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Abstract—Following the discovery of a fundamental connec-
tion between information measures and estimation measures in
Gaussian channels, this paper explores the counterpart of those
results in Poisson channels. In the continuous-time setting, the
received signal is a doubly stochastic Poisson point process whose
rate is equal to the input signal plus a dark current. It is found
that, regardless of the statistics of the input, the derivative of the
input—-output mutual information with respect to the intensity
of the additive dark current can be expressed as the expected
difference between the logarithm of the input and the logarithm
of its noncausal conditional mean estimate. The same holds
for the derivative with respect to input scaling, but with the
logarithmic function replaced by xlogx. Similar relationships
hold for discrete-time versions of the channel where the outputs
are Poisson random variables conditioned on the input symbols.

Index Terms: Mutual information, nonlinear filtering, optimal
estimation, point process, Poisson process, smoothing.

I. INTRODUCTION

Some fundamental relationships between input—output mu-
tual information and conditional mean estimation have recently
been discovered for additive Gaussian noise channels with
arbitrary input [1]. In its simplest form, the derivative of the
mutual information in nats as a function of the signal-to-noise
ratio (SNR) is equal to half the minimum mean-square error
(MMSE) regardless of the input statistics, i.e.,

(%I(X; VIX+N) = %E {(X — E{X|\7X + N})Q} (1)
for every Px, where N ~ N(0,1) is standard Gaussian
and v > 0 stands for the SNR. Remarkably, the relationship
also applies to continuous-time additive white Gaussian noise
channels with arbitrary input process.

This paper develops parallel results for Poisson channels,
the output of which are Poisson random variables or doubly
stochastic Poisson point processes conditioned on the input.
Such channels occur in direct-detection optical communication
systems, in which incident radiation is intercepted by means
of photon-sensitive devices to produce a point process, whose
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rate is typically the intensity of the incident radiation plus a
(constant) “dark current”.

Reference [2] presents a review of major developments of
communication theory in the Poisson regime, of which we
give a brief summary. Signal detection in Poisson channels has
been studied since the 1960s and the general “Poisson matched
filter” which yields optimal detection was found by 1969 [3].
Stochastic integration with Poisson point process observations
was developed for various filtering problems in the 1970s (e.g.,
[4], [5]). In particular, the likelihood ratio for signal detection
has been found as a stochastic integral. Using martingale
theory, the likelihood ratio for detection based solely on the
observation has been shown to admit an “estimator-correlator”
type of formula (e.g., [6], cf. [7]). Furthermore, the mutual
information can be expressed using the Liptser-Shiryaev for-
mula (counterpart to Duncan’s Gaussian noise formula [8])
as an integral of the expectation of the difference between
a function (zlogz) of the input and the same function of
the causal conditional mean estimate [4], [S]. The capacity of
Poisson channels under peak- and average-power limits was
found [9], [10], allowing infinite bandwidth. The reliability
function at all rates below capacity is also known [11]. The
only known closed-form expression for the rate-distortion
function of the Poisson process was found in [12] under an
appropriate distortion measure which finds a natural queueing
interpretation [13]. Bounds on the capacity are found under
bandwidth-like constraints [14]. More recently, the high signal-
to-noise ratio asymptotic capacity of a peak and average power
limited discrete-time Poisson channel is derived in [15] by
observing that the entropy of the output is lower bounded
by the differential entropy of the input. Poisson multiple-
access channels, Poisson broadcast channels, Poisson multiple-
input multiple-output channels, Poisson fading channels and
Poisson arbitrarily varying channels are studied in references
[16], [17], [18], [19] and [20] respectively. Also, a Poisson
multiple-access channel where the electrical fields (instead of
the energy) superpose is studied in [21] where it is found that
time-division multiple access is optimal in terms of the cutoff
rate [22].

Equipped with stochastic integration techniques, this pa-
per studies the input—output mutual information of Poisson
channels in discrete-time and continuous-time settings. A key
result in this paper is that, regardless of the statistics of the
input, the derivative of the input—output mutual information
of a Poisson channel with respect to the intensity of the dark
current is equal to the expected error between the logarithm
of the actual input and the logarithm of its conditional mean
estimate (noncausal in case of continuous-time). Equivalently,



the mutual information can be expressed as an integral of such
an error as a function of the dark current. The derivative of
the mutual information with respect to the scaling can also
be expressed as a function of a certain error associated with
the conditional mean estimate. In the continuous-time setting,
together with the Liptser-Shiryaev formula [5], our results
complete the triangle relationship of the mutual information
and causal and noncausal conditional mean estimation errors.

The problem of Poisson channels studied in this paper is
technically and conceptually more involved than its coun-
terpart in the Gaussian regime. Some of the difficulties are
inherent to Poisson channels: 1) The dark current and scaling
cannot be consolidated into one parameter as in Gaussian
channels; and 2) The channel conditioned on a degraded
version of the output is no longer Poisson. Other difficulties
are due to the fact that less is known about Poisson channels.
For example, the hybrid continuous-discrete nature of the
input—output pair appears harder to deal with; simple closed
form expressions for conditional mean estimate and mutual
information are known for fewer input distributions than in
the Gaussian case; and little is known about “natural” metrics
for measuring estimation errors.

In a wider context, this work reveals new connections
between information theory and estimation theory. The results
allow certain information measures to be expressed using
solely estimation errors and vice versa. Since the work of [1]
on Gaussian channels, such relationships have been developed
not only for Poisson channels in [23] and this work, but also
for a variety of other channels of interest, including additive
non-Gaussian noise channels [24] and discrete memoryless
channels [25] (see also [26]). Moreover, [25] obtained the
derivatives of mutual information with respect to certain
parameters of arbitrary random transformations. In all the
above cases, the posterior distribution of the input given the
observations plays an important role in the result.

The rest of the paper is organized as follows. Section II gives
the necessary background on Poisson channels and conditional
mean estimates. The main results of this work are presented in
Section III, followed by some numerical examples in Section
IV. Proofs of the results is relegated to Section V. Concluding
remarks are given in Section VI.

II. PO1SSON CHANNELS
A. Poisson Random Transformation

We start with a simple random transformation of the Poisson
type that captures many of the properties of general Pois-
son channels. Let X and Y be a pair of random variables
taking values in [0,00) and the set of nonnegative integers
respectively, where Px denotes the distribution of X, and
conditioned on X = z, the variable Y has Poisson distribution
with mean equal to x:

1
Pyx(klz) = —afe™, k=0,1,... )

k!
For convenience, we use the shorthand P(X) to denote an
arbitrary Y related to X according to (2), i.e., P(X) is a
conditionally Poisson random variable with its mean value
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Fig. 1. Poisson random transformation with scaling o and dark current .

equal to X. Note that P(X) can be regarded as a random
transformation of X.

