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Summary

Code-division multiple access (CDMA) has been decided the air interface technology for third-
generation cellular mobile communication systems. For practical implementation interference
cancellation has been subject to most attention among all CDMA multiuser detection tech-
niques. In this thesis weighted linear parallel interference cancellation (PIC) is mathematically
described and studied. It is shown to be equivalent to a linear matrix filter applied directly
to the received chip-matched filtered signal vector. Expression for the exact bit error rate is
obtained and conditions on the eigenvalues of the code correlation matrix and the weighting
factors to ensure convergence are derived. Linear PIC is found to be a realisation of the
steepest descent method for minimising the mean squared error (MSE) and a modified PIC
structure is suggested which converges to the MMSE detector rather than the decorrelator.
It is shown that for a K-user system only K PIC stages are required for the equivalent matrix
filter to be identical to the MMSE filter. For fewer stages, techniques are devised to find a
unique optimal choice of weighting factors which will lead to the minimum achievable MSE
at the last stage. For long-code CDMA without power control, an algorithm is proposed for
updating the set of weighting factors that will lead to the minimum achievable ensemble aver-
age of the MSE over random codes. The on-line computational complexity increases linearly
with the number of users but is independent of the processing gain.

xi






Chapter 1

Introduction

1.1 Background

The last decade has witnessed a dramatic expansion of wireless technology as a basic tool
for fulfilling increasing demand for mobile communications. With the available frequency
resources being saturated quickly, how to share the bandwidth efficiently among users becomes
of most concern. Code-division multiple access (CDMA) is one of the methods serving such
a demand well.

In CDMA, all frequency and time resources are allocated to all users simultaneously. The
users are multiplexed by distinct codes rather than by orthogonal frequency bands, as in
frequency-division multiple access (FDMA), or by orthogonal time slots, as in time-division
multiple access (TDMA) [1]. CDMA is rooted on spread spectrum techniques [2], where each
user transmits his signal using a bandwidth much larger than the data rate. This expansion in
bandwidth results in frequency diversity, which is advantageous with respect to the frequency
selectivity of the mobile radio channels. As another advantage of CDMA, the multiple access
interference (MAI) experienced at each receiver input is generated by a larger number of
signal sources than in systems not employing CDMA. This larger interferer diversity reduces
the fluctuations of the total interfering power caused by both long- and short-term fading, and
thus results in a much smoother channel. CDMA also has the advantages of voice activity,
privacy, soft capacity limit, soft hand-off capability, and the most important — greater up-
link capacity [3]. All these technological merits make CDMA the air-interface technology for
next-generation cellular services [4], as well as personal communications services (PCS) and
Future Public Land Mobile Telecommunications Services (FPLMTS).

Two major spreading schemes exist, namely Direct Sequence (DS) spreading and Fre-
quency Hopping (FH). In DS-CDMA, each user is assigned a unique code sequence upon
which the data sequence to be transmitted is modulated. In FH-CDMA, each user transmits
his data on a narrow-band frequency slot, which changes according to a preassigned pattern,
unique to each user. In this thesis, only DS-CDMA is studied since it is deemed to be more
suitable for mobile communications. Hereafter CDMA is referred to as DS-CDMA unless
otherwise stated.

CDMA can also be divided into short-code CDMA and long-code CDMA depending on
the period of spreading codes. If the period equals a symbol interval, i.e., the spreading
code remains the same symbol by symbol, it is called short-code CDMA, otherwise it is
called long-code CDMA. In long-code CDMA, the spreading code is usually generated by

1



2 Chapter 1. Introduction

shift registers and has a period several orders longer than a symbol interval. Therefore the
statistical properties of spreading codes resemble those of random generated chips, hence it
is also called random-code CDMA.

1.1.1 Single-User Detection

In conventional single-user detection, hard decisions are made simply according to the matched
filter outputs. By selecting mutually orthogonal codes for all users, they each achieve inter-
ference free single-user performance. It is however not possible to maintain orthogonality at
the receiver in a mobile environment and thus multiple access interference (MAI) arises. It
is well known that the MAI can degrade the bit error rate (BER) performance of a CDMA
system severely. The conventional detector also suffers from a ubiquitous near-far problem in
practice, which means that when the received signal energies are very dissimilar, the signal
component from a weak user may be buried in the MAI from a strong user, even if the signa-
ture waveforms have very low cross-correlations [5]. Rigid power control is required to ensure
that all user signals arrive at about the same power at the receiver, as is the case of IS-95, a
North American cellular standard [6]. However, the near-far problem is not an inherent weak
point of CDMA systems. Rather, it is the inability of the conventional single-user receiver
to exploit the structure of the MAI, i.e., treating MAI as Gaussian noise is a kind of loss of
information, which may in turn result in severe performance loss.

1.1.2 Multi-User Detection

More advanced detection strategies can be adopted to improve performance [7, 8]. In [9] Verdd
developed the optimal complexity-unconstrained maximum-likelihood (ML) detector for coor-
dinated multiuser CDMA. This detector performs an exhaustive search over the constrained
space of all possible hypotheses. The inherent complexity however increases exponentially
with the number of users, rendering the optimal ML detector impractical.

The inherent trellis structure of the optimal ML detector has motivated the development
of a series of sub-optimal trellis-searching detectors (TSD), such as metric-first, depth-first
and breadth-first algorithms. The breadth-first algorithms, e.g., the M-algorithm and the T-
algorithm, are especially promising. In [10] a general recursive, additive maximum-likelihood
metric has been developed by Rasmussen et al. based on pre-filtering which results in a causal
MALIT pattern. This provides a benchmark performance for all complexity-constrained sub-
optimal TSD. Assuming a whitening filter to be used in [10] and only one path is retained in
trellis-searching, the T'SD reduces to Duel-Hallen’s decorrelating decision feedback detector
(DDFD) in [11]. The advantage of a TSD is that its performance can always be improved by
retaining more paths in the M-algorithm, or by using looser threshold in the T-algorithm, till
eventually it approaches the ML detector. However, due to the complexity entailed, TSD is
not likely to be implemented in the next few years.

The most fundamental group of multi-user detectors is linear multi-user detectors, which
apply a linear mapping to the soft output of the conventional detector to reduce the MAI
seen by each user. An important type of linear detector, the decorrelating or zero-forcing
detector, applies the inverse of the correlation matrix in order to decouple the data. It
obviates knowledge of the received signal energies and is shown to be near-far resistant [12].
A disadvantage of this detector is that it causes noise enhancement [13]. On the other hand,
the MMSE detector, which minimises the mean squared error (MSE) between detector output
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and transmitted sequences, takes into account the background noise and utilises knowledge of
the received signal energies, and therefore generally performs better in terms of BER. Both the
decorrelating detector and the MMSE detector face the task of implementing matrix inversion,
which has a complexity cubic to the number of users. A variety of adaptive strategies have
been developed for approximating these detectors [14], based on algorithms such as the LMS
algorithm, the RLS algorithm, the steepest descent method (SDM) and the profound as well
as powerful Kalman filtering [15, 16], to name a few.

For practical implementation interference cancellation schemes have been subject to most
attention. These techniques rely on simple processing elements constructed around the
matched filter concept. In one of the earliest articles on this subject, Varanasi and Aazhang
proposed a parallel multi-stage structure [17]. The detector selects in each stage the most
likely transmitted symbol for each user in parallel assuming that the decisions made for all
the other users in the previous stage are correct. Hence it is termed parallel interference
cancellation (PIC) in the literature. The linear version of this structure has been shown to be
an implementation of the Jacobi iteration for calculating matrix inversion by Elders-Boll et
al. in [18]. Other interference cancellation techniques are successive interference cancellation
(SIC) [19] and hybrid interference cancellation (HIC) [20, 21]. SIC differs from PIC in that
it takes a serial rather than parallel approach. HIC belongs to the family of group detectors
[22], in which users are divided into groups and detection is performed in parallel within each
group but serial among groups. Analysis of linear interference canceller reveals that such
detectors tend to converge to the decorrelating detector. It is worth mentioning that the
iterative detection in [23] happen to implement interference cancellation from the adaptive
filtering point of view.

A significant improvement to the PIC scheme was suggested by Divsalar and Simon in [24]
where they proposed a weighted cancellation scheme. Here the current set of decision statistics
is a weighted sum of the previous set of decision statistics and the statistics resulting from
interference cancellation based on current tentative decisions. They considered both linear
and non-linear decision functions based on joint ML considerations. An identical approach
has been suggested in [25] for a linear PIC. A different type of linear multistage detector has
been proposed by Moshavi et al. in [26], where the outputs from all stages are weighted and
combined to result in the final decision statistics. This approach, although happened to be
equivalent to the weighted linear PIC, does not give much insight into the detector’s behaviour
in a stage-by-stage manner, and more importantly, is not comparable to the weighted PIC
when non-linear decisions are made in the intermediate stages.

Simulations have shown that a linear weighted PIC may outperform the decorrelating
detector and even be comparable to the MMSE detector. It is still unclear in the literature
why weighted cancellation dramatically improves performance. The weighting factors are so
far selected empirically, and there is no known algorithm for finding suitable weighting factors
efficiently. For long-code systems, very little has been reported for multiuser detection. This
thesis attempts to solve these problems and the results are first summarised in the next section
before detailed discussions in the following chapters.

1.2 Contributions

This thesis studies in detail weighted linear parallel interference cancellation based on a
symbol synchronous CDMA channel corrupted by additive white Gaussian noise (AWGN).
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The contributions can be summarised as follows.

1. Tt is shown that linear PIC schemes, either conventional or weighted, correspond to linear
matrix filtering that can be performed directly on the received chip-matched filtered
signal vector. An expression for the exact bit error rate is obtained. Requirements
on the eigenvalues of the code correlation matrix and the weighting factors to ensure
convergence are derived. This was first presented in [27].

2. It is demonstrated that the weighted linear PIC essentially realises the steepest descent
method (SDM) for updating adaptive filters to minimise the mean squared error. A
new PIC structure that converges to the MMSE detector rather than the decorrelating
detector which other PIC structures generally converge to is suggested. These results
are presented in [28] as well as submitted paper [29].

3. A solution to the unique optimal set of weighting factors that leads to the minimum
achievable MSE given a limited number of PIC stages is derived for short-code CDMA.
This is also included in [28, 29].

4. Tt is demonstrated that for systems employing long codes, a set of fixed weighting factors
will lead to the minimum achievable ensemble average of the MSE over random codes.
An algorithm with the complexity linear to the number of users but independent of
the processing gain is proposed for computing and on-line updating the optimal set of
parameters with no power control assumption [30].

1.3 Notation

Throughout this thesis scalars are lower-case, random variables are upper-case, vectors are
bold font lower-case, and matrices are bold font upper-case, unless otherwise stated. Sub-
scripting is dropped where no ambiguities arise. The symbols (-)*, ()7, (% ()7, ()F, | - |,
|-, tr{-}, Re{-}, Im{-}, E{-} and det {-} are the complex conjugate, transposition, complex
conjugate transposition, inversion, pseudo inversion, absolute value, Euclidean vector-norm,
trace, real part, imaginary part, expectation and determinant operators respectively, and the
delimiter {-}¥ defines a space of dimension y. All vectors are defined as column vectors with
row vectors represented by transposition. Z denotes the set of integers, R the set of real
numbers, C the set of complex numbers, and the following notation is used for the product
of square matrices,

1 x: - { Xy Xyt Xy 41Xy if 1 <o, 1)

i—ny I if n1 > no.

Subscripting is done according to the following conventions. Variables independent of the
detector stage are, when needed, subscripted with a user index, e.g., y. The first subscript
on variables dependent on the detector stage, e.g., x; ;, denotes the current stage, the second
subscript the user index.

