Chapter 3
The Physical Layer

Professor Dongning Guo

Outline
- The physical layer provides a service:
 -- It transfers bits across a link.
- Digital representation of information – Why? How?
- Characterization of communication channels.
- Fundamental limits – a taste of information theory.
- Error control codes.
- Transmission media.

Source
- Analog signal
- Digital signal
 010001001110101
 L:aksdfjoiqwqweu;ikajsdfl
Digital Transmission of Analog Information

- **Analog source**
- **Sampling (A/D)**
- **Quantization**
- **Transmission or storage**
- **Display or playout**

Bandwidth W

Original signal

$\text{Bandwidth } W$

Approximation $y(t)$

- **Sampling Theorem**
 - (The Kupfmuller-Nyquist-Kotelnikov Sampling Theorem)
 - Consider an analog signal which is limited to bandwidth W_s
 - The signal can be perfectly reconstructed from its discrete-time samples if the sampling rate is $1/T > 2W_s$

Digitization of Analog Signal

- **Sampling** (continuous-time to discrete-time)
- **Quantization** (continuous value to discrete value)

$R_s = \text{Bit rate} = \# \text{bits/sample} \times \# \text{samples/second}$
Bit Rate

Bit rate = # bits/sample x # samples/second

Recall the Sampling Theorem
- Bandwidth W_s Hertz: how fast the signal changes
- Nyquist Sampling Theorem: Minimum sampling rate = $2 \times W_s$

Telephone voice
- $W_s = 4$ kHz
- $R_s = 8$ bits/sample x 8000 samples/sec = 64 kbps

CD Audio
- $W_s = 22$ kHz
- $R_s = 16$ bits/sample x 44000 samples/sec = 704 kbps

Theory of Information

- What is information?
 - Answer: uncertainty.
- How much information?
 - Answer: entropy.
- Entropy
 - Consider a source $X_1 X_2 X_3 ...$
 - X_i are independent and identically distributed with distribution $P(X_i = m) = q_m$, $m = 1,...,M$.
 - $H(X) = - \sum q_m \log(q_m)$

Data Compression

- Also known as source coding.
- Noiseless
 - The original information can be recovered exactly.
 - Can compress to the entropy.
 - E.g. zip, GIF.
- Noisy
 - Noisy: recover information approximately
 - JPEG
 - Tradeoff: # bits vs. quality
A Transmission System

Transmitter

Communication channel

Receiver

Bits $s(t)$

Communication Channel
- Pair of copper wires
- Coaxial cable
- Radio
- Optical fiber
- Light, infrared

Transmission Impairments
- Attenuation
- Distortion
- Spurious noise
- Interference

$\text{r}(t)$ bits

Analog vs. Digital Transmission

Analog transmission: difficult to reproduce all details accurately

Sent

Digital transmission: only discrete levels need to be reproduced

Distortion

Attenuation

Sent

Simple Receiver: Was original pulse positive or negative?

Received

Distortion

Attenuation

Received
Transmission Delay

- \(L \) number of bits
- \(R \) speed of transmission (bits/sec)
- \(t_{\text{prop}} \) propagation time
- \(d \) distance
- \(c \) speed of light (\(3 \times 10^8 \) m/s in vacuum)

\[
\text{Delay} = t_{\text{prop}} + \frac{L}{R} = \frac{d}{c} + \frac{L}{R} \text{ seconds}
\]

Signaling

Digital Binary Signal

\[+A \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \]
\[-A \quad 0 \quad 1 \quad 2T \quad 3T \quad 4T \quad 5T \quad 6T \]

\[\text{Bit rate} = 1 \text{ bit} / T \text{ seconds} \]

Speed vs. reliability.
Synchronization

Clock drift causes a loss of synchronization

Asynchronous Transmission

- Specify a short maximum length for the bit sequences and resetting the clock in the beginning of each bit sequence.

Recommended Standard (RS) 232

- Serial line interface between computer and modem or similar device
- Data Terminal Equipment (DTE): computer
- Data Communications Equipment (DCE): modem

![Diagram of Synchronization](image)

![Diagram of Asynchronous Transmission](image)

![Diagram of Recommended Standard (RS) 232](image)
Synchronous Transmission

- Sequence contains data + clock information (line coding)
 - i.e. Manchester encoding, self-synchronizing codes, is used.
- PLL (phase-lock loop)

```
+1 0 0 0 1 1 0 1 0
```

- Voltage
- Time

Line coding

Mapping bits into digital signal that enters the channel

- Unipolar NRZ
- Polar NRZ
- NRZ-inverted (differential encoding)
- Bipolar encoding
- Manchester encoding
- Differential Manchester encoding

Spectrum of Line codes

- Assume 1s & 0s independent & equiprobable
- NRZ has high content at low frequencies
- Bipolar tightly packed around T/2
- Manchester wasteful of bandwidth
Bandwidth of a Channel

- Bandwidth W_c is range of frequencies passed by channel
- Maximum pulse transmission rate $2 \times W_c$ pulses/second

$$X(t) = \cos(2\pi ft) \rightarrow \text{Channel} \rightarrow Y(t) = A(t) \cos(2\pi ft)$$

Multilevel Pulse Transmission

- If pulses amplitudes are either $-A$ or $+A$,
 $R = 2W_c$ bps
- If $M = 2^m$ amplitude levels,
 $R = 2^mW_c$ bps

In the absence of noise, R can be arbitrarily high. Noise places a limit.