Given an arbitrary X and a conditionally Poisson variable
P(X), consider the conditional mean estimate of X given
P(X), which is aptly denoted using the angle bracket operator:

(X) =E{X|P(X)}. 3)

Note that (X) is an implicit function of the conditionally
Poisson variable P(X). Evidently, (-) is a nonlinear operator:
In general («X + A) has a distribution different from that of
a(X)+ A forall & >0, a # 1 and/or A > 0.

B. Discrete-time Poisson Channels

Repeated independent use of the random transformation (2)
defines a canonical discrete-time memoryless Poisson channel
by regarding Py | x as the input-output conditional distribution
at each time instance. A general Poisson channel is defined
by a transformation whose output, conditioned on the input
X = z, is a Poisson random variable with its mean equal to
(axz + \). Here, a > 0 is known as the scaling (factor) of the
input, and A > O (the intensity of) the “dark current”. Figure 1
illustrates a construction of the general Poisson transformation
using independent canonical ones. This setting has a direct
counterpart in the Gaussian regime where « is the amplitude
scaling and A corresponds to the Gaussian noise level. Note
that in the Gaussian case the scaling and the noise level
consolidate to a single degree of freedom, the SNR, for all
analysis purposes. This is not true in the Poisson case because,
for one thing, P(aX) and a.P(X) have different distributions
unless « =0 or a = 1.

More generally, the discrete-time input process
{X1,X2,...} to a discrete-time Poisson channel over
time may have memory. The output is a discrete-time process
{Y,} where Y,, = P(aX, + A) are independent identically
distributed (i.i.d.) conditioned on the input process.

C. Continuous-time Poisson Channels

The canonical continuous-time Poisson channel is the fol-
lowing. Let {X;, 0 <t < T}, or equivalently, X! denote the
input process, where X; takes values in [0, c0). The output
is a realization of a Poisson point process {Y;} whose time-
varying expectation at any time ¢ is equal to the integral of
the “rate function” X;. Precisely, for all 0 <t < s < T,

1

k_—A
k!Ae ,

P{Y,-Y,=k|X]} = E=0,1,... (4

where

A:/sx5 . 5)
t
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Fig. 2. A continuous-time Poisson channel with scaling factor o and dark

current level \.

A general Poisson channel can be regarded as the canonical
channel with its input replaced by the rate function aX; + A,
0 <t < T. The output is known as a doubly stochastic Poisson
process. Let the output at time ¢ be denoted by P;(aX{ + \),
which depends on the input up to time t. Also let the output
process in the interval [r,s] by P:(aX§+ A). In general,
PI(aXd + A) can be regarded as the process P (aX()
superposed with an independent point process of constant rate
A as depicted in Figure 2. Moreover, we denote the conditional
mean of the input at time given the Poisson channel output
Pg(XE) as

(Xi)y = E{X¢| P3(X5)}- (6)

Note that the subscript s dictates the duration of the obser-
vation interval available to the conditional mean estimator. In
particular, (X;), is referred to as the causal (filtering) condi-
tional mean estimate, and (X;), the noncausal (smoothing)
conditional mean estimate.

Given a discrete-time process X, Xo,..., an equivalent
piecewise constant continuous-time process can be defined as
X, =X ik t > 0. Evidently, the output {Y,,} of the discrete-
time Poisson channel with {X,} as its input can be regarded
as increment of the samples of the continuous-time doubly
stochastic Poisson process {Y;} with input {X;}.

III. MAIN RESULTS

This section summarizes the fundamental relationships
which relate derivatives of the mutual information to the con-
ditional mean estimates described in Section II. For simplicity,
we first present the results for the scalar Poisson random trans-
formation. The results are then extended to general continuous-
time and discrete-time Poisson channels. Proof of the main
results are relegated to Section V.

A. Poisson Random Transformation

Theorem 1: For every A > 0 and positive random variable
X with E{X log X} < oo, the derivative of the input-output
mutual information of the Poisson random transformation
X +— P(X + \) with respect to the dark current is'

(X PX 4 N) = E {log(X + \) — log (X + N} (7)

dA
X+ A

'The unit of information measures is nats throughout the paper. All
logarithms are natural. By convention, 0log 0 = 0.

Evidently, the mutual information of the Poisson random
transformation decreases as the dark current increases. Theo-
rem 1 states that the rate of the decrease is equal to the mean
difference between the logarithm of the actual input plus noise
and that of its conditional mean estimate (or, the expected
value of the logarithm of the ratio of the input plus noise and
its estimate). Note that the mean difference in (7) is always
negative due to Jensen’s inequality. It is assumed that A > 0
in Theorem 1 because the derivative can be —oo at A = 0.

Scaling of the input to a Poisson channel cannot be absorbed
into the additive dark current. Interestingly, the derivative of
the mutual information with respect to the signal intensity also
admits a formula in terms of the conditional mean estimate.

Theorem 2: For every a > 0, A > 0 and positive X with
E{Xlog X} < 0,

0

%I(X;'P(CMX +A))

€))

E{Xlog aX + A }

(aX +2)
- éE{z/J,\(aX +A) = a((aX + )} (10)

where 5 (t) = (t — A) logt.

Theorems 1 and 2 are the Poisson counterpart of (1) for
Gaussian channels, which relates the derivative of the mutual
information to the MMSE achieved by conditional mean
estimation.

The sufficient condition E {X log X'} < oo in the theorems
puts a constraint on the tail of the input distribution. Note
that the condition also implies that EX exists, and so do
E{(X + A\ log(X + A\)} with A > 0 and E{log(X + \')}
with X' > 0 by Jensen’s inequality.

Theorems 1 and 2 imply that the mutual information can
be expressed as an integral of the estimation errors.

Corollary 1: Tf E{X log X} < oo, then

I(X;P(X)) = —/OOOE{logm} a1

_ /01 E{Xlog <3§>} da.

Conditioned on X = z, the probability mass of 1P(aX)
concentrates at x as a — oo since its variance vanishes. In
fact, the uncertainty of X given P(«X) also vanishes as o —
00. The following result is immediate in view of Corollary 1.

Corollary 2: For every positive discrete random variable X
with E{X log X} < oo,

H(X) = /Ooo E{Xlog <Z§>} da.