1.4 Outline

The thesis is organised as follows. Chapter 2 serves as an introduction to CDMA as well
as a mathematical framework for the rest of the thesis. The algebraic description of the
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conventional PIC scheme is presented in Chapter 3 together with discussion on convergence
issues. Weighted linear PIC is studied in Chapter 4, where the close connection of PIC to
the SDM is explained, the optimisation of the step sizes is described and powerful techniques
for obtaining these parameters devised. The application of the weighted PIC to long codes
as well as an efficient algorithm for computing the optimal weighting factors is addressed in
Chapter 5. The thesis is then completed by some concluding remarks in Chapter 6.
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Chapter 2

Introduction to CDMA

In this chapter we will discuss the background of CDMA schemes. The signal and channel
models for a multiuser CDMA communication system are described in section 2.1. The
discrete time model based on a symbol synchronous system studied throughout this thesis
is then introduced in section 2.2. Discussions on eigenvalue decomposition of the correlation
matrix follows in section 2.3. Finally we briefly describe a few fundamental but important
receivers in section 2.4.

2.1 CDMA Signal and Channel Models

A low-pass equivalent model for a K-user CDMA system is depicted in Fig. 2.1. Stationary
single-path channels and the presence of stationary additive white Gaussian noise are as-
sumed. Each user transmits every information symbol by modulating on his unique signature
waveform. Consider a block of (M + 1) symbols, di(0),dg(1),--- ,dg (M), transmitted by user
k. The transmitted signal is described by

M .
s(t) = > di(i)g) (¢ — iT) (2.1)
=0

(2)

where g,” (t) is user k’s signature waveform of duration T' at the i*" symbol interval. g,(ci) (t)
may be expressed as

N
g = s mpt—(n—1T), 0<t<T (22)
n=1
where {s,(j) (n)yn=12,--- N } is a pseudo-noise (PN) code sequence consisting of N chips

and p(t) is the chip waveform of duration T, = T'/N, the chip interval. Assume that p(¢) has
unit energy, and is 0 outside [0, 7,], hence

o0 T,
/ [p(t) 2dt = /0 Ip(t) 2dt = 1. (2.3)

—0oQ
In a short-code system, g,(:)(t) = gg(t) for i« = 0,1,--- ,M, i.e., the spreading waveform
remains the same for every symbol interval, otherwise it is a long-code system.

7
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a0 %m b
)(t) n(t)
; Dl 7 | (i
0 QT(/ — CT) r®) Detector 0
9s(t) Vw2
dx (i) ? @ (? L dk (i)
9 () VK

Figure 2.1: Low-pass equivalent model for a CDMA system.

For simplicity, both the symbols and the chips are assumed to adopt Phase Shift Keying
(PSK) modulation, i.e.,

dy,(1) € D = {exp (jm(2m —1)/p) | m =1,2,--- , p}, (2.4)

and
s n) s = {%expm@m C1)/g) |m=1,2,- - ,q}. (2.5)

Note that above definition in (2.5) implies that all signature waveforms also have unit energy,

/\gk )| at = ﬂ\s?(n)f /0T|p<t—<n—1):r;>|2dt=1. (26)

The composite transmitted signal for the K users is expressed as

:Z\/w_ksk(t_Tk Z\/_de t—ZT—Tk) (27)
k=1

where {wy } are the received signal energies per symbol and {7} € [0,7T") } are the transmission
delays.

In a multiuser CDMA system, three levels of synchronism exist. A system where the
spreading waveforms from all users arrive at the receiver synchronously is termed symbol
synchronous. In this case, 7, = 0 for k =1,2,--- , K. Conversely, if there is no timing control,
the system is said to be chip asynchronous. The level in between them is chip synchronous
where although the chip boundaries of all users are aligned, the symbol boundaries are not.
In a chip synchronous system 74 is a multiple of 7.
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The transmitted signal is assumed to be corrupted by AWGN. Hence the received signal
may be expressed as

r(t) = s(t) + n(t) (2.8)

where n(t) is the noise with a power spectral density of o2 = Nj.

2.2 Discrete Time Model for a Symbol Synchronous System

For simplicity, a symbol synchronous system is considered throughout this thesis. Treating
T as 0, the received signal is simplified as

r(t) = Z\/_de Dt — §T) + n(t)

N
= Z,/—wkzczk Z p(t— 5T — (I — DTe) + n(t). (2.9)
k= j=0 =1
It is clear that the signal space is spanned by a set of orthonormal signal basis functions

{20 =ptt—iT—(1-1)T)

which consists of time-shifted versions of the chip waveform. The received signal is seen to
be a linear combination of the signal basis functions. Its equivalent vector representation is
then obtained through matched filtering [31, Sec. 4-2],

bl

a"'aMal:1’2a"'7N}7 (210)

SO /OTr(t)p*(t—z'T—(n—l)Tc)dt

= SV dl) S0 [ ple—iT == DI (=T = (= DT

= Y Vagdi(i)s (n) + 2 (2.11)

(1)

where 2’ is a zero-mean independent Gaussian random variable with variance of o2. Note
that the chip-matched filter output in the i*" symbol interval, n(f), depends only on the
data and spreading codes of this particular symbol interval. In other words, the channel is
memoryless in symbol level. Therefore it is sufficient to consider an arbitrary symbol interval

so that we can drop index ¢ in our notation, i.e.,

K
Tn = Z \/wkdksk(n) + zp. (2.12)
k=1
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It is possible to rewrite (2.12) in vector representation as

K
r—= Z Vwidis, +n (2.13)
k=1

where r = (11,79, - ,’I‘N)T is the chip-matched filtered received signal vector corresponding
to a full symbol interval, s; = (sx(1), sx(2), --- ,sx(N))" is user k’s spreading code vector
which satisfies si’s;, = 1, and n = (21,29, -+, zn)' is a noise vector where each sample is

independently, circularly complex Gaussian distributed with zero mean and variance 0. The
output of a chip-matched filter is then seen to be a weighted linear combination of spreading
codes.

The received vector r can also be described through matrix algebra as

r=Ad+n (2.14)

where A = (al,ag,--- ,aK) = (,/wlsl,\/wQSQ, cee ,\/wKsK) is an N x K matrix and d =
(di,day -+ ,d K)T is the data vector. The matrix A contains all information about the multiple
access channel and may be expressed as

A=SW (2.15)

where S = (s1,82, -+ ,8k) is a N x K matrix formed by all users’ spreading code vectors and
W = diag(/wn, /w2, -+ ,v/wk) is a K x K diagonal matrix formed by the received signal
amplitudes.

2.3 Correlation Matrix and Its Eigenvalue Decomposition

In this section we discuss some useful properties of the CDMA channel correlation matrix.
We concentrate on the eigenvalue analysis which will be utilised intensively to derive many
results throughout this thesis.

In the literature the cross-correlation of 2 users’ spreading codes is usually defined as

N
pij = S;'8j = Z s;(n)sj(n). (2.16)
n=1
Here we define the cross-correlation of the received spreading waveforms as

rij = aZHaj = \/’lijS?Sj = \/Wpij. (2.17)

Clearly received signal energies are considered in r;;. These cross-correlations then form the
correlation matriz as

R = A"A = WS"SW, (2.18)

which has the element in its i*" row and j* column as rij. Here we call S"S the code

correlation matriz, to make a difference!.

1Tt is more often in the literature to define S®S as the correlation matriz.
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Since R is a Hermitian matrix, it must have an eigenvalue decomposition [32] as
R = UAU" (2.19)

where U is a unitary matrix satisfying UU" = I that contains the eigenvectors of R while A
is a diagonal matrix formed by the K eigenvalues of R,

A = diag( A1, Aa, -+, Ak)- (2.20)

Since a Hermitian matrix is positive semi-definite, all the eigenvalues of R are non-negative.
If A is full-rank, which corresponds to that the spreading codes from all K users are linearly
independent, R has only positive eigenvalues and is said to be positive definite.

As a Hermitian matrix, R has the following important properties:

1. If R is positive definite, R™ exists and shares the same eigenvectors as R, i.e.,
R~ = UAT'UY (2.21)

2. For any polynomial f(-), f(R) shares the same eigenvectors as R, and its eigenvalues
are f(A1), f(A2),---, f(Ak), ie.,

f(R) =Udiag(f (A1), f(X2),- -, f(Ak)) U™ (2.22)

3. The trace of R is the sum of its eigenvalues, i.e.,

K
tr{R} =) M (2.23)
k=1

Clearly for any polynomial f(-),

K
r{f(R)} = f(): (2.24)
k=1
The above properties will be used frequently in deriving the main results in this thesis.

2.4 Fundamental Detectors

In this section we briefly discuss several fundamental detectors frequently referred to through-
out this thesis.
2.4.1 Conventional Single-user Detector

The conventional single-user detector simply performs spreading waveform matched filtering
on the received signal vector. This kind of linear filtering is efficiently expressed by an inner
product in vector representation. The matched filtered statistic for user k is obtained as

y, = apr=ayAd+a;n
K
= wpdp + Y V0iwppird; + 2
i=1

ik
= wpdp + MAI; + 2z (2.25)
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where MAT}, is the multiple access interference seen by user k and z;, represents white Gaussian
noise with variance E {|2;|>} = wgo?. The soft output of all K users may be expressed as
a vector y = A¥fr. It is more often in the literature to define the conventional detector as
code-matched filtering, i.e., y(© = S¥r. Clearly, y = Wy(9. Since W is assumed to be
known, both definitions lead to the same decision and hence are equivalent. In this thesis we
adopt the former definition to facilitate later discussions.

The decision for user k is made according to the position of y; in the data constellation
as if the MAT were Gaussian distributed. It is not difficult to obtain an expression for the
exact bit error rate. Specifically for a BPSK symbol modulation,

1 VW + Z%i VWipikd;
Pi(0) = 55— Y@ z : (2.26)
d;e{-1,1}
ik

Clearly, if the signature sequences are orthogonal ( p;rz = 0, if 7 # k ), the MAT vanishes
so that each user enjoys a single-user channel and the conventional detector is optimal. In a
cellular environment, however, this is not the case. One reason is that most channels contain
some degree of asynchronism and it is theoretically not possible to design codes that are
orthogonal over all possible delays. Another reason is that signature waveforms are subject
to random distortion because of multi-path and frequency selective fading and can not always
be orthogonal at the receiver.

On the other hand, since orthogonality is not perfectly maintained, the MAI can become
excessive if the power levels of the signals from interfering users are sufficiently larger than
that of the desired user. As mentioned in Chapter 1, this situation is generally called the
near-far problem in multiuser communications.

In [33, Sec. 3.5] Verdd defined the asymptotic multiuser efficiency as

e = sup{OSrSl : limPk(a)/Q<°ka>}
o—0 g
2
= — limo?1 :
’U)kal—r)%g Ong(O')

(2.27)

It measures the slope with which Py(o) vanishes (in logarithmic scale) in the high signal-
to-noise ratio region. The robustness against the near-far problem achieved by multiuser
detectors can then be measured by the multiuser efficiency minimised over the received ener-
gies of all the other users:

N, = inf n. 2.28
e = fnf m (2.28)
i#k
It is commonly termed near-far resistance. A detector is near-far resistant if i, > 0. It is well

known that the conventional detector is not near-far resistant. Hence it is usually necessary
to have some type of power control for conventional single-user detection.

2.4.2 Maximum-Likelihood Detector

The maximum-likelihood (ML) detector selects the most probable transmitted data sequence
given the received signal observed over the entire time interval of transmission [9, 31]. Consider
a symbol synchronous system for simplicity, the detector performs an exhaustive search over
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the constrained space DX of all possible hypotheses and chooses d which maximises the
probability that d was transmitted given that r is received, i.e.,

~

d= dir). 2.29
argérel]?)gcxp( |r) (2.29)

Tt can be easily shown that the soft output of the conventional detector, y = APr, is a
sufficient decision statistics since the ML metric can be computed based on y as well as
on r. The ML detector is near-far resistant. Unfortunately it has an inherent complexity
that increases exponentially with the number of users which renders it impractical. Various
suboptimal multiuser detectors have been proposed to ease the implementation. Among them
linear detectors are subject to most attention because of their simplicity.

2.4.3 Decorrelating Detector

The decorrelating detector (or decorrelator) applies the inverse of the correlation matrix onto
the soft output of the conventional detector in order to decouple the data,

y=GiL.r=R'A"r=R"A%Ad+n)=d +z, (2.30)

where E {zz"} = 02R. Since the decorrelator completely eliminates the MAI, it has a near-
far resistance of 1. A disadvantage of this detector is that it causes noise enhancement, i.e.,
(R™)g is always greater than or equal to 1 [13].