Signal-to-Noise Ratio

$$\text{SNR} = \frac{\text{Average signal power}}{\text{Average (in band) noise power}}$$

High SNR

Low SNR
Bandpass Channels

- Modulate a sinusoid
 1. Amplitude modulation
 2. Frequency modulation
 3. Phase modulation

Phase-Shift-Keying

Information
Baseband Signal
Modulated Signal $x(t)$

$x(t) = A_k \cos(2\pi f_c t)$

Demodulate by multiplying by $2\cos(2\pi f_c t)$ and lowpass filtering

$Y(t) = A_k \cos(2\pi f_c t)$

Lowpass Filter (Smother)

$X(t) = 2A_k \cos^2(2\pi f_c t) = A_k (1 + \cos(4\pi f_c t))$
Example of Demodulation

After multiplication at receiver
\[x(t) \cos(2\pi f_c t) \]

Baseband signal discernable after smoothing

Recovered Information

| 1 | 0 | 1 | 1 | 0 | 1 |

Fundamental Limits

Discrete-time Noisy channel

- \[Y = \alpha X + \sigma N \]
- If \(X = -1 \) or \(+1 \), \(N \) is standard Gaussian
- Signal-to-noise ratio \(g = (\alpha/\sigma)^2 \)
- Then the probability of error is
 \[P_e = P(N > \sqrt{g}) = \frac{1}{\sqrt{2\pi}} \int_{\sqrt{g}}^{\infty} e^{-t^2/2} dt \]
- Reliability can be improved by "coding" over a block of bits and adding appropriate redundancy
The Shannon Capacity of the discrete-time channel:
The maximum reliable transmission rate of the channel
\[Y_i = a X_i + \sigma N_i \] is
\[C = \frac{1}{2} \log_2 \left(1 + g \right) \text{ bits/channel use} \]

- Arbitrarily reliable communication possible if transmission rate \(R < C \); otherwise not.
- Reliable communication means that, given any \(\epsilon > 0 \), the error rate can be made to be smaller than \(\epsilon \) by using a sufficient error-control code.

The Shannon Capacity of a continuous-time channel:
The maximum reliable transmission rate over the continuous-time additive white Gaussian noise channel
\[Y(t) = X(t) + N(t) \] with bandwidth \(W \) Hz, power \(P \) (watts) and noise spectrum density \(N_0 \) watts/Hz is
\[C = W \log_2 \left(1 + \frac{P}{W N_0} \right) \text{ bits/second} \]

Example: Capacity
- Channel capacity for a telephone channel with \(W_c = 3400 \) Hz and \(\text{SNR} = 30 \) dB
\[C = 3400 \log_2 (1 + 1000) \approx 33,888 \text{ bps} \]
Media

Electromagnetic Spectrum

Attenuation

- Wireline
 - Exponential decay (absorption): \(L = 10^{kd} \)
 - Attenuation in \(\text{dB} = kd \)

- Wireless
 - Power law (spread out): \(L = \beta d^\gamma \)
 - Space communications possible

- Amplifier
 \(L = \text{Pout/Pin} \)
Twisted Pair

- Insulated copper wires arranged in a regular spiral pattern to minimize interference
 - E.g., telephone subscriber loop to central office
 - Local area network (LAN)
- High bit rates at short distances
- Asymmetric Digital Subscriber Loop (ADSL)
 - High-speed Internet Access
 - Lower 3 kHz for voice, upper band for data
 - 64 kbps inbound, 640 kbps outbound
- Much higher rates possible at shorter distances

Coaxial Cable

- Cylindrical braided outer conductor surrounds insulated inner wire conductor
- High interference immunity
- Higher bandwidth than twisted pair, hundreds of MHz
 - Cable TV
 - Long distance telephone network
 - Original Ethernet LAN medium

Optical Fiber

- Light sources (lasers, LEDs) generate pulses of light
 - Very long distance (>1000 km)
 - Very high speed (>40 Gbps/wavelength)
 - Nearly error-free (BER of 10^{-15})
- Profound influence on network architecture
 - Dominates long distance transmission
 - Distance less of a cost factor in communications
 - Plentiful bandwidth for new services
Radio Transmission

- Signal transmitted by antenna and radiates in air/space
- Wireless communications
 - Cellular phones
 - Satellite transmissions
 - Wireless LANs
- Spectrum regulated by national & international regulatory organizations
- Impairments
 - Multipath propagation causes fading
 - Interference from other users