In particular Corollary (2) implies that the right side of (13)
is invariant to one-to-one transformations of X. We note that
the conditional entropy H(P(aX + A)|X) is related to a, A
as well as the distribution of X. This is in contrast to the
case in additive noise channels with noise density function,
where the differential entropy h(aX + N|X) is unrelated
to the input X and the channel gain «. This fact prevents
us from obtaining a simple result for the derivatives of the
entropy H(P(aX + X)) using Theorems 1 and 2 like the one

(12)

13)



in Gaussian channels. Neither can we find a counterpart to
the De Bruijn identity in the Gaussian regime [1], [27]. In
particular, the Fisher information is not defined for discrete
random variables.> This is yet another indication that the
mutual information-MMSE formula is more fundamental than
de Bruijn’s identity.

B. Continuous-time Poisson Channels

Consider the continuous-time Poisson channel depicted

in Figure 2 where the input and output are X! and
P (aX{ + A) respectively.
Theorem 3: Suppose the input process satisfies
T
E/ | X log X;| dt < oo, (14)
0
then for every A > 0,
d
K I(Xg5Pg (X5 +A))
T
X+ A }
= E{log ———— dt (15)
/0 { & (Xe + N

T
= / E {log(X: + A) —log (X; + \)} dt.  (16)
0

B
} dt (17)
1

—I(X{;Py (aXg +A))
T
f/ E{in(aX + A) — s ((aXe + Abp) Lt (18)

Theorem 4: Suppose the input process satisfies (14), then
Oa -

/0 E {Xt log <aa)§it:)\);T

@ Jo

for all @ > 0 and A > 0, where ¥ (t) = (t — ) logt.

Theorems 3 and 4 are the Poisson counterpart of Theorem 6
in [1] for continuous-time Gaussian channels. In particular, the
integrands in (16) and (18) are both average errors associated
with the noncausal conditional mean estimate, which mirror
the noncausal MMSE in Gaussian channels.

Theorems 3 and 4 complement the following relationship
between the mutual information and the optimal causal es-
timate of the input, which takes a similar form as Duncan’s
result for Gaussian channels [8].

Theorem 5 (Liptser and Shiryaev [5]): Suppose the input
process satisfies (14), then®

T
I(XgPy(X3)) = E/O X, log X; — X log (X,), dt (19)

T
= E/ Xt IOgXt - <Xt>t log <Xt>t dt. (20)
0

Reference [4] states the theorem with a dark current of
intensity A in the Poisson channel, which is straightforward
from (20) with X, replaced by X; + .

2The reader is referred to a recent work [28] for a treatment of the scaled
Fisher information related to Poisson statistics as an alternative.

3Subtlety arises with the succinct notation of the form (X) =
E{X | P(X)}, which is an implicit function of the non-unique random
transformation P (X). Naturally, it is understood that all occurrences of (X¢),
are identical in (20). This convention is used throughout the paper.

It is interesting to note from Theorems 3-5 that the causal
and noncausal estimates are connected through the mutual
information.

Corollary 3: For every input satisfying (14),

T
/ E{Xt logXt - <Xt>t IOg <Xt>t } d
0
Xi+ A

L e
- e

_I XO 7P0 (XO ))

} dtdy Q1)

(22)
(23)

Corollary 3 is a straightforward observation in light of the
above theorems but it is not known how to establish equalities
(21) and (22) from a purely estimation-theoretic viewpoint
without resorting to the mutual information.

The mutual information I (X{;PJ (aXy +A)) can be
regarded as a potential field on Quadrant I of a Cartesian
plane, i.e., {(a, A) |, A > 0}. Theorems 3 and 4 give the two
directional derivatives of the mutual information for all (a, A),
and hence its Taylor series expansion to the first order in
scaling and dark current. It is clear that the mutual information
vanishes as & — 0 or A — oo. Thus the mutual information
at any (o, \) pair can be regarded as a path integral of some
estimation errors from any (0, Ag) or (ag,00) to the point
(ar, ), which is also evident from Corollary 3.

Suppose that the input {X;} is a stationary process, then
the relationship between the causal and noncausal estimates in
Corollary 3 reduces to the following.

Corollary 4: For every stationary input process {X;} with
E{X:log X:} < o0,

E{X;logX; — (X;),log (X}), }
© X
— [ Eliog TN 2
/0 { s A G AN G
! aX,
= E< Xilog ——— } da 25)
/0 { T (aX)
where (X;), = E{X;| P (X* )} in this corollary.

Note that the random transformation described in Section
II-A can be regarded as a special case of the continuous-time
channel with a time-invariant input X; = X. It is easy to
check that Yr is a sufficient statistic of YOT for X, so that
(X¢)p = (X). Theorems 1 and 2 can thus be regarded as
simple corollaries of Theorems 3 and 4.

C. Discrete-time Poisson Channels

Consider a discrete-time process {X,,,n = 1,2,...,N}
(denoted by X Ny and discrete-time doubly Poisson processes
derived from it (denoted by P(X N ) and the like) as described
in Section II-B.

Corollary 5: If E{X,log X,,} < 0o, n = 1,...,N, then
for all A > 0,

d al X, 4+ A

—I(X™;P(XN + ) T2 b (26

a (XVP(xXY 1) = g { +)\>N} (26)



and for all @ > 0 and \ > 0,

iI(XN;P(QXJ\UFA) ZE{X log 1

aX + A
Oda

nt+ AN
27

Corollary 5 can be shown using Theorems 3 and 4 once
we realize that the discrete-time samples of a continuous-time
doubly stochastic Poisson process give sufficient statistics for
the piecewise constant input process. In view of Theorem 5,
we also have the following inequalities.

Corollary 6: 1If the input process satisfies E { X, log X, } <
oo for all n, then

N

> E{X,log X, —

n=1

(Xn)

nno1}

log (X

n—1

<1(x™;P(x")) (28)

N
< Z E{X,log X, — (X,),log(X,),}. (29
n=1

The inequalities are due to the discrepancy between (X;) 0
(X:), and (X;)[;; in general. Interestingly, the input-output
mutual information admits bounds based on the causal and
one-step prediction estimates in this case.

D. Time Versus Scaling

An immediate consequence of Theorem 4 is the following
small scaling expansion of mutual information to the first
order.