In case that linearly dependent spreading codes are used, the inverse of R should be
replaced by any of its pseudo inverse [12, 13]. A user can be decorrelated if and only if his
spreading code is independent of all the other users’.

2.4.4 MMSE Detector
The mean squared error of a linear detector G™ is defined as
J=B{le* - d|’}, (2.31)

which indicates the averaged squared Euclidean distance of the soft output of the detector to
the original data symbols transmitted. The MMSE detector minimises the MSE and is found
to be

Since the MMSE detector takes into account the background noise and utilises knowledge
of the received signal powers, it generally performs better than the decorrelator in terms of
BER.

Note that the MSE is not an equivalent index to the BER. Therefore the MMSE detector
is not necessarily the optimal linear detector in the BER sense. However, in [34] Poor and
Verdu showed that the MAI-plus-noise at the MMSE detector output contending with the
demodulation of a desired user is approximately Gaussian in most cases of interest. As a
result, the BER performance of the MMSE detector has no noticeable difference to that of
the best achievable by a linear detector.

Moreover, the signal-to-interference ratio of the soft output for user k of any linear detector
can be expressed as

SIR, = MSE;, ! —1. (2.33)
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Since the multiuser interference in the soft output is approximately Gaussian (at least when
the detector is close to the MMSE detector), we can expect that minimising the MSE is very
close to minimising the BER. Hence the MSE is always treated as a benchmark for optimising
linear detectors.

It is not practical to implement the decorrelating detector and the MMSE detector directly
because of the heavy computation load of matrix inversion. In the following chapters we are
going to study linear parallel interference cancellation techniques which approximate the
above detectors in the MSE sense through multi-stage processing.

2.5 Summary

In this chapter we discuss the background of CDMA schemes. The signal and channel models
of the CDMA communication system are first described. A mathematical framework for the
derivation of proposed detectors in the following chapters has been introduced.



Chapter 3

Conventional Parallel Interference
Cancellation

In this chapter, the conventional parallel interference canceller is analysed based on matrix
algebra. An equivalent one-shot detector is obtained in section 3.1. It is then shown in
section 3.2 that the linear conventional PIC converges if and only if all eigenvalues of the code
correlation matrix are less than 2, which is not always true. Section 3.3 contains numerical
results and section 3.4 summarises this chapter.

3.1 Algebraic Description of Conventional PIC

One of the first structure based on the principle of interference cancellation was the parallel
multi-stage detector in [17], termed conventional PIC throughout this thesis. The general
structure of a multi-stage conventional PIC detector is described by the diagram in Fig. 3.1,
where each stage is depicted by Fig. 3.2.

The chip-matched filtered received signal vector r is fed into the detector, where

r =SWd+n. (3.1)

Interference cancellation is carried out stage-by-stage based on tentative decision outputs of
the previous stage and decisions are made on the resulting decision statistics. At the first
stage, previous tentative decisions are assumed to be 0. Note that thick lines in both figures
represent a vector of length NV, the processing gain.

Consider the i*"-stage PIC shown in Fig. 3.2. Assuming decisions (either soft or hard)
for all users are correct for stage (i — 1), the detector first reconstructs the interference to
user k from all the interfering users based on their decisions and then cancels it out from the
received signal. The residue signal for user £ may be expressed as

K K
k ~ ~ ~
rz(_)l =r— Zsjdi—l,j =r— Z sjdi—1,j + Spdi 1k, (3.2)
=1 =1
j#k

where Ji,k is a tentative decision made for user k at stage 7 based on the soft decision statistic,
ie.,

~

d;, = TDD(y; 1) (3.3)

15
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Single ‘21,2 Single 622,2 Single sz,z
stage stage o stage
PIC || PIC . PIC

dux by o

—

Figure 3.1: A general structure for a K-user, m-stage conventional PIC.

Ir
di—1,1 di1
di—12 dio
di—1 K di k
k) b

Figure 3.2: Single stage conventional PIC. MF — matched filtering. TDD — Tentative
Decision Device.
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where TDD denotes a tentative decision device. The residue signal is assumed to be inter-
ference free so that code-matched filtering can be performed to yield a current stage statistic
for user k, which is expressed as

K K
H k H ~ ~ H ~ ~
Yik = Sk -I‘~_)1 =s, | r— E dei—l,j + Skdi—l,k =8, |r— E dei—l,j +di—1,kz-(3-4)
Jj=1 Jj=1

Many types of decision functions can be used in the TDDs in the structure, such as hard
decision function used in [17], the clip function, and hyperbolic tangent function, to name
a few. The choice of TDD function has remarkable influence on the performance of a PIC
detector. Since the hyperbolic tangent decision function is rooted on the maximum likelihood
considerations [24, 35], it in general performs better than all the others. Throughout this
thesis, however, we assume that a linear decision function is used in all intermediate stages,
since a PIC making use of non-linear decision functions is very hard to analyse mathemati-
cally. Nevertheless, the study may give insight into the principles of interference cancellation
techniques.

Assuming that in the above PIC structure linear soft decisions are made, i.e., Ji,k = Yi ks
we have

K

Yik =Sp | T — Z SiYi-1j | + Yi-1k- (3.5)
i=1

Also define the vector of decision statistics as y; = (¥i,1,%i,2, - Ui, K)T, the set of decision
statistics at stage (¢ + 1) is then described by

yi = S%r—Syi_1)+yi1
= S'r—8"Sy; 1 +yi
= Sr+ (I - SHS)y,'_l, (36)

where yo = 0. From this recursion, we can express the soft output at the m'" stage as

ym = S+ (I—8"8)yn 1 (3.7)
= S+ (I-S8"S)S"r + (I —S"S)%y, »

m
= ) (@-8"8)i~Vsm. (3.10)
i=1
It is clear that the linear PIC scheme corresponds to linear matrix filtering that can be

performed directly on the received chip-matched filtered signal vector, since the vector of
decision statistics at the m'® stage can be obtained as

Ym =G (3.11)
where
m -
Gp =) (I-s8"s)(~lg" (3.12)
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The matrix filter G& is then referred to as the equivalent one-shot cancellation filter! for an
m-stage conventional linear PIC. Note also that

GI'=8§", (3.13)

therefore a 1-stage PIC corresponds to the conventional detector.
Since Gy, is a linear filter, the noise term in y,, is still Gaussian but with a coloured
correlation matrix

E{GInn"G,,} = c’GELG,,. (3.14)

Given the spreading codes used, we can therefore analytically calculate the BER for user k at
stage m using the same techniques as for the conventional matched filter detector [12] and the
linear successive interference canceller [10]. Specifically for BPSK data modulation systems,

Re{g! , Ad
Pk(m) (0) = 213—,1 Z Q (M) , (3.15)

g
g e
dp=1

where g, 1, is the k™ column of G,.

3.2 Convergence Issues

It is instructive to see how the linear conventional PIC behaves as the number of stages goes
to infinity. Rewrite the expression for the equivalent filter here,

Gp, =) (I-8"S)(~g" (3.16)

i=1

Without losing generality, we assume that N > K. There exists a single value decomposition
of Syxk as

S =USVH (3.17)

where Unxny and Vi« g are unitary matrices and X is a N x K matrix of the form

5 _ [\/(ﬂ (3.18)

where A = diag(A1, A2, -+, Ak) is a K x K diagonal matrix and the zero matrix is of appro-
priate dimensions. Since

S"S = VEUTUSV"? (3.19)
= VzipvH (3.20)
= VAVY (3.21)

1 This appellation was first made for linear SIC in [19].
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it is obvious that A is formed by the eigenvalues of S”S which are all non-negative as defined
in section 2.3. It follows then

Gr = Y (I-VEZUUsvH)E-ysy® (3.22)
=1
= ) v(I-zxy)-Usut (3.23)
=1
m ([ — A)G-D)
_ V[Zz:l(l (J)X) \/K] un (3.24)

A sufficient and necessary condition for G}, to converge is then Y -2, (I-A)(~Dy/A converges,
ie., 3290 (1—Xg) =1 /Xy converges for k = 1,2,--- , K. The solution is obviously 0 < A\ < 2,
or in other words, all the eigenvalues of S¥S are less than 2.

Clearly, when the above eigenvalue constraint is satisfied,

[e.e] -1 .
>0 - AV = {Ak VA >0 (3.25)

— 0 if Ay =0.
Hence,
- ; VAT 0
> A-A)FDVA = [ 0 0] : (3.26)
i=1
where A; is a diagonal matrix contains all the non-zero eigenvalues of S®S. Therefore,
. AT7H 0 vA;1 O
H _ 1 H H
mlgnoo(}m =V [ 0 0] vV [ 0 o U (3.27)
= (S"S)*s" (3.28)

In conclusion, the conventional PIC converges if and only if all eigenvalues of S¥S are
less than 2. When this eigenvalue constraint is satisfied, the PIC detector converges to the
decorrelating detector, i.e.,

mliﬂmoo G,, = G, = (S"S)*S". (3.29)
Consequently, the BER performance of a conventional PIC detector approaches that of the
decorrelator given sufficient number of stages, provided that it does converge. Eqn. (3.12)
and (3.29) also indicate that a linear PIC is realising the matrix inverse of a decorrelating
detector indirectly through polynomial expansion (PE) [7].

However, the eigenvalue constraint is too strict to be satisfied in all but the simplest cases.
This accounts for the unstable behaviour of the conventional PIC [27]. For instance, a simple
numerical search indicates that the largest eigenvalue of a 15 user system with a processing
gain of 31 is greater than 2 for more than 99% of all possible code-sets.

Furthermore, it is interesting to observe through simulations that a linear PIC detector
often outperforms the decorrelator at some intermediate stages. Similar phenomenon has
been reported for SIC in [19]. This implies that interference cancellation detector’s overall
capability is not limited to approximating the decorrelator. But this is yet to be exploited
and thoroughly explained. Further study will be presented in the following chapters. The
next section contains some numerical results.
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Figure 3.3: Stage-by-stage performance of the conventional PIC using short codes.

3.3 Numerical Results

The numerical results demonstrated in this section are based on a symbol-synchronous system
assuming BPSK modulation and spreading formats. A processing gain of 31 is assumed in all
instances. Short-code systems are considered in Fig. 3.3 through Fig. 3.6, while a long-code
system is considered in Fig. 3.7.

Fig. 3.3 illustrates stage-by-stage BER performance of the first user of a 6-user conven-
tional PIC detector. The signal-to-noise ratio (SNR) of the first user is 6 dB while the
remaining 5 users are transmitting at the same power but ISR(dB)? different to user 1. ISRs
of —6, 0, 6 and 15 dB are shown. The eigenvalues of S™S, the code correlation matrix, are
(0.65805, 0.78619, 0.96682, 0.25276, 1.4664, 1.8698). Since they are all less than 2, the perfor-
mance converges to that of the decorrelator as the stage number increases. In the meantime,
the stronger the interference from other users is the slower it converges. However the BER
can be much better than the decorrelating detector (albeit always worse than the MMSE
detector) in some intermediate stages. It is also observed that BER performance often fluctu-
ates like saw-teeth along the number of stages. This phenomenon is called ping-pong effect.
The reason is that some of the eigenvalues are close to 2, which resembles an under-damped
oscillation of an RLC circuit.

In Figure 3.4, a 4-user system is considered where the eigenvalues of the code correlation
matrix are (0.41147, 0.45896, 0.96615, 2.1634). The BER performance of all 4 users is com-
pared to that of the decorrelating detector. Since the largest eigenvalue is greater than 2,
divergence is observed for the conventional PIC. All 4 users appear to follow the same pattern

2Here we simply use ISR as the short for interference-to-signal ratio.
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Figure 3.4: Divergence case of the conventional PIC.

of ping-pong fluctuation. It is rare for a 4-user system with a processing gain of 31 to have at
least one eigenvalue greater than 2. A simple numerical search indicate that it occurs roughly
6 times in every 10 thousand random code-sets. Conversely for a 15-user system with the
same processing gain, it happens for more than 99% of the code-sets, so that the conventional
PIC hardly converges in this case.

