and the associated cycles is different
for different nodes n and i. For example, for the IEEE 14-bus
system in Fig. 1, we have

f̂12 = min

{
f12,

(
f25
B25

+
f51
B51

)
B12

}
under the partition P(1) = {{2, 5}}, and

f̂21 = f21 = f12

under the partition P ′(2) = {{1}, {3}, {4, 5}}.
Now we give our analytical upper bound of the PoA.

Theorem 1 The PoA is upper bounded by

1 + max
n∈Ng

min

s̄n, D −
∑

m∈Ng

m 6=n

sm, dn +
∑

m∈N (n)

f̂nm

∑
m∈Ngm 6=n s̄m −D

.

Proof: Due to space limitation, the proof is in Appendix B of
the technical report [14].

The upper bound in Theorem 1 gives us insights on the
key factors that influence the efficiency loss. First, the upper
bound is higher if one generator has a significantly higher ca-
pacity limit than the others. In this case, this generator may
have market power, especially when the total capacity from
the other generators are barely enough to fulfill the demand.
Second, the upper bound is higher if one generator has higher
local demand and higher effective flow limits of its outgoing
links. In this case, this generator has advantage over the other
generators in fulfilling its local demand (because incoming
flow limits constrain the import of electricity from the other
generators), and can more easily export its electricity gen-
eration to other nodes due to higher outgoing effective flow
limits. Therefore, this generator has more influence on the
market outcome.

Our upper bound in Theorem 1 recovers the bounds in
prior work as special cases. When all the generators have the
same capacity limits of sn = 0 and s̄n = D for all n ∈ Ng ,
and when we ignore the network topology (i.e., ignore the
term dn +

∑
m∈N (n) f̂nm), the bound reduces to the one in

[4]. If we allow generators to have different capacity limits
s̄n, the bound reduces to the one in [5]. If we ignore the
cycles in the transmission network, we have f̂nm = fnm for
all n and m, and hence recover the bound in [7].

5. CONCLUSION

We analyzed the efficiency loss in decentralized electricity
markets. The distinct feature of our work is our consideration
of the topology of the mesh transmission network. We show
that there exists a unique equilibrium supply profile, and gave
an analytical upper bound of the efficiency loss at the equilib-
rium. Our upper bound suggests that to reduce the efficiency
loss, we should evenly distribute the generation capacity and
outgoing effective flow limits among the generators.
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