Corollary 7: For every input process satisfying (14),

(X7 Pd (aXq))

T (30)
= a/ E{X:log X;} — EX;logEX; dt + o(«).
0

Interestingly, the Liptser-Shiryaev formula (19) admits a
new intuitive proof using Corollary 7 and the incremental
channel idea. For simplicity, assume {X;} to be continuous
with probability 1. The mutual information due to an infinites-
imal extra observation time interval (¢,¢ + «) is equal to the
conditional mutual information of the same Poisson channel

during the extra time interval given the past observation,
FESP () - TGP
= L(X{T P (X5 [Po(X0))

By expanding the small interval (¢, + «) to unit length, the
conditional mutual information in (31) can be regarded as the
mutual information of a channel with input attenuated by a
factor of «, which, by Corollary 7, is obtained essentially as

1
a E/ Xt+as log Xt+as - <Xt+as>t IOg <Xt+as>t ds. (32)
0
Theorem 5 is then established by continuity:
ii_{no <Xt+a8>t = <Xt>t :

Note that Theorems 1 and 2 for the Poisson random
transformation can also be obtained by considering the special
case of time-invariant input in the continuous-time setting. For

(33)

example, the increase of the mutual information due to scaling
(1 4 9) is an outcome of the Liptser-Shiryaev formula. Let
X: = X. By (19),

d
EI(X;Y(}‘/) =E{Xlog X — (X),log(X),} (34
where (X), = E{X | Y{}. Clearly,
1(XGPA(1+8)X)) 1 (X PY(X)) 55

=0E{Xlog X — (X)log (X)} + o(9).

The desired result is obtained once we note that increasing the
observation time from 1 to 1+ § is equivalent to keeping the
observation time to [0, 1] but scaling the intensity of the input
by 1+ 6.

The above argument can be understood as a “time-scaling”
transform, i.e., let Z; = Xt/a, Vt, then P(?T (ZS‘T) contains
the same amount of information about X! as P (aX{') does.
Suppose the input is constant over time and there is no dark
current. Increasing the scaling is equivalent to increasing the
observation time and hence improves the mutual information.
The same is true if a dark current is present, since dilating
the input by slowing the time also reduces the effective dark
current and hence further improves the mutual information.

IV. NUMERICAL ILLUSTRATION
A. Poisson Random Transformation

Theorem 1 is illustrated in Figure 3(a). The input is a
binary random variable X equally likely to be 0 and A = 2.
Both the input—output mutual information and the expected
error in (8) are plotted against the dark current level A. The
mutual information at A = 0 is 0.4858 nats [29]. The expected
error at A = 0 is infinite. Note that the capacity-achieving
distribution for the Poisson channel with peak constraint A is
binary as long as A < 3.3679, while the optimal allocation
of probability mass onto the two points (0 and A) depends on
the dark current [30].

Figure 3(b) illustrates (9) in Theorem 2 by showing the mu-
tual information together with the estimation-theoretic quantity
on the right hand side of (9) as functions of the scaling
factor o, where A = 1 and binary input equally likely to be 0
and 1 are assumed. It is interesting to note that as o — oo the
mutual information exhibits the same asymptotic behavior as
the mutual information of a Gaussian channel with the same
input and SNR equal to a/\.

B. Optimal Filtering and Optimal Smoothing

As mentioned in Section I, the problem of causal and
noncausal estimation based on a doubly stochastic Poisson
process observation has been studied since the 1970s (see e.g.,
[6], [31]-[33]). In [6], Snyder obtained a stochastic differential
equation for the posterior probability density of the input
process (hence its conditional mean estimate) which involves
the Kolmogorov differential operator. In the case where the
input process is Markov, the causal estimate can be obtained
using Kalman filter type of formulas, since the future estimate
is independent of the past observation conditioned on the
current estimate. Explicit recursive formulas for obtaining the
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Fig. 3. Theorems 1 and 2 are verified for binary input. (a) The input is equally likely to be 0 and 2. The mutual information (in nats) and the expected error
are plotted as a function of the dark current level. Unit scaling is assumed. (b) The mutual information (in nats) and the estimation error as functions of the
scaling factor. The input X is binary and equally likely to be 0 and 1. Unit dark current is assumed.

g 1 1
ey 1M T
el T AL ™

|
100 200 300 400 500 600 700 800 900 1000
time

Fig. 4. Plots show the two-state input Markov rate process { X}, the output point process {Y%}, as well as the causal, anticausal, and noncausal estimates
of X based on {Y3}, namely, (X4),, (XQ? and (X¢) respectively. The input process is also plotted along with each of the estimates for comparison.



causal estimate have also been found in the discrete-time
setting [34], [35].

In Figure 4 we plot the conditional mean estimates of a
discrete-time random telegraph input process, which takes the
value of 0 or 1, and at any time, the probability of a transition
is given by a constant p. It is assumed that at each discrete
sampling point, one and only one jump may occur with a
probability that is linear in the input plus a dark current. This is
asymptotically equivalent to observing a Poisson point process
in the limit of vanishing sampling interval. The recursive
formula for the causal estimate is found in [31]. The anticausal
estimate is obtained similarly by simply reversing the time
axis. The Markov property of the input process allows the
noncausal likelihood ratio to be factored as a product of the
causal and anticausal ones:

P{X,=1[vj}

P{X, =0|Y]}
P{X, = 1|Y§} P{X, = 1|¥["} P{X, = 0}
TP =0 P X, = 0y P{X, =1}

(36)

Therefore, the noncausal conditional mean estimate can be
obtained from the causal one and the anticausal one. In the
special case of equal prior,

(X0), (X))

(1/2) = (Xo), — (Xe)y +4(Xe), (Xe) 7

<Xt>T =

where (Xt>tT denotes the anticausal estimate of X; given Y,T.

V. PROOF

The proof of the theorems and corollaries given in Section
IIT is essentially a task of estimating the change of the input—
output mutual information due to an infinitesimal change in
the quality of the Poisson channel. Although the results for
the Poisson random transformation are simple corollaries of
Theorems 3 and 4, they can be proved directly by working
with random variables without recourse to deep results on
continuous-time Poisson point processes. Such an exercise
elucidates the essence of the proof technique and is included
in the following on its own merit before more sophisticated
undertakings on the point processes.

A. Poisson Random Transformation: Proof of Theorem 1

It suffices to establish (8) at A = 0 under the additional
assumption that X > p for some p > 0, i.e.,

I(X;P(X+N)-1(X;P(X))=\Elog <§>+0()\). (38)
Equation (38) implies (8) for every A > 0 because one can
always treat X+ X as the input, which is bounded away from O.