Figure 3.5 demonstrates the BER performance of the conventional PIC detector versus
the working SNR. Again a 6-user system is considered. The spreading codes used are the
same as the system shown in Fig. 3.3. It is observed that the higher the SNR, the better
the BER performance and the more number of PIC stages the closer the BER is to that of
the MMSE detector. Furthermore, there is no error floor for a conventional PIC detector
employing independent codes.

Figure 3.6 shows the BER performance of a conventional PIC detector under near-far
environment, as compared with that of the conventional detector, the decorrelator and the
MMSE detector. The same system as shown in Fig. 3.3 and Fig. 3.5 is considered. It is
observed that the PIC generally performs better than the conventional detector but worse
than the decorrelator, and the more number of PIC stages the better ability to combat the
near-far effects. Since the PIC detector can never eliminate the MAI thoroughly as what
the decorrelator does, the signal from the desired user may be totally buried under that of
much stronger users, thus its near-far resistance is 0. This implies that no matter how large
the number of PIC stages is, the BER performance will go up to 50% as the ISR becomes
higher and higher. Note however that near-far resistance delineates only the performance of
a CDMA receiver in the extreme situation where the interfering users are transmitting at
infinitely higher SNRs. It is not a good indicator of the BER performance in most practical
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Figure 3.5: BER versus SNR of the conventional PIC.

cases.

In Figure 3.7 a system similar to the one in Figure 3.3 is considered but long codes are
used instead. The stage-by-stage BER performance of the first user is shown. It shows that
the PIC detector is not converging to the decorrelator but maintains a certain performance
gap in this case. The reason is that a portion of all code-sets has at least one eigenvalue
of the code correlation matrix greater than 2 and therefore suffers divergence. The overall
performance is then an average of those that converge and those that do not. It can be
inferred that the conventional PIC detector is useless for a system with the number of users
comparable to the processing gain, since the chance of having an eigenvalue greater than 2 is
so large that the detector suffers divergence for most of the codes.

3.4 Summary

In this chapter, the linear conventional PIC is analysed using matrix algebra. It is shown
that the sufficient and necessary condition for a linear conventional PIC to converge is that all
eigenvalues of the code correlation matrix are less than 2, which is not always true. Simulation
results demonstrate that this detector suffers ping-pong effects in the BER performance as
well as divergence. However, its favourable behaviour in the intermediate stages implies some
unexploited merits to be studied further.
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Figure 3.7: Stage-by-stage performance of the conventional PIC using long codes.
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Chapter 4

Weighted Linear Parallel
Interference Cancellation

In this chapter the weighted linear PIC scheme using short codes is mathematically described
and analysed. It is shown in section 4.1 that linear PIC schemes, either conventional or
weighted, correspond to linear matrix filtering that can be performed directly on the received
chip-matched filtered signal vector.

The concept of weighted linear PIC resembles the concept of the steepest descent method
for updating adaptive filter weights to minimise the MSE. We demonstrate in section 4.2 the
close relationship between the two and present a new PIC structure which is in fact a modified
version of the structures suggested in [36] and [25].

The one-shot equivalent detector is derived in section 4.3. An analytical expression for
the exact bit error rate is then obtained. In section 4.4 conditions on the eigenvalues of the
correlation matrix and weights that ensure convergence are derived. It is shown that our struc-
ture may approach to the performance of the MMSE detector rather than the decorrelating
detector which other PIC structures generally converge to.

Given the number of PIC stages, we derive an expression for the mean squared error of the
one-shot cancellation filter in section 4.5 and devise techniques in section 4.6 for optimising
the choice of weighting factors (or equivalently step sizes for the SDM) with respect to the
MSE. It is shown that only K PIC stages are required for the equivalent one-shot filter to
be identical to the MMSE filter. For fewer stages, m < K, one unique optimal choice of
weighting factors exists which will lead to the minimum achievable MSE. The effect of a
parameter in the structure and the ordering of the weights are studied in section 4.7 and
section 4.8 respectively.

Numerical results are presented in section 4.9 to support theoretical findings and sec-
tion 4.10 summarises this chapter.

4.1 Structure of Weighted Linear PIC

In [24] Divsalar and Simon first suggested using weighting factors to make PIC more flexible.
The general structure for an m-stage PIC is illustrated in Fig. 4.1, where the multi-stage
PIC is seen to be a concatenation of m one-stage PICs. u1, po,--- , iy denote the weighting

25
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Figure 4.1: A general structure for a K-user, m-stage PIC.

factors, or weights', used accordingly to control the amount of interference cancellation at
each stage. The weights in our structure can be complex.

The detailed structure of the i*" stage PIC is depicted in Fig. 4.2, where a is a non-
negative parameter. The tentative decision devices are dropped in this figure since linear
soft decisions are made in all the intermediate stages. Note that we have chosen to include
the received signal amplitude in re-spreading and de-spreading (matched filtering), i.e., ay
is used rather than s;. This is different from most of previous proposals [17, 25, 36]. This
is motivated by the relationship between PIC and the steepest descent method, to become
clearer in section 4.2.

From the structure, we can get the relationship between the current decision statistic and
the previous set of decision statistics. In general, the decision statistic for user k at stage 7 is a
weighted sum of the statistics at stage (¢ — 1) and the statistic based on current cancellation,
ie.,

K
Vi = (1 — apa)yive +miap [t —> vio1ja5 |- (4.1)
i=1

In vector representation, we have the recursive formula of decision statistic as

yi = (1—ap)yi+pA(r—Ay; 1) (4.2)
[I— pi(A"A +oI)]yi-1 + piA'r (4.3)
= IT—pwR+al)]yi—1+ /LL'AHI'. (4.4)

Substituting matrix A by S, our structure embraces all the linear PIC schemes in [17, 25,
36] with the help of adjustable weighting factors. For p; = 1, @ = 0 and A" replaced by S¥,
Eqns. (3.6) and (4.4) are identical, hence the structure reduces to the conventional PIC in
[17]. For a fixed parameter, u; = yu, and a = 0, Eqn. (4.4) describes the structure in [25]. For
varying p; and a = 0, Eqn. (4.4) also describes the structure in [24].

L«“Weight” and “weighting factor” are interchangeable terms throughout this thesis.
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Figure 4.2: The i** stage PIC, employing weight ;. MF — matched filtering.

4.2 Relationship to the Steepest Descent Method

In this section we show that a linear weighted PIC detector is a realisation of the steepest

descent method using variable step sizes. The step sizes happen to be the weighting factors in

the PIC structure. We start from deriving the filter updating equation of the steepest descent

method, then we show its equivalence to the weighted PIC detector introduced in section 4.1.
A linear detector G is an N x K linear matrix filter

G=[g1 g - gkl (4.5)

where g1, g9, -- ,gx are column vectors of length V. The filter output is then the following
estimate of the transmitted data symbols,

y = G'r = G"(Ad + n). (4.6)

The corresponding MSE is given by

J=E{ly—d|*} =E{|G% —d|*} = E{lgf'r - di|*}. (4.7)
k=1

Differentiating with respect to g yields
0J E{Blgfr—deQ}
o8k og,
= E{r'(gi'r - dv)}
= E{(er)"} gi — E {dpr"}
= [AAT 4 o*T)*g; — aj.
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The gradient with respect to gy is then (see, e.g. [37])

oJ
Vid = 2— =2[(AA¥ + o°T)*g} — aj]. (4.8)
08k
The steepest descent method gives the following recursion for finding the minimum of MSE,
.y ./ 1
gil) = gili—1) - JmViJ (49)
= [I-m(AAY +0°D)] gii - 1) + wiaj, (4.10)

where u; is a variable step size of the current stage. Treating the K filters as a filter bank,
we have that

Gl = G, — i [GE (AA" + 0%I) — AT, (4.11)
where Gy = 0. The equivalent one-shot filter for an i-stage PIC detector in non-recursive
form is then

Gi= Z A" H (I— p;(AA"+ 6°T)). (4.12)

=1 j=l+1
Note that G'AA" = RG}" Hence (4.11) can be expressed as

G =G, — i [(R+0°DGE, — AT (4.13)
Post-multiplying with r gives

yi = [ = pi(R + 0°D)]yi1 + piA'r. (4.14)

Note that this is equivalent to (4.4) with = 02. Therefore the linear PIC illustrated in
Fig. 4.1 can be seen as a realisation of the steepest descent method for implementing the
MMSE detector. When a = o2, this structure implements the algorithm of Eqn. (4.14)
exactly. The reason for introducing an arbitrary non-negative parameter « is because the
exact noise level, o2, is usually not available at the receiver. This will become clear later on.
Also note that the SDM recursion inherently includes the received signal amplitude in
cancellation processes. This motivates our special design of the PIC structure, which is
different to previous proposals. The advantage of this design will become clearer later on.

4.3 Omne-shot Equivalent Filter

For a > 0, (R+0al) is always positive definite. For a = 0, we assume that linearly independent

spreading codes are used by all users so that R is positive definite and the decorrelating

detector is valid for all users [13]. This assumption is almost always valid in a real scenario.
Subtracting (R + oI)™ Afr from both sides of (4.4),

yi—(R+al)"A"r = [IT—pmR+al)]y; 1+ uAr— (R+al)Afr
= IT—uR+aD)][yi-1 — (R+al)"A'r]. (4.15)
Treating [y; — (R + aI) ™ A"r| as a series of vectors and [I — p;(R + oI)] as a series of matri-

ces, i.e.,

x,=yi— (R+ aI)_lAHI‘, 1=20,1,--- ,m, (4.16)



4.4 Convergence Issues 29

and

Fi=I-puR+al), i=1,---,m, (4.17)
we have a simple recursive equation for 2 =0,1,--- ,m — 1 as

x; = Fix;_1. (4.18)
Clearly,

Xm = FpFn_1-Fix (4.19)

XQ- (420)

m
[]*:
i=1

Substitute (4.16) and (4.17) back into (4.20),

m

ym— (R+al)"Afr = [H (I — ui(R+ al))
i=1

[yo— (R+ o) A']. (4.21)

Setting yg = 0, we have the non-recursive form expression for the set of decision statistics at
the output of the m!'" stage as

m

Ym = |:I_H(I_,Ui(R+aI))

i=1

(R + oI) 'AMr. (4.22)

This means that an m-stage PIC is equivalent to a linear matrix filter G, described by

m

G%:F—IUL#MR+M»

i=1

(R+oI) 'A% (4.23)

Again we can analytically calculate the BER for any user at any stage as mentioned in
section 3.1. For a BPSK data modulation, (3.15) may also be used to compute the exact
BER.

4.4 Convergence Issues

It is possible to rewrite Eqn. (4.22) in terms of a “steady-state” solution corrupted by some
disturbance,

Yn =Yoo —€m (4.24)
where y, is the “steady-state” filter output expressed by
Yoo = (R+al)™ A'r, (4.25)

and e,, is some excess transient error related to the m'™ stage,

em = [ﬁ(x — iR+ al))| (R + al) ™ Alr. (4.26)

=1

It is obvious that we may force e,, to converge to 0 in order for y,, to converge. As mentioned
in section 2.3, a Hermitian matrix R has an eigenvalue decomposition as R = UAU" where
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A = diag(A1, A2, ..., Ak ). Clearly the term in the square brackets in Eqn. (4.26) is a polynomial
in R, which may be expressed as

where
F@) ET] A — pile +a)). (4.28)
=1

It is easy to get a sufficient (but not necessary) condition? for convergence (when m goes to
00) as,

-1<1- Mi()\k + Oé) <1, (4.29)

fork=1,2,--- ,K and m =1,2,---, or equivalently

O<py < —— 4.30
Hi Amax + @ ( )

where Apax is the largest eigenvalue. The “steady-state” filter in this case would be:
GL =R+al) A" (4.31)

which in case @ = 0 is the decorrelating filter and in case o = ¢? is the MMSE filter. For
conventional PIC, & = 0 and p = 1. In this case we have convergence if and only if 0 < A\; < 2
for k=1,2,--- , K, which collaborates the conclusion in section 3.2.

It is clear now that given knowledge of eigenvalues of the correlation matrix, weighting
factors may be introduced to ensure convergence. Furthermore, the modified structure can be
made to converge to the MMSE detector, which always has a better BER performance than
the decorrelating detector. However, since it is obviously impossible to have unlimited number
of stages in practice, the study of PIC with a pre-designated number of stages becomes of
more interest and not surprisingly, reveals new aspects of the PIC scheme.