Let N = P()) be independent of both X and Yy = P(X).
Let Y\ = Yy + N,. Clearly, Y), is a version of P(X + ). By
definition of mutual information,

I(X;Yy) — I(X;Yy) = E{L(X, Yy, Y))} (39)

where the expectation is over the joint probability distribution
of (X,Yp,Y)), and the log-likelihood ratio is
L(z,k,1) = log —> — log —2
bl =08 = Py, 1)
Here the conditional Poisson distribution Py, x is given by
(2) and its marginal is

(40)

1
Py, (k) = HE{X’%fx}, k=0,1,2,.... (4D

Also, Py, |x (k|z) and Py, (k) are similarly defined with = and
X replaced by = + X and X + A respectively in (2) and (41).
Clearly, the log-likelihood ratio can be written as
L(X,Y,,Y)) =YologX —Yylog(X +A\) 4+ U (42)
where
E{(x 40" | 13}
E{(X")Ye=X"| Yo}

where X' is identically distributed as X but independent of
Yy and Y), ie,, X’ and X are i.i.d. given (Yp,Y)). Taking
expectation in (42),

U =log 43)

EL=E{XlogX — (X +N)log(X +\)}+EU (44)
where we replace Yy, by Yy + N, and write
E { (X7 4 A)YotNa) =X ‘ Yo, N/\}
EU =E < log . (45)

E{(X")Ye X[ Yo}
Since N, is Poisson with mean A and independent of Yj,

EU = E {uo(Yo, A)} + E {u1 (Yo, M)} + E {ug (Yo, \)} (46)

where
red E{(X 4 npne X
un(k,A) = " log EQ(X)F ] 47
and -
ug (b, A) =) un(k,N). (48)
n=2

The expectations E {u;(Yy, A)} can be estimated as A — 0:

E{uo(Yo, \)} = A+ o(N) (49)
E {u1 (Yo, \)} = AElog (X) + o(}\) (50)
E {ug (Yo,\)} = o(}) (51)

which will be justified shortly. Equation (38) is established
using (39), (44), (46), and the estimates (49)—(51),
I(X;P(X +2)) = T(X;P(X))
=E{(X + N log(X + ) — Xlog X}

— A — AElog (X) 4 o()) (52)

- AE1og<§—> 4 E{(X—k)\)logXX—i_/\} ~ At o(A) (53)

= AElog é> +o(X)

where the final step is due to X > 1 as well as the following.

(54)



Lemma 1: For every random variable X > 0,

(X Y
;%E{)\log(1+X>}—P{X>O}.

(55)

Proof: Define fy(x) = (z/X)log(1l + \/z), x € [0, 0),
where f)(0) = 0. The function is concave and increasing in
x, and is dominated by 1 because lim,_. . fx(x) = 1. Indeed,

lim fa(2) = Lz, Vo€ [0, 00). (56)

Lemma 1 is evident by Lebesgue’s Dominated Convergence
Theorem [36]. [ |
All that remains is to show (49)—(51).
1) Proof of (49): Using the fact that the denominator in
(47) is proportional to the unconditional distribution Py, given
by (41), one proceeds as

A\ Yo
E {uo(Yo, \)} = E{logE{ (1+§) Yo}} (57)
< logE{(l + )A()YO} (58)
— A\ (59)

where (58) is due to Jensen’s inequality. On the other hand,

E {uo(Yo, \)} > E {log (1+ j()y} (60)
- E{Xlog (1+§)} ©61)
= A+ o(\) (62)

where (60) follows from Jensen’s inequality and (62) is by
Lemma 1.

2) Proof of (50): We establish the equivalent result that

A
e
TE{UI(Ym)\)} — Elog (X) = E{gx(Yo + 1)} (63)
vanishes as A\ — 0 where

E {(X' + A)ye_X/}

ga(y) =log —¢ X7cX7 (64)
For every v,
)\ Y
0<gr(y) = logE{ (1 + X) Yo = y} (65)
)\ Yy
< log (1 + ) . (66)
o
Hence
E{ga(Yo+1)} <E{Yo+1}log (1 + :) 67)

which vanishes as A — 0.

3) Proof of (51): Let us define

ha(y) = E {(X’ + )\)ye_X/} . (68)
Then
N = Ame ha(Yy 4 n)
Eug (Yo, \) = ; ~——Eqlog @ | (69)

Note that the term ho(Yp) in (69) is not dependent on n
and can be ignored because it contributes o()\) to the sum.
In order to establish (51), we first show the finiteness of
E{loghx(Yo+n)} for all n = 0,1,... and A > 0. Since
X' > pu,
E{logh (Yo +n)} > E {log E {MYOJr"e*X' ‘ YO}} (70)
=E {(Yo +n)logp + log Ee’X/} (71)
> (EX 4+ n)logu — EX. (72)

Meanwhile, it is enough to consider A < u so that X’ + A <
2X’' < X'e, and

E{loghx(Yp +n)}

<E {1og E { (X'e)Yotrne=X' (73)

%))

—E {(YO +n)+logE { (X")Yot+ne—X' ‘ YO}} (74)

<E {log(n n YO)("+Y°)} (75)

where the final step is due to the fact that z""e~" achieves
its maximum at x = m. The right hand side of (75) is finite
because of the following auxiliary results.
Lemma 2: Let Ny = P(A). Then E{NylogN,} <
Alog(1+ X).
Proof: Using the distribution of Ny, we have

=\
E{Nylog Ny} = nz:; ——nlogn (76)
= AE {log(1 + N»)} (77
< Alog(1+ M) (78)
by Jensen’s inequality, [ |

Corollary 8: Let Y = P(X). If E{X log X} < o0, then
E{YlogY} < cc.

By concavity of (y + n)log(y + n) — ylogy, (75) can be
upper bounded

E{(n+ Yp)log(n + Yy)} — E{Yolog Yo}

< nlog(n + EX) + EX log (1 +

9
)

Therefore,
Elog hx (Yo +n) < E{YylogYp}+nlog(n+EX)+n. (80)

It is clear from (72) and (80) that E{loghy(Yy +n)} is
asymptotically upper bounded by ¢;7 log n and lower bounded
by con where c¢; and ¢y are real-valued constants. Noticing that
(see also (78))

L Ane™A L AnemA

D s

n=2 n=2

we obtain (51) from (69).

nlogn = o(\) (81)



B. Poisson Random Transformation: Proof of Theorem 2

We first prove the following result, which is equivalent to
Theorem 2 with A =0 and o = 1.
Lemma 3: Suppose E{X log X} < 00. As § — 0,

I(X;P(14+6)X) — I(X;P(X))
=dE{Xlog X — (X)log (X)} + 0o(9).
Proof: Consider first the case 6 — 07. Let Y = P(X)

and Z = P(6X) be independent conditioned on X. Let also
Ys =Y + Z. Then, the left hand side of (82) is

(82)

1(X:Y5) — I(X;Y)

B o PY5IX (Y5]X) o pyx (YX)

E{l B o ) ) } (8
L 0Py (B1X) (Yl (V)
‘E{l E V) oy x (V1K) 8 V) py (V) } (84

_ E((X) e (Y |v5)
= E{ZlogX — 06X —log E{(X) e X[V} (85)

where X' takes the same distribution as X but independent of
Y and Z, namely X’ and X are i.i.d. conditioned on (Y, Z).
Note that (85) remains true if Y; is replaced by Y + Z. Let
us also introduce a random variable X which is i.i.d. with X
and independent of all other variables conditioned on Y. The
distribution of X given Y is Px|y. We rewrite (85) as

I(X;Ys) - 1(X;Y)

_ . 86
—0E{XlogX — X} —E {1og E{XZc0Xy, Z}} (86)
where the change of variable X’ to X uses the fact that the
denominator in (86) is proportional to Py (Y'). Noting that Z
is Poisson conditioned on X, the expectation over Z in (86)
can be written as

E {1ogE{XZe*5X \ Y,Z}} - 553 v (8)

n=0

87)

where we define

n,—06X
v, (8) = 5E{(6X)n'logE{X" X Y}} (88)

577,1

E{E{X" XY} ogE{X"e XY }} (89)

where we have replaced X by X because they are i.i.d.
conditioned on Y.
It is straightforward establish Lemma 3 if one can show

;imovo(é) = —EX, (90)
lim v1(6) = E{(X)log(X)}, and (9
lims_o 3" on(6) = 0. 92)
n=2

1) Proof of (90): For all § > 0,
vo(8) = (1/8)E{E{e™® | Y}logE{e ¥ | Y}} (93)
> (1/8)E{e "X} logE {e°¥} o4
> (1/6) e 98X Jog e OEX 95)
>—-EX (96)

where we have used Jensen’s inequality repeatedly to arrive
at the first two inequalities. Meanwhile, also by Jensen’s
inequality,

vo(8) + EX < (1/8)E{e "X loge ¥} + EX
=E {(1 — ef‘sX)X}

which vanishes with § by the dominated convergence theorem.
2) Proof of (91): For every § > 0,

(6) < E{gho((X))
= zlogw, because E{XeX|Y} <

7
(98)

} <o (99)

where ()
E{X | Y} for every Y. By the Monotone Convergence The-
orem [36],

lim vy (0) = E {% (}ii% E{Xe*X| Y}) } :

1
§—0 (100)
A second use of the convergence theorem yields (91).

3) Proof of (92): Using the fact that tlogt > —1/e for all
t > 0, one has

1 a1
lim Zvn >-=> (101)
71:2
= —(e5 —1-10)/(ed) (102)
which vanishes as § — 07. On the other hand,
}%;vn(a)
— 0"t §X
< X"~ 1
< ; - (X" %)} (103)
=X XM sy
E{(XlogXZ‘1 - X22n!>e } (104)
=E{(Xlog X — X)(1 —e™°%) + X% %} (105)
-0 (106)

as § — 0" by the dominated convergence theorem.

The case of § — 0~ can be similarly proved by letting Y5 =
P((140)X), Z = P(—0X), Y = Y5 + Z, and essentially
repeating the above. [ ]

Based on Theorem 1 and Lemma 3, we can obtain the
following first order Taylor series expansion.

Lemma 4: For every Px with E{X log X} < oo and every
§ —0and A\ — 0T,

I(X;P(14+0)X +N)
=I(X;P(X)) + AE{log X —log (X)} 4+ o(\) (107)
+E{Xlog X — (X)log (X)} + o(¥).
Proof: Applying (38) and Lemma 3, the change of the
mutual information due to § and A can be written as
IX;P(1+0)X + X)) —I(X;P(X ))

= I(X;P((1486)X + X)) — ( P((1+446)X))

+I(X;P((146)X)) — I(X ( ) (108)
= AE{log((1+d)X) —log ((1 —|—6 )X)}
+ JE{Xlog X — (X)log(X)} + o(A) + 0(d). (109)



It remains to express Elog ((1 + §)X) in terms of Elog (X)
and the conditional mean estimates. Let Y = P(X) and Z =
P(6X) be independent conditioned on X. Then

(+o)x)  E{(x)7HH0HX
(1+0) E {(X1)Y+Z (040X
Using similar techniques as in the proof of Theorem 2, it can

be show that replacing Z in (110) by the indicator 1;7-0;
introduces only second order difference. Some algebra yields

E {log (1 +6)X)} = E{log((1 +6) (X))}

X2 X2 111
< 2> (X% + 0(9). (1D
(X) {(X)
Plugging (111) into (109) proves Lemma 4 since also || <
max (|6]%, [A|?) = 0(8) + o(). [ |
The proof for Theorem 2 can now be completed as follows.
Proof: Note that for every o > 0 and A > 0,
I(X;P((a+e)X + X)) — I(X;PlaX + X))
=I(X;P((1+¢€/a)(aX + ) —e\a))
—I(X;PlaX + X)).

Y,Z}
Y.Z}

(110)

+6E{Xlog + X

(112)

In particular, the equality holds for A = 0 because of continuity
of I(X;P(aX + A)) at A = 07 For ¢ — 0, applying Lemma
4 to the right hand side of (112) establishes

91X Plax + 1) = E{X log(aX + )
da ) (113)
— = ((aX + ) = N log (aX + A)}
which is equivalent to (10). [ |

The expectation in (10) is positive due to Jensen’s inequality
since 1y (t) = (t — A\)logt is a convex function on (0, c0).
Note that (9) does not apply directly to the special case of o =
0, which describes the mutual information that corresponds to
a very small input. In particular, at « = 0 but A > 0, the
derivative of I(X;P(aX + X)) with respect to « is found to
be 0 by taking the limit e — 0. At the point & = A = 0, the
derivative can be obtained from Theorem 2 by noting that

lirrb (aX) /a=EX. (114)
o—
Therefore,
Corollary 9: For every Px satisfying E {X log X} < oo,
d
d—I(X;P(aX)) =E{XlogX} -EXlogEX. (115)
a o=

C. Continuous-time Poisson Channels: Proof of Theorem 3

Theorem 3 can also be proved by examining the likelihood
ratio as in the proof of Theorems 1 and 2. Note that since prob-
ability density functions are not defined for continuous-time
processes, one has to resort to Radon-Nikodym derivatives.