4.5 Mean Squared Error

Although bit error rate is the eventual criterion for a digital communication system, it is not
unusual to see the mean squared error used as an indicator of the BER performance, since
it is a quadratic function of the filter weights which results in a unique minimum. In this
section we derive the MSE of an m-stage PIC detector.

At the m'" stage, the set of decision statistics is y,, = GILr where G is described by
(4.23). We may then express the MSE at the m'™ stage as a function of the weighting factors,
described by p = (p1, 2, ..., um)T, and the parameter «,

JM () = E{|GEr —d|?} = E{r"G,,GLr — 2Re {d"GH r} + d'd} (4.32)

2If an identical weight is used for all stages [25], i.e., u; = u, it is also a necessary condition.
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Since J(™) (p, @) is a scalar, we can apply the trace operator to the RHS directly. Also note
that tr {-} is a linear operation and satisfies tr {AB} = tr {BA}. Therefore,

J™ (u,0) = tr{E{r"G,Gr — 2Re {d"Gr} + d"d}} (4.33)
= tr{GLE{rr"} G, — 2Re {G E {rd"}} + E {dd"}} (4.34)
= tr {GL(AA"+0%T)G,, — 2Re {GF A} +1} (4.35)

Let G, = RAH where

m
RZ [I—H(I—ui(R-l-aI)) R+al)™. (4.36)
i=1
We can therefore re-write (4.35) as
J™(pa) = tr {RAH(AAH + o’I)AR — 2Re {RR} + I} (4.37)
— {f{R(R + o?DR — 2Re {Rf{} + I} . (4.38)

Since R is a polynomial in R, it may be expressed using R’s eigenvectors as (refer to sec-
tion 2.3)

R = UAU™ (4.39)
where A = diag(Ai, A2, ..., A\x) and for k =1,2,--- | K,

- 1 m
- “TTa - 4.4
e v E( ui(h + @) (4.40)
Therefore,
T (p, )
- tr{ AUTUAU(UAU" + 02T UAU" — 2Re {UAUHUAUH} + I} (4.41)
= tr {AA A+ 0" DA - 2Re {AR} +1} (4.42)
K ~
= 3 [ + 03— 2Re Ak} +1] (4.43)
k=1
K K 1 2
- . 4.44
Z)\k+02+z )\k/\k—l—o))\k Nt o? ( )
k=1 k=1
From (4.40), we have
- 1 1 m 1
- - T - s - 4.4
e verw Rl v il_Il( i+ )| = = (4.45)
1 1 1 5
- . . 1— 4.4
M+ A+ 0?2 >\k+a£[1( MZ(/\k+a)) ( 6)
1 o’ —a ke
= T - 4.4
A +a | Mg+ 02 11;[1( Hi(d + @)) (4.47)
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The MSE is then expressed as
K
/\k()\k + 0'2)
T (p, +
(b, Z,\k+a kg (e + @)2

The first term of (4.48) is nothing but the minimum MSE, which is independent of the weights
and can be achieved only by the MMSE detector, i.e.,

2
.(4.48)

2 m

el | CETIOVERS)

2
A t+o 1

Jamse = E{[Giser —d[*} =E { H (R+0°1) " A'r — dHZ} (4.49)
K 2
_ ; pyE=t (4.50)

while the second term then represents the degradation with respect to the MMSE filter, or,
the excess MSE expressed as

2 m

T~ TI = mw + @)

2
A to i1

K
)\k()\k + 0'2)
T (4, @) =

(4.51)

In the following sections, we concentrate on exploiting the nature of the above equation and
come up with a number of interesting properties of the PIC.

4.6 Optimisation of the Weights

In this section we consider the choice of optimal® weights with respect to minimising the MSE
given that we have a limited number of stages (m < o0).

First we assume that o = 02 and show that linear PIC needs exactly K stages to converge
to the MMSE detector. It is later shown that given fewer number of stages, m < K, and
any a > 0, a unique optimal set of weighting factors exists that will lead to the minimum
achievable MSE.

For notational simplicity, we define ¢, = A\, + 02 and v, = My +a for k=1,2,--- , K, so
that

J (p i)‘ k

k=1 k

(4.52)

O' —
_Hl_ﬂz')'k
=1

4.6.1 An Identical Real Weighting Factor for All Stages

Considering the special case when an identical real weighting factor is used for all stages.
From (4.52), we have the excess MSE expressed as

J(m)( — - Mt [0% — o (1 _ m 2
ex M a) - Z 2 ¢ (1 ,Uf')’k) . (4'53)
k=1 ’yk k

3The terms “optimal”, “optimise” and “optimisation”, whenever appear in this thesis, refer to the
MSE criterion implicitly, unless otherwise stated. It is very close to (albeit not exactly) the best
solution in the BER sense.
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To locate the global minimum, equate its derivative with respect to u to zero,

(m) K —
dJex” (1 @) = 2mz - [U = (L= py)™| (L= pe) ™~ = 0. (4-54)

This is a real coefficient polynomial with a degree of (2m — 1) in u, which has (2m — 1) roots
and at least one of them is real. It is then possible to find out the global real minimum among
all real roots through comparison. However, the result is not necessarily the global minimum
of J&M (u, ), since we have discarded all complex minima.

Note that when a = 0 is used here, our structure corresponds to the system considered in
[25], which is the simplest weighted PIC structure. The above solution is then a supplement
to that scheme as an analytical method for obtaining the optimal real weighting factor in the
sense of the MSE.

However, if the noise level, o2, is available at the receiver, we can set a = o2 to yield a
even better result. In this case,

dJéX )(u,a = 02)

K
= (=2m)A(1 — pepy)>™ " =0 (4.55)
k=1

has potentially (2m — 1) valid solutions. However, by considering the second derivative,

K

=" 2m(2m — D)Aeg(1 — i) 2™V > 0, (4.56)
k=1

d2JE (4,0 = o?)
dp?

we observe that it is always positive and therefore, Eqn. (4.54) has only one real root which
is the optimal real weight for this m-stage PIC.

In a later section 4.7, Theorem 4.2 shows that the optimal global minimum for Jg(" ) (g, =
0?) must be real, which also implies that this unique real root of Eqn. (4.55) we have obtained
must be the unique global minimum. It is then proved in Theorem 4.4 that the a-value has
no contribution to the minimum achievable value of the MSE, hence assuming that only real
weighting factor is valid, the MSE achieved by our modified structure with o = o2 is always
no larger than that achieved by using a = 0.

Also in section 4.7, Theorem 4.3 gives lower and upper bounds on the value of the weights,
which is also applicable for this case when the same parameter is used in all stages. Newton’s
method can then be employed to locate this unique real minimum within the valid region.

4.6.2 Special Case of a = 0% and m > K
Consider Eqn. (4.51) with @ = 02, We then have Jim () 2 m) (, @ = 0?) expressed as

K

T ) = 30 2 L~ el (457

k=1 =
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Assuming that m > K, we can write out (4.57) as
A1
T () = E'l — 1P — pad|* -+ |1 — prdr|* - - |1 — pimepr |?

A2
+@|1 — po?|1 = pagal? - |1 — prepal? -+ [1 — pmepal?

) : :
+¢—§|1 — k|’ |1 — padr |+ |1 — prdr> |1 — pmdx |- (4.58)

Obviously we can now make Je(in ) (p) zero by selecting the parameters in such a way that
the underlined factors in (4.58) are zero. It is therefore clear that we can reach the MMSE
solution if we choose the parameters as

1

i

So on condition that we set o = o2, the linear PIC needs exactly K stages to implement the
MMSE detector.*

4.6.3 General Case

In a practical system the number of PIC stages will be significantly less than K due to
limitations on the overall receiver complexity, hence it is desirable to find the global minimum
of the excessive MSE J{™ (p, @) given such a constraint.

It is found that Jé;” ) (p, ) can be reduced to a quadratic function on C™ through a
mapping defined as:

)T

Definition 4.1. Mapping T : C™ — C™ is given by x = T'(u), where x = (z1, T2, , Tm
o= (ul’p/2’... ’um)T a,’n,dfOT"i:]_’2,... ,m,

i = (=1)’ > Pjiba == Hhji- (4.60)
1<51<j2 < <j; <m
Corollary 4.1. Assuming that x = T'(u), we have

m

IO —py) =14 . (4.61)

=1 =1

Proof. An expansion of Eqn. (4.60) gives

o1 o= (=D +p2+- + pm)
g2 = (=1)*(uwap2 + prps + - + fhm—1fm)

(4.62)
Tm = (=1)"pip2- - pim.

4In a later section 4.7.2, Theorem 4.4 implies that given knowledge of the noise level, 02, the MMSE
detector can always be achieved exactly by a K-stage PIC regardless of the value of a.
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Clearly,
m
TTa—pm (4.63)
=1
= L+ (=1)(p1 +p2 4o+ )y + (S0 (papz + papss + -+ 1 pom) 7
= 1 + T17Y + 3;-2’)/2 +---+ -’L'mlym (4.65)
m
=1
]
Making use of Corollary 4.1, the individual product in (4.52) is then
m m )
IO = wive) =14+ 2o =1+ wvix, (4.67)
=1 =1

A
where v, = (1, 1, ...,fy;”_l)T for k =1,2,--- , K. The excess MSE, Jim )( ,a), can then be
expressed concisely as a function of x, and «,

2

JM (x, @) me (4.68)

——I—
o ’Yk

Note that Jg(” ) (x,) is a quadratic function in x. Differentiating with respect to x and
equating to zero gives

8JE" (x, )
= Z ki [ + yix ] v =0 (4.70)
K
Z Mo YT | XF = —Z MY (4.71)
k=1 k=1
= Cx*=—p. (4.72)

Therefore the minimum in x satisfies (4.72). Clearly C and p are real. It is shown in
Appendix A that there always exists a real x that satisfies (4.72), which gives the global
(m)

minimum of Jex ’ (X, ). It is proved that C is positive definite if and only if m or more of
the eigenvalues of R are distinct (A; # )A;), which results in a unique solution x = —C™'p.

% is then the global minimum of Jg(" ) (x,a). If R has [ < m distinct eigenvalues, denoted
by (Akys Akgs 3 Ak,), 1 < ki < ko < --- < k; < m, then C is positive semi-definite and any
solution to the following equation

11 Ly

A TR = (e 4.73
(Ykrs Yk Vi) ( o o e (4.73)
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will give the minimum of Jé,i” ) (x,@) = 0 in x, which is obviously the MMSE solution. This is
an indefinite group equation with more unknowns than the number of equations, which has
infinite number of solutions, including complex ones. Since all the solutions lead to the same
minimum value of Jex = 0, it is sufficient to choose an arbitrary real solution by convenience,
which can be defined as “the global minimum” indiscriminately. Therefore, we hereafter
always limit the selection of x in the region of R™, which simplifies our study of the problem.

Given x = (21,2, ++ ,Zm)' € R™ as the global minimum, we need to find an equivalent
minimum in g which satisfies the mapping x = T'(). The solutions are not unique and they
are given by the following theorem.

Theorem 4.1. For any x = (z1,%2, -~ ,Zm)' € R™, u = (u1, p2,--- , um) € C™ satisfies
T(p) = x if and only if p1,p2, -+ , m are the m roots of the following polynomial,

p(p) = p™ + o™ o™ 4z, (4.74)

Proof. p1, o, , jim are the m roots of (4.74) is equivalent to

p() = (b —pa) (B — p2) -+ (B — fim) (4.75)

to hold for any u € C, i.e.,

Pt o™ wop™ P 4w = (e — ) (4 — p2) - (B — pm)- (4.76)

It follows then that the coefficients on both sides of (4.76) are equal, which corresponds to
the m equalities expressed as Eqn. (4.62). This is equivalent to

x=T(p) (4.77)

by definition of T'(-). O

It is clear that the mapping 7" is not one-to-one since we have multiple solutions for T'(u) =
X, i.e., p satisfies T'(p) = x if and only if g = (s, fhin, -+ » i, ), Where pi, po, -« , fim are
the m roots of the polynomial (4.74) and 41,49, - ,%y is any permutation of 1,2,--- ,m. In
general there are m! minima in p.