Consider a continuous-time Poisson channel with dark
current A\ and scaling factor « 1 as the one depicted
by Figure 2. Let P?Y denote the joint probability measure
of the input {Z;} and the output Y\ = PI(Z{ + X). Let
Q%Y denote the product measure of {Z;} and an independent
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X, hypothesis P

=Zi+ A

-

N

hypothesis @

Ps (-

)/tO

Fig. 5. Illustration of a continuous-time Poisson channel with two possible
inputs corresponding to two hypotheses (or probability measures) P and Q.
Under measure P, the output process Y0 is caused by input process X =
Z 4+ A. Under measure @, Y© is caused by constant input A and hence
independent of X.

process PZ(\), which corresponds to the output of the Pois-
son channel with zero input. The following Radon-Nikodym
derivative between the two probability measures [4, p. 180],

[5, p. 343],
dpzYy T Zy r
1ogm_/0 log(l—l—)\) dYt—/O Z,dt (116)

is the key to the information—estimation relationships as well
as the hypothesis testing problem (of whether the input is
{Z:} or zero). An illustration of the two probability measures
corresponding two hypothesized inputs is shown in Figure 5.
Note that the absolute continuity and existence of (116) is
guaranteed under an even weaker condition than (14) (see [5]
and references therein).

As a convention, restriction of a probability measure to
the sub-o-algebra generated by a process is denoted by
superscript, e.g., PY denotes P restricted to the o-algebra
generated by {Y;}. It is then clear that P? = Q% and that
independence implies that QY% = QY x Q%. From (116) one
can also derive the Radon-Nikodym derivative when only the
observation {Y;} is accessible, which is reminiscent of the
“estimator-correlator” principle found in Gaussian channels.
That is, the resulting log-likelihood ratio log dPY /dQY is
given by (116) only with Z; replaced by the causal estimate
E{Z:| Y¢} which denotes conditional expectation of Z; with
respect to measure P given Y{.

Consider now a continuous-time Poisson channel with no
dark current. Let P denote the probability measure under
which {Y;?} and {Y,} are conditional Poisson processes with
intensity X; and X; + € respectively. Here Y, = Y;? + Nf
where {Nf} is a point process with constant intensity e
independent of {X;} and {Y,”}. For ease of notation, let X,
Y0, Y€ and N¢ denote the processes {X;}, {Y,"}, {Y,} and
{Nf{} in [0, T) respectively. Let E {-} denote expectation with
respect to measure P.

Lemma 5: Let A\ > 0. For every input X satisfying (14)
and X; > A\, Vt € [0, T,

<Xt>T

t

T
I(X;YO)—I(X;YE):e/ Elog dt+o(e). (117)
0
Note that replacing X; in (117) by X;+\ proves Theorem 3.
Proof: The mutual information is by definition
dPXYO }

dPX dpY’ (118)

I(X;Y%) = E{log



Hence,

dPXY° 4pY*

.y0 .VE) —

} . (119)
Let us introduce probability measure ) which differs with P
in the following manner: The process Y° = Y has constant
intensity A (instead of X; or X; + ¢€) under Q). In particular,
X, Y° and N°¢ are independent under Q). Thus QXYY =
QX x QY x QN and (119) can be rewritten as

dPXY" dQXY" dPY" dQ""

E log% +E 1og€%Qo . (120)
dQXY° 4pXY dQY* dPY

In the following, we evaluate the two expectations in (120)

separately.

In view of the description of probability measures leading
to (116), @ and P can also be regarded as probability measures
where the output Y is caused by zero input and input X; —
A respectively, with a dark current A\ in both cases. Using
formula (116) with Z; = X, + € — ), the Radon-Nikodym
derivative between the joint probability measures of (X,Y€)
under hypotheses () and P is

dPXY‘
dQXYé - /0

By the same principle, equations (121) literally hold with e re-
placed by 0. Note that by assumption X; > A, V¢. Using (121)
for all e, the first expectation in (120) is evaluated as

dpXY° dQXYF
E§ log dQXY" gpXY*

T

Xt + €
log

log

T
dYtt/ X, —A+edt. (121)
0

T T
X X
—E{eT/log t)\+6de—/log t+6dYtO} (122)
0 0 t
T T
—E{eT—e/ log Xt)\+€dt—/ X, log Xt)(+6dt} (123)
0 0 t
T
= —¢ E{/ log)/(\tdt} + o(e) (124)
0

where the final equality holds by the monotone convergence
theorem.

The Radon-Nikodym derivative between the marginal prob-
ability measures of Y under P and () can be obtained as

dpY” dXY" | .
W:EQ{W‘Y} (125)
d XY¢©
:EQ{ngYE‘ YO,NS} (126)

where Y€ can be replaced by (Y, N¢) in the final equality
because X is independent of (Y, N¢) under Q. Using (126),
dPY dQY’

dQY<dpY" — Ea {
dpXY* dQXYO apx1y’
=Eq dQXY* dPXY? 4Qx
dpPXY* dQXY" 0 e
=E { —dQXW qpXY YN

dpXY* dQYo
dQXYe dpPY®

YO,NE} (127)

YO,Ne} (128)

(129)
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where we have used PXY = PY x PXIY and independence
of X and N°€ in (128) and changed the underlying measure
of the expectation in (129). Thus the likelihood ratios of the
marginals have been expressed in terms of those of the joint
measures given by (121). Plugging (121) into (129), the second
expectation in (120) is expressed as

dpPY* dQY’
Ellog —— % _
dQY* dPY

where

T
u (Y%, N¢) = E{ exp l/o log Ay — €T

T
+/ log Y07N6}.
0

Note that N¢ is a Poisson process independent of X and Y°.
Moreover, N€ remains all zero with probability 1 —eT"+ o(e),
contains one jump with probability €T+ o(e), and two or more
jumps with probability o(¢). Using similar techniques as in the
proof of Theorem 1 in the Poisson random transformation case
(see Section V-A), we can show that

E{logu (Y, N°) | Ni # 1} = o(e).

} =E{logu (Y°,N9)} (130)

Xt+6

(131)
Xt + €

A

dNf

(132)

Therefore, as far as (130) is concerned, it suffices to evaluate
the expectation conditioned on that N¢ contains one jump at
a random time S, which is uniformly distributed in [0, 7.
Evidently in this case,

T
X X
/ log 2t F € qNE = log 25 1€ (133)
0 A A
and thus u (Yo, NE) is rewritten as
X T X
E{ SH€ xp l/ log 2t FCqy0 _er YO}. (134)
0 t

Using the dominated convergence theorem, we can show that

E{logu (Y, N°) | Nf =1}
= E{logE{ XS)\+€ Yo}} + o(e)

By (130), (132) and (135),
(Xs)p

}eTE{log
T

zeE/ log
0

Lemma 5 is thus established by (120), (124) and (137).