Regardless of the ordering, the m roots of (4.74) are exactly the m weighting factors that
will give the minimum achievable MSE at the last stage of an m-stage PIC. The ordering of
weighting factors, which significantly affects performance in the intermediate stages, will be
discussed in section 4.8.

4.7 Effect of o

In this section, we show that the achievable MMSE does not depend on the choice of a.
However, if @« = o2, the optimal weighting factors are real as opposed to the case when
a # 02, where the optimal weighting factors may be complex.
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4.7.1 Effect of o on Weighting Factors

It is obvious that the global minimum £ must be a function of a. Following theorem tells us
that for o = o2, it is always true that the corresponding weighting factors are real.

Theorem 4.2. The global minimum of Jg(n)(u,a = 0?) in p must be real.

Proof. Consider Eqn. (4.52) with a = 02. We then have Jim () 2 Jim (1, @ = 0?) expressed
as

K A m
VOIMED P | [LENEs (4.78)
o P
Let = Re{pu}+j -Im{u} = u + j. u be the global minimum of J&m (p) in p, where
p™ pu@ e R™ Tt is clear that

K m )
W) = ST o] (@.79)

k=1 7k i=1
P " N2, (0,2

= ST (- m0) ¢ (00)' (450
K >\k m () 9

> ;%EQ—M </>k) (4.81)

— I (), (4.82)

This indicates that the excess MSE achieved by p is always no less than that achieved by
Re{u}. For pu to be the global minimum, both side of (4.82) must be equal. It is obvious

that ,ugl) =0, ie, ucR"™. O

Furthermore, the upper and lower bounds of the optimal weights are given in the following
theorem.
)T

Theorem 4.3. The global minimum of Jg(n)(u,a =0?) in p = (1,2, , )| Satisfies

= << — = , 7=1,2,--- ,m, 4.83
Hmin Aae + 02 Hj = Neain + 02 Mmaxs ] ( )
where Amin and Amax are the smallest and the largest eigenvalue respectively.

Proof. Let p be the global minimum of J& () = J&™ (u, « = ¢2). From Theorem 4.2 we

have p € R™, such that

K m
A
T () =) -k TT = magn)?. (4.84)
prZ et
Consider its derivative with respect to p;,
Il - 3 Ml — i) [[ (1~ pae)? (4.85)
K k=1 i=1
i
K
= =2 Mol — i) Ci (4.86)

k=1
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where

m

A
Crj =[]0 — patr)- (4.87)
o
It is clear that for any y < pimin,
A 2 A -
kt+o o= max I; >0, (4.88)
Amax + o Amax + g

1 —pdp >1— pmindpp =1 —
so that

8JE" (1)
Opj

K
= =2 " M1 — pep)CE; <0, (4.89)
Bi=n k=1

(

which implies that Jey' ) (p) is non-increasing in the region (—o00, fimin)- Similarly, it can be

shown that J&™ )(u) is non-decreasing in the region (pmax,o0). In consequence the global

minimum of Jé}!‘ ) (p) falls in the region of [min, fmax)- O

If o # 02, the above approaches are not applicable. The optimal weighting factors can
now be both negative and complex, and the real weighting factors may be out of the region
bounded by pimin and pmax- This is not a serious problem since the structure in Fig. 4.2
can easily accommodate any complex weighting factors, although complex weights introduce
2-fold complexity for BPSK modulation, or 4-fold complexity for any quadrature modulation
schemes.

If the optimal weights are found to be complex numbers, but for implementation simplicity
only real parameters are wanted, they can be located in the constrained set

As shown in Appendix B this is the set of all u described by the limit where potential complex
conjugate pairs become real. Since there is less freedom in selecting the weighting factors (a
pair of them are forced to be equal), there will be some MSE degradation in comparison to
allowing complex parameters.

Unfortunately it is not easy to locate such weighting factors. The weighting factors are
the solution to a group of m multi-variate polynomials,

8JE" (1, )

:Oa .7:1721 , M, (491)
Opj

each with a degree of (2m — 1). The mapping T can not help this time since now we are
looking for a constrained minimum which is not necessarily the minimum of quadratic func-
tion Jé;" ) (x,a), i.e., the global unconstrained minimum. It is however possible to locate
the minimum through various searching methods such as Newton’s method, but this is too
complicated to be practical.

Regardless of «, the optimal weighting factors, whether real or complex, are still dependent
on ¢2. Usually o2, the noise level, is not available at the receiver, hence an estimate is used
instead. The sensitivity of the performance of the PIC to a mismatch in o2 is investigated
through simulations in section 4.9.
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4.7.2 Effect of a on Achievable MMSE

It is obvious that the global minimum %, which satisfies 9Jm) (x,a)/0z; =0 for 1 <i<m,
must be a function of a. We can therefore express the minimum achievable excess MSE as a
function of «,

J™ (@) = inf JIM(x,a). (4.92)
The following theorem tells us how « will affect the achievable MSE.
Theorem 4.4. The minimum of Jé,i") (x, ) is independent of the value of a.

Proof. From section 4.6.3 it is clear that regardless of the value of «, the minimum of

(m) (

X,a) in x is always real, therefore it is sufficient to consider the constraint problem
of x € R™. With this confinement, we have

2
J(m (x, @) Z)\kd)k[ + Yk X:| . (4.93)

We can obtain the derivative of Je(;n ) (x, ) with respect to « as

0I5 (x, ) N
= 2 Z iTit1 Z /\k</>k o YRV (4.95)

On the other hand, the partial derivative of chn ) (x, ) with respect to z; is expressed as

8T8 (x 1 ox
% = 2 Z Akd)k(ﬁ + ’YEX)’)’Zg (4.96)
(2 k=1 {2
= 1 Ty iel
= 2 Z )\Mbk(qs_ + ’)’kx)’yk . (4.97)
k=1 k

It follows then

&Igcn) (x, @) i ) 8J§§") (x, )

e (4.98)

=1

At the minimum of Jé,T ) (x, ), its partial derivative to any z; is zero, hence both sides of
Eqn. (4.98) are zero. Therefore, at the minimum,

(m)
L() =0, (4.99)
Oa
i.e., the specific a-value has no influence on the minimum achievable MSE. O

This theorem implies that for any o we can find a corresponding p that will give us the
achievable MMSE.
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4.8 Ordering of the Weights

Section 4.6 tells us how to compute the m weights that lead to the minimum of Jé;n) (p, @)
for a PIC detector. There are then m! different choices of g which are permutations of the m
weighting factors. The order in which the m parameters are applied however, has a significant
influence on the BER performance as well as the MSE performance at intermediate stages.
Depending on the desired behaviour for intermediate stages, different criteria for the ordering
can be adopted. In this thesis we have chosen to order the optimal step sizes according to a
recursive minimisation of the current stage MSE.

Denote the optimal set of weighting factors as V = {u(, u® ... 4™}, Assuming that
the weights for the first (i—1) stages have been chosen from V as fi; | = (fi1, fig, - ,fli—1)', we
then choose the i*? weighting factor ji; from the remaining set, VW) =V — {1, fig, -+ , fli—1},
which minimises the current stage MSE, i.e.,

fi; = arg min JO (u;, @) (4.100)
wieV®

where p; = (fi1, A2, , fli—1, i) and

] 2
() = )\k¢k o’ —a = X
T (i) =) o — (U= i) [T = 2gm)| - (4.101)
k=1 k j=1

Since all elements of p; but p; have already been determined, the current stage MSE may be
expressed as a function of variable u; € C,

2
)\k¢k i
(i Z — (1= i) - )] (4.102)
k=
where we define
il
i) = T~ am). (4.103)
Jj=1
Jg() (i, @) is a quadratic function of y;, hence it has one unique minimum in C as
il = arg mln J( )(,uz-, Q). (4.104)
Differentiating Je(f() (ui, @) with respect to p;, we have
aJ(X A —a )2
R ) 5w [0 0 1 ] (4109
i e Yk
Equate the above to 0 and solve the linear equation to yield the minimum ji; as
12 .
K
Yike1 ot | [ || @) t’(;)]
f; = (4.106)

K Ao - [tV
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Clearly Jé,i() (ui, ) is a parabolic function of the distance between u; and fi;, thus we can
select, in the limited set of remaining weighting factors, V() the closest one to ji; as the best
for the current stage,

f; = arg min |p; — ;] (4.107)
wi eV (@
This procedure is repeated until the last weighting factor is determined.

The ordering algorithm described above attempts to force the MSE to drop as fast as
possible in the early stages. Simulation results in the next section show that this scheme may
force the BER to decrease monotonically when o = o2, but not necessarily so for o # 2. As
a rule of thumb, whenever simplicity is the utmost concern, ordering the weighting factors in
increasing order in amplitude will in general lead to moderate behaviour in the intermediate
stages.

4.9 Numerical Results

The numerical examples considered in this section are based on a symbol-synchronous system
with 15 users and a processing gain of 31. BPSK modulation and spreading formats are as-
sumed. A randomly selected set of short codes is used in all instances where the corresponding
correlation matrix has the eigenvalues (0.15236, 0.22025, 0.26652, 0.35013, 0.57906, 0.63268,
0.77314, 0.88426, 0.93251, 1.1702, 1.4478, 1.5469, 1.6528, 1.8221, 2.5693).

Fig. 4.3 and Fig. 4.4 demonstrate the stage-by-stage performance of PIC with optimised
weighting factors. Perfect power control is assumed in Fig. 4.3 and the SNR of all users
is 7 dB. The performance of the conventional PIC is also shown in this figure. Since the
largest eigenvalue is greater than 2, the condition for convergence for the conventional PIC is
violated, so that divergence as well as the ping-pong effect is observed. In Fig. 4.4, the SNR
of the first user is 7 dB while the remaining 14 users have the same SNR of 13 dB. For the
right choice of weighting factors, it is clear that a 15-stage PIC can achieve exactly the MMSE
performance regardless of the received power distribution and the value of parameter o in
the structure. 3-stage PIC shows considerable improvement over the conventional detector®.
In Fig. 4.3, 5-stage PIC gives very close to MMSE performance while in Fig. 4.4, where the
interfering users are much stronger, the PIC needs 7 stages to get as close to the MMSE
performance. It can be concluded for a PIC with the number of stages less than K that the
stronger the signals from interfering users are, the farther its performance is from that of the
MMSE detector. This is more clearly shown in Fig. 4.5 and will be discussed later.

The weighting factors here are ordered according to the criterion described in section 4.8,
forcing the MSE to decrease the most, stage-by-stage. It is observed that the BER decreases
monotonically when a = o2, but not necessarily so when « # 0. In case the weighting factors
are sorted in decreasing order, the BER performance fluctuates around 50% for all but the
first and the last stage. After the last stage, the BER is of course identical for all orderings.
This is illustrated for a 5-stage PIC with a = 02 in Fig. 4.3. Obviously the ordering of the
weighting factors is vital for performance in the intermediate stages.

Fig. 4.5 demonstrates PIC’s ability to combat near-far effects. The SNR of the first user
is 7 dB while the remaining 14 users have the same SNR but ISR(dB) different to user 1.

5The performance of the conventional detector is identical to the PIC performance in the first stage.
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Figure 4.3: Stage-by-stage performance of PIC using short codes (perfect power control).
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Figure 4.5: Near-far ability of the weighted linear PIC using short codes.

The weighted PIC is shown to behave better than the conventional detector in a near-far
environment. The more number of stage deployed, the higher the MAI a PIC can resist. It is
also instructive to compare Fig. 4.5 with Fig. 3.6. It is clear that given the same number of
stages used, the weighted PIC is better than the conventional PIC in a near-far environment.
Since a 15-stage weighted PIC achieves the MMSE detector exactly, it is at least as good as
the decorrelating detector in combating near-far effect. However a PIC with fewer number of
stages is not near-far resistant in the sense that when MAI becomes extremely strong, i.e.,
ISR = oo, the detector fails to detect the signal from the desired user.