(135)

dpPY* dQY”’

<X;>T dt + o(e). (137)

D. Continuous-time Poisson Channels: Proof of Theorem 4

Let § > 0. Consider doubly Poisson point process {Yto}
with rate X¢, and Y? = Y0 + Z;, Vt, where {Z;} is a point
process conditionally independent of {Y’} with rate §X,.
Clearly, {Y{} is a point process with rate (1 + §)X;. Let
X, Z, YY", Y? denote the respective processes {X:}, {Z:),
{v} and {v?} in [0, 7.



Lemma 6: For every input X1 satisfying (14),

I(X;Y%) = I(X;Y9) o
5 / g

Proof: Assume for now that X, is bounded away from O,
ie., Xy > A Vt € [0,T], for some A\ > 0. This constraint
will eventually be removed. Let P denote the underlying
probability measure of (138), where X and Y are the input
and output of the continuous-time Poisson channel. We also
introduce a measure (Q, under which Y0 = Y9 is a Poisson
point process of fixed intensity A (or, it is caused by zero input
with dark current intensity A). In view of the proof of Lemma
5, the mutual information difference in (138) admits literally
the same expression (120) only with e replaced by 4.

Formula (116) leads to

:/ 1og(+7f)tdyt5—/ (1+86)X;— A dt
0 0

(139)
which also holds for § = 0. Clearly,

E {1og }
T
= E{/ log&d(}/f -Y7)
0 A

T T
+/ 1og(1+5)dyf—5/ Xtdt} (140)
0 0

}+0(6).

It is important to note that the small adjustment o(d) in (141)
does not depend on A, or in other words, the convergence in
¢ is uniform for all A.

Using the same techniques leading to (126), we express the
likelihood ratio between the marginals as

lim
§—0t

T dt. (138)

dPXYJ

log 7dQXY5

dPXY‘S dQXY“
dQXY<S dpxye

2t

T
:—6E{/ thogX
0

: (141)

apY’ dQX" | s
d Xy?
=Eg { 7(53)”6 YO, Z} (143)

where Y can be replaced by (Y, N€) in (143) because X is
independent of (Y, Z) under (). Furthermore, using similar
techniques leading to (129), we obtain

.|
]

where R is a probability measure of X conditioned on the
filtration of (Y, Z) defined in the following manner: Under
measure R, the distribution of X (conditioned on the filtration
of Y0) is identical to the conditional distribution of X under P
(i.e., Rx|yo = Px|yo), while X is conditionally independent
of Z given Y0, Note that, unlike in the proof of Lemma 5, the

dpXY? dQYO
dQXY(‘ dpY?°
dPXY5 dQXY"
dQXY(‘ dpXy®°

dPY’ dQ""
dQY* dpY’

YO, Z} (144)

YO,Z} (145)
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dependence of X and Z distinguishes the measure R from P.
By (139) and (145), we have

dPY’ dQ""
E{longWsd_CP)wJ = E{ log’U)\ (YO,Z) } (146)
where

T
o (Y°,2) = ER{ exp [/ log(1 4 6)dY;
0
14+9)X,

T T (
—6/ Xtdt—i—/ log YO Z 3.
0 0 A

In order to isolate A, let w(Yo,Z) = vy (Y07Z) AZT
which is not related to A. Since X is conditionally independent
of Z given Y9, (146) can be rewritten as a sum over the all
possible number of jumps contained in {Z;} in [0, T]:

(147)
dZ,

i E{P(Zr =n|Y?) logw(Y°,Z)} — EZrlog A (148)
n=0

where P (Zy = n|Y") = ¢"e¢~7/n! with

T
q:(s/ E{X:| Yy} dt.
0

Using similar bounding techniques as used in the proof of
Theorem 2, it can be shown that

E{P (Zr =0]Y?) logw(Y°, Z2)} = 0(6),
z E{P (Zr =n|Y?) logw(Y?,Z)} = o(9).

Furthermore, consider the case where {Z;} contains a single
jump at S € [0,7T]. Conditioned on Y, the density of S is

(149)

(150)
(151)

ps(t) =6(Xe)p /g, t€[0,T]. (152)
We can write
E{P(Zr =1|Y°) logw(Y", 2)}
= E{qeq log ER{(I + 6)XS
T
X exp [YTQ log(1 + 6) — 5/ X, dt} } Y,S} (153)
0
=E{qe " logEr{(1+6)Xs|Y,S}} +0(d) (154)
T
0

where the bounding techniques for arriving at (154) follows
the principles developed in the proof of Theorem 2. The final
form (155) is obtained by writing the expectation over .S
in (154) as an integral over the density (152).

By (146), (148), (150), (151) and (154),

PY’ aQ"" T X
jQwingo = 5E/0 (X,)log < ; + 0(6).
Putting (141) and (156) together, we have shown the desired
result (138). Finally, note that the small terms o(d) in (150)—
(154) are not dependent on A. Hence A, the lower bound for
X, can be sent to 0. Lemma 6 holds as long as (14) is satisfied.
Furthermore, the above arguments essentially also apply to the
case § — 0~ by reversing the roles of Y° and Y°. [ ]

Elog )z

(156)



VI. CONCLUDING REMARKS

New relationships between the input—output mutual infor-
mation and conditional mean estimation in Poisson channels
have been identified in this paper. In particular, the derivatives
of the mutual information with respect to the intensity of the
dark current (resp. input scaling) is expressed in the expected
difference in the logarithm function log = (resp. x log x) eval-
vated at the actual input and the same function evaluated at
its conditional mean estimate. The general relationships hold
for the discrete-time and continuous-time Poisson channels as
well as for the Poisson random transformation.

We expect that, by replacing the (nonlinear) conditional
mean estimate with linear estimates in the information—
estimation formulas, bounds can be developed for the mutual
information, which is often hard to compute otherwise. More-
over, linear filtering of doubly Poisson and Gaussian processes
are tightly connected (see e.g., [37]), which allows one to tap
into the rich estimation theory in the Gaussian regime.

Underlying the analysis and results in both [1] and this paper
are common properties of Gaussian and Poisson distributions,
namely, 1) infinite divisibility of Gaussian and Poisson dis-
tributions; and 2) independent increments of Gaussian and
Poisson processes. In fact, the entire class of processes with
independent increments can be characterized by not much
more than a mixture of Wiener and Poisson processes [38]. It is
even speculated in [1] that information and estimation satisfy
similar relationships as long as the output has independent
increments conditioned on the input.
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