The weighting factors are determined based on a specific working SNR. The sensitivity of
the detector performance at all SNRs (0 ~ 14 dB), to the estimation of the working SNR is
illustrated in Fig. 4.6 and 4.7. Perfect power control is assumed. In Fig. 4.6 the weighting
factors optimised for an SNR of 7 dB and o = 0.099763 (which corresponds to a o? at 7
dB) are used for various working SNRs from 0 to 14 dB. It is compared to the case when the
weighting factors are optimised and a chosen for the SNR under which the system is supposed
to be working. The BER performance of the MMSE detector is also shown. Similar tests are
done in Fig. 4.7, where « is set to be 0. The system is observed to be practically insensitive
to SNR variation when « is chosen to be 0. The set of weighting factors optimised for an
SNR of 7 dB can virtually be used for any working SNR. When « = o2 is used, the sensitivity
increases substantially when the number of stages increases beyond 5. A PIC detector with
more than 9 stages and 7 dB weighting factors will perform poorly for any working SNR other
than 7 dB. This result implies that o = 0 instead of & = ¢ should be used in a short-code
PIC detector with a large number of stages. Using a = 0 obviates estimation of the noise
level but on the other hand increases detector complexity since the weighting factors would
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Figure 4.6: BER performance and sensitivity versus SNR using short codes. Weighting factors
(WF) optimised for 7 dB and « = 0.099763 (simplified to a = 0.1 in the figure) are used for
0 ~ 14 dB, in comparison to when weighting factors are optimised for each working SNR and
corresponding a.

210° :
:
¢ 3-st. PIC, a=0, 7dB WF
@10 Fls  «  3stPIC, a=0, opt WF E
#——* 5.t PIC, a=0, 7dB WF
10°F |V ¥ 5-st. PIC, a=0, opt WF MMSE detector

G——>o  9-st. PIC, a=0, 7dB WF
K 9-st. PIC, a=0, opt WF

A——A  15-st. PIC, a=0, 7dB WF
G—=8 15-st. PIC, a=0, opt WF

-6

10

| | | | | |
0 2 4 6 8 10 12 14
SNR (dB)

Figure 4.7: BER performance and sensitivity versus SNR using short codes. a = 0 is assumed
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weighting factors are optimised for each working SNR.
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in general be complex.

4.10 Summary

In this chapter the weighted linear PIC scheme using short codes is mathematically described
and analysed. The optimal set of weighting factors are found with respect to the minimum
achievable MSE. Simulation shows significant improvement over the conventional detector as
well as the conventional PIC.
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Chapter 5

Extension to Long-code Systems

In long-code CDMA, the spreading codes as well as the corresponding correlation matrix
will change for every symbol interval. Hence the optimal set of weighting factors given in
Chapter 4, which depends on eigenvalues of the correlation matrix, have to be computed
and updated symbol by symbol. As the solution to the optimal weighting factors involves
eigenvalue decomposition, which has a complexity cubic to the number of users, such an
approach is no better than implementing the MMSE detector directly. Instead we would like
to consider using a fixed set of weighting factors that will work as well for random codes.
This is possible because the correlation matrix of a CDMA channel is highly structured
and centred around the identity matrix and as a consequence its eigenvalues are densely
distributed. Furthermore, a rough estimation of the inverse of the correlation matrix can
be sufficient in achieving good performance in multiuser detection. In other words, utilising
knowledge of the statistical properties of the channel correlation matrix, we expect the PIC
with a fixed set of compromised weights to give a fairly good estimate of the inverse of the
matrices for a majority of all possible code-sets.

Different criteria in making the compromise over all code-sets can be adopted here and
may reach different solutions. The author has chosen to minimise the ensemble average of
the MSE over all possible channel matrices. The reason for this choice is that the MSE is
always a quadratic function of filter taps, which has a unique global minimum. Again, this is
not the best solution in the BER sense, but a reasonably close one. Following the approach
in Chapter 4, we demonstrate in section 5.1 that a unique optimal set of fixed weights exists,
which will give the minimum ensemble average of the MSE at the last stage of a multistage
weighted PIC. For an m-stage PIC, the weights depend on the first 2/m moments of the
eigenvalues of channel correlation matrix.

Mathematical analysis of the eigenvalue distribution is conducted in section 5.2. Related
work can be seen in [38] and [39], where the authors resorted to the asymptotic expression
of the eigenvalue distribution as the size of the multiuser system goes to infinity. In this
thesis we demonstrate a method for deriving the exact expressions for the moments of the
eigenvalues, i.e., the moments of the correlation matrix, to use the terminology of [40]. The
moments are found to be polynomials that may be easily evaluated given the processing gain,
the number of active users and the received signal energies.

In section 5.3 the algorithm for computing the optimal weighting factors that achieve the
minimum ensemble average of the MSE over random codes is summarised. The computational
complexity of on-line updating these parameters is proportional to the number of users but
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independent of the processing gain.
Numerical results are presented in section 5.4 and section 5.5 concludes this chapter.

5.1 Weighted Linear PIC for Long-code Systems

The structure of a weighted linear PIC working under long codes is no different to that
working under short codes as shown in Fig. 4.1 and Fig. 4.2. For each symbol interval, the
matched filtering waveforms represented by aj in the structure is identical to the spreading
waveforms used by the transmitter of the corresponding user.

5.1.1 Optimising the Weights

The excess MSE of an m-stage PIC has been derived in section 4.5 as

2

SO +0?) | ot—a 7
JM) (p k 1T = w(x : 5.1
221 )\k+a2 Ak + 02 11;11( M + ) (5.1)
where A1, Ag,... , Ak are the eigenvalues of a sample channel correlation matrix, R = A"A.

The ensemble average of the excess MSE over random codes is defined as

TE () = B{ TG ()} (5.2)

where the expectation is taken over the probability density function (PDF) of the spreading
code matrix A. It is obviously a function of p and « and independent of the individual A.
Define ¢y, v, and -, the same way as in section 4.6.3. It is clear that

m 2

o § [E

=1

02—C¥

br

K
T (y0) =B 5 60

=1 Tk

(5.3)

Following the approach in section 4.6, we have an equivalent representation of the excess
MSE in x =T(p) as
2
) (5.4)

T& (%, a) {Z Ak Pk

Since E {-} is a linear operator, it may exchange position with any other linear operators,
such as trace, differentiation, and etc. All derivations of the unique minimum remains the
same as for short codes only with all the coefficients replaced by their ensemble averaged

¢ k

values. Differentiating Je(;n ) (x, ) with respect to x and equating to zero yields the equation

Cx*=—p (5.5)

K
=E {Z wkml} (5.6)

k=1
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and

p=FE {Z ,\m} : (5.7)

k=1

Obviously C is real and positive definite, hence it is clear that the minimum point of
J&M (x, @) in x is determined by

x=—-C'p € R". (5.8)

th order polynomial (same as

The optimal weighting factors are then the roots of an m
Eqn. (4.74)) with x as its coefficients.

The problem now turns out to be the computation of all elements in C and p. It is not
difficult to obtain good numerical estimates based on Monte Carlo averaging over random
codes. But such an approach entails very high computational complexity and therefore can
only be carried out off-line. Furthermore, its dependence on the received energies as well as
the number of active users renders such a method useless in a real dynamic system. It is then
desirable to obtain analytical expressions for C and p so that they can be evaluated with

moderate computational requirements.

5.1.2 Moment of Correlation Matrix

It is helpful here to define the moment of a correlation matrix. It is some kind of measurement
of the distribution of the eigenvalues of sample correlation matrices.

Definition 5.1. The r** order moment of the correlation matriz is defined as

K
1 T
M, =E {E > () } (5.9)
k=1
where A1, Ao, -+ , Ak are eigenvalues of a sample correlation matriz.

Expanding (5.8) yields

-1

z1 Cs Cz3 - Chyt p1
Z9 Cs Cy -+ Cpyo P2

== . ™ P (5.10)
Im Cm—|—1 Cm—|—2 v CQm DPm

where for i =2,3,--- ,2mand j =1,2,--- ,m,

K % .
1 - 21— 2\
C; = EE {;_1: AerYh 2} = § : (z B 2) o (M + 0 My), (5.11)

=2
K i
p-ziE Z)\Fy]’fl :Z J—1 od M (5.12)
17K *Tk -1 v '
k=1 =1

Obviously the coefficients of C and p are determined by the first 2/m moments of the corre-
lation matrix.
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5.1.3 Ordering the Weights

The ordering of weighting factors is similar to the procedure described in section 4.8.
The ideal minimum at the i*" stage, fi;, can be expressed as

~ {zi‘ﬁ:[ ~ -]}

where tg) is given by

-\ [2
|

i—1 i—1

; ) . i—1
) = T]0 - ) =1+ Y z9) = 1+ wx[ vy, (5.14)
i=1 j=1

in which x;_; S (ﬂi—l) and 'y(z na (1,fyk, m’%ic_g)'l'_

In the following we briefly show that ji; can also be evaluated based on the moments of
the correlation matrix. )

Clearly t,(;) is a polynomial in \g, and so is ‘t,(;) ‘ . They have a degree of (i — 1) and
(27 — 2) respectively. The denominator in Eqn. (5.13) is then an expectation of a polynomial
in Ag, which depends only on the first 2 moments of the correlation matrix.

Since 02 — @ = ¢ — Yk, the numerator in Eqn. (5.13) is the expectation of

t(z) t(")

K
Ak [ ()] ] (i)
— t — A . +1 . 5.15
k2_1 - Pk — (b% — ) Z k | Pk o P (5.15)
Note that
OIRnG i—
D =49 = ‘1 + WX )‘ (14 yexi_y7 ™) (5.16)

= 1+2fykRe{ }')’5c )—1-’)/,%
= 7 [( Il R )H (5.18)

which has a factor of 7, hence (5.15) is also a polynomial in A\;. The numerator in Eqn. (5.13)
is then the expectation of a polynomial in A; with a degree of 27, which can also be evaluated
based on the first 27 moments.

In conclusion, at the i*! stage ji; can be determined by the first 2 moments of the corre-
lation matrix.

Xt 1)‘ —1—px_ Y (517)

5.2 Derivation of Moments

In the previous section we introduced a set of weighting factors for a linear PIC working under
long codes. They are optimal in the sense of the ensemble average of the MSE. The weighting
factors are found to be determined by moments of the correlation matrix. In this section we
derive analytical expressions for the moments so that they can be evaluated without resorting
to Monte Carlo averaging.



5.2 Derivation of Moments 51

Consider the n'' chip of user k’s spreading waveform as a random variable, denoted
by Spk. The corresponding chip waveform observed at the receiver may be expressed as
Apg = /W Spk- For a long-code system all the chips Az, n=1,2,--- ,N, k=1,2,--- | K,
are mutually independent zero-mean random variables, i.e.,

Vw’““””a(n —ng) - 8(ky — ko)

E {A'n1k1 n2k2}

_ wi, /N if ng =.n1 and ko = k1, (5.19)
0 otherwise.
The cross-correlation between user ¢ and user j is also a random variable
Rij = aja; = ZA nj» (5.20)

which is also the element in the ! row and the j® column of the correlation matrix R. Ay
and R;; are in capital form because they are random variables.
Starting from Definition (5.1),

M, =E 1K)\’"—1Et A" —1Et R" 5.21
=B 230w § = B {ir{AT}} = 2E {ir {R'}), (5.21)

k=1

in which the trace of R" can be expressed as

K
r{R} = D R )kk (5.22)
ki1=1
K
= Y (R-R" My (5.23)
ki1=1
K K
= Z Z Rklkz(RT_l)kzkl (524)
k1=1ko=1
= LU Y (5'25)
K K K
— Z Z - Z Rk1k2Rk2k3 - Rk?r—lkirRkar (526)
k1=1ko=1 kr=1
Therefore,
1 K K K
M, = % Z Z . Z E{Rk1k2Rk2k3 .. 'er—lkr‘erkl} (5.27)
k1=1ko=1 kr=1
1 K K K
k1=1ko=1 kr.=1
N N N
SN Y B {dun Aty Anaka Aty - Anok Al } - (5.28)
ni=1lns=1 np=1
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Here A, are independent random variable selected from a g-ary PSK! constellation with
equal probability, thus only terms containing all complex conjugate pairs of the variables A,
are relevant. The expectation taken over all code-sets implies that M, has nothing to do
with the particular spreading codes used in each symbol interval, rather, it depends on N,
K, and the received signal energies. It is then possible to obtain M, through evaluation of
all combinations of indices.

Note, however,

B{(Au)7} = ()} 3 o { ()7 ifr/a€z, (5.29)
0 otherwise.

so that E {A%k} would be wy/N for BPSK but 0 for QPSK spreading, hence M, would in

general be different for different spreading schemes.

It is very hard (if not impossible) to reach a general expression for M., r = 1,2,---. How-
ever, given r as a determined positive integer, we start from (5.28) and discuss all combina-
tions of k1 to k, as well as nq to n,. After some elementary albeit very tedious manipulations,
we may get an expression for M. This procedure involves a “pass-through” of a tree-like
structure.

5.2.1 Tree-like Structure

For implementing an m-stage PIC, we need to derive expressions for My, My, ---, My,
respectively. In other words, given any 1 < r < 2m, we would like to have an expression for
M,, where K, N, and the received signal energies are treated as variables.

Consider Eqn. (5.28), where 1 < ky,ks,--- ,k, < K are the indices involved in derivation
of M,. Since K is a variable, it is not easy to exhaust all combinations of indices. However, for
any realisation of the indices, 1 < k1, ko, -+ , k» < K, we can classify the r indices into s < r
equivalence classes as x1,z2,- - ,Zs assuming numerical equality as the equivalence relation.
Hence all indices in each class are equal, while indices from different classes are different. It
is then possible to exhaust all combinations of equivalence classes since r is not a variable,
but a known integer. The moment is now a summation of many terms where each term has
the property that the equality pattern of all indices is determined, i.e., forany 1 <:<j <7,
either k; and k; (n; and n;) are equal or not, should be determined.

This classification is better illustrated in Fig. 5.1 by a tree-like structure. A 4-level sum-
mation is expanded into a hierarchical structure. Each node in layer i represents a summation
over k;, on condition of certain equivalence relations among the first ¢ indices. The summand
in the parentheses is then further divided into a summation of its child-nodes in layer (i +1).
These child-nodes exhaust all possible values of ;1. Their summation equates the summand
represented by their parent-node. The number above each node denotes the number of equiv-
alence classes constituted by the indices up-to the layer of that particular node. It can also
be recognised as the degree of freedom of these indices. Clearly, a node with a degree of j
will have (j + 1) children, among which the first j children will inherit a freedom of j while
the last child will have a freedom of (j + 1).

IThis approach is not confined to PSK spreading only. It is applicable for arbitrary spreading
schemes, provided that the statistical property of the spreading codes are known.
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Take for example the leaf connected to the root via 3 thick-lined branches in the figure.
The summand represented by this particular leaf may be expressed as

K K K ks
Z Z Z Z E{RklszkszRk3k4Rk4k1}' (5.30)
k1=1 Ic?;é:kll k’;s;kll ka=ks>
ka#ky
Here ki, k2, ks and k4 have been divided into 3 equivalence classes, i.e., 1 = {ki}, 2 =
{ka,ks} and x3 = {k3}. In consequence this leaf has a degree of 3. This leaf, together with
its 3 brothers, constitutes its parent-node, which has no restriction on the value of k4.
This tree-like structure can be easily extended to any order. All the leaves of the tree

then exhaust all combinations of the equivalence classes. It is then straightforward to derive
moments of any order through exploiting this tree-like structure.
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Figure 5.1: Expansion of multi-level summation as a tree-like structure.
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5.2.2 Symbolic Manipulations

Before proceeding, we define the 7*" order moment of the received signal energies.

Definition 5.2. The r** order moment of the received signal energies is defined as

K
=5 (w)

. (5.31)
k=1

Note that for the simplest case of perfect power control, i.e., w1 = wy = --- = wg = 1,
we have &, = K forr =1,2,---

In this subsection we introduce an example to show the derivation of an expression for the
second order moment (M) by hand. Following the same principles it is possible to obtain
analytical expressions for moments of any order. In fact the r*" order moment M, is shown
to be a polynomial in N (the processing gain), K (the number of active users), as well as the
first » moments of the received signal energies.

Starting from (5.28), we can express the 2nd order moment of the correlation matrix as

K K
1
My, = K Z Z E{ Ry, ky Riy, } (5.32)

k1=1ko=1

K
- Z Z E { Rk ky Riys } + Z Z E{ Ry, Rieohy } | - (5.33)

k1=1 ko= k1= lka;ékl
2 1

M is now a sum of 2 terms, where in the first term ko = ki1, while in the second term ko # k.
The expectation in each of the 2 terms can then be determined by the relation of the indices
involved but regardless of their individual value. The first expectation term is simply

N 2
Ek2:k1 {Rk1k2Rk2k1} = E {Rilkl} =E (Z |Ank1 |2)
n=1

N o 2
= (Z Nw;h) :w,%l (5.34)
n=1

and the second one is

N N
Ek275k1 {Rklszk2k1} = Z Z E {A;;lklATlezA:szgAn2k1} . (535)

ni=1ns=1

Note that here Ry, k, Rp,k, is further expressed by a 2-level summation over n; and ng, which
can be split into 2 terms according to the “equality pattern” of the indices ni and no, i.e.,

Ekz;ﬁkl {Rkleszkl} = Z Z +Z Z E{An1k1 nlszzzszm/ﬂ} (5'36)

ni=1lnz2=n1 ni=1 n2=1
na#ny
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The second summand in (5.36) is obviously zero since it is the expectation of a product of 4
zero-mean independent random variables. Therefore

N ni
Ekz#kl {RklkZRkal} = Z Z E{A:’(le1An1k2A:lgk2An2kl} (5'37)
ni=1n2=n1
N
= > E{lAnkll4nkl*} (5.38)
ni=1
N
= Y iwk wy (5.39)
= 5 Wk Wy .
ni=1 N
1
— Lou, (5.40)
Substituting (5.34) and (5.40) back into (5.33), we have
1 [ K K K 1
2
M2 = E Z ’l,l)k1 =+ Z Z kalwkz (541)
ki1=1 k1=1 ko=1
L ko#ky
1 [ L K
= X Er + I Z W, Z Wk, — Wk, (5.42)
i k1=1 ko=1
11 1, .,
— E -52 + N(gl - 52) (5'43)
1
= ﬁ[512+(N—1)52]. (5.44)

Using the same techniques it is possible to derive moments of any order. The derivation
of moments becomes however more and more involved as the order increases. The reason is
that the number of terms in the expansion of M,, denoted by N (r), increases too fast with
r. As stated in section 5.2.1, the evolution of the tree-like structure follows this rule: A node
of degree j fathers (j + 1) child-nodes, among which j nodes inherit a degree of j while the
remaining one has a degree of (j +1). Although a general expression for the number of nodes
in each layer may be too complicated to be useful here, it is not difficult to calculate those for
the first few layers, which are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, - - - respectively.
To show the trend of the series, we plot the number of terms of up to the 20th layer in Fig. 5.2.
From the curve in Fig. 5.2(a), it is observed that A/ (r) increases faster than exponentially.
Consider the solution to z* = N (r) as shown in Fig. 5.2(b), it may be concluded that N (r)
is approximately of the order of O((x - )(*")) where x stands for the slope of the curve. Not
surprisingly it is not feasible to derive high order moments by hand.?

However, since all combinations of indices can be exhausted systematically, we can let
a computer do the symbolic manipulations. With the help of a computer program written
in Ct+ the first 10 moments have been obtained assuming BPSK spreading and they are

2It is possible to reduce the number of terms by exploiting identical terms and saving as many
intermediate results as possible. Nevertheless, the author believe that the problem of exhausting all
the terms is NP-hard, i.e., cannot be reduced to the level of O(r®).
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Figure 5.2: Number of terms in summation versus the order of moment.

included in Appendix C. Based on these expressions, it is straightforward to compute the
weighting factors of a 5-stage PIC for long-code systems. Knowledge of received signal energies
are necessities, but no power control is assumed, i.e., the SNRs of all users need not to be the
same. It would be manageable for a computer to get analytical expression for several more
moments. Nevertheless, deriving high order moments would be a difficult mathematical and
computer science problem by itself.

There is no known general expression for M, even for the simplest case of perfect power
control. Mathematicians however have studied this problem and suggested some insightful
approximations.

5.2.3 Dag Jonsson’s Approximations for Perfect Power Control

The problem of moments of covariance matrix has been studied by Dag Jonsson, who gave
the following theorem in 1982 [40].

Theorem 5.1. (Dag Jonsson’s Theorem) Assume Sy, n=1,2,--- ,N, k=1,2,--- /K, to
be independent real random variables that satisfy

E{Sn} =0, Var{Sy} =1, E{Sn;} < oo. (5.45)

Let Ry = (1/N) 25:1 SnkSni denote elements of a K x K scaled sample covariance matriz
R and let A1 < Xy < ... < A be the corresponding eigenvalues of R. Define the rth order
moment of the covariance matriz the same as in Definition 5.1:

M, = %E {Z(,\k)"} : (5.46)

k=1
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The moment is then a polynomial in N and K with a total degree of r divided by N”, which
can be expressed as

1 r—1 -
M, = NT Zar,jN’"_JKJ + (terms in N and K with total degree) < r (5.47)
§=0

where

1 r\ [r—1
ari=——| ), i=0,1,...,r—1. 5.48
i J+1<J>( j ) ¢ (5.48)

Corollary 5.1. Suppose that K and N depend on a variable [, so that when | — oo,

N(l) and K(I) — oo, 0<§—8;<y, y < 00. (5.49)

It is clear then

r—1 K j
lim My =) on (N> =12, (5.50)
K/N<oo j=0

This corollary highlights the most significant terms (terms with a total degree of r) in
the summation in (5.47) and may be used as a coarse approximation to M,. For example,
the above corollary gives the following approximations that agree with the exact expressions
given by Eqn. (C.1) through (C.4),

M, =1, (5.51)
K
Mym~1+ =, (5.52)
My~ 1435 4 (KY (5.53)
3~ N N ) -
K K\? K\?
My~1+6— — — . 54
, +6N+6(N)+(N> (5.54)

Assuming that r is small, N is quite large and K < N, these approximations are found to
be fairly accurate. Take Mg as an example, the relative error is 18% for N = 31 and K = 15,
and 5% for N = 128 and K = 64. This could be sufficient for computing weighting factors
for a PIC detector, since the mean squared error of the detector output is not very sensitive
to the estimation error of moments.

Nonetheless, rigorous expressions for My, My, ---, Mas,, should be derived before imple-
menting a practical system. In fact this can be carried out once and for all, which is by no
means a difficult task compared to the realisation of the whole interference canceller struc-
ture. Hence the purpose of this subsection is to refer to known results in the literature that
corroborate the exact expressions listed in the appendix.
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5.3 On-line Computational Complexity

In this section, we discuss the computational complexity involved for updating the weighting
factors when the received signal energies change, or some users join or leave the system.
Consider an m-stage PIC with K active users in a CDMA system with a processing gain of
N. The receiver is supposed to have perfect knowledge of the received signal energies and
the noise variance. Assuming that analytical expressions for M., r = 1,2,--- ,2m have been
derived and are ready for use, the procedure of updating the optimal set of weighting factors
can be summarised as 6 steps as shown in Table 5.1 together with the approximate FLOPS?
needed by each step.

| OPERATION [ FLOPS |
1. Evaluate &1,&,, - , Eoy, using Definition 5.2. dmK
2. Evaluate My, Mo, --- , Ms,, using expressions in Appendix C. 2m3
3. Evaluate all elements of C and p using Eqn. (5.11) and (5.12). || 16m? + 3m? = 19m?
4. Solve x from Eqn. (5.5). m3
5. Obtain the m weights as roots of Equ. (4.74). m3
6. Order the weights as described in section 5.1.3. 2m3

| Total: | 4mK + 6m® +19m” |

Table 5.1: Step-by-step weight updating procedure and its complexity.

It takes 4mK FLOPS to evaluate the first 2m moments of the received signal energies
in step 1 and 2m? for the first 2m moments of the correlation matrix in step 2. In step 3,
evaluating all elements of C and p takes 16m? and 3m? FLOPS respectively. In step 4,
is obtained by solving the group equations described by (5.5), which takes no more than m?
FLOPS. Substituting % into Eqn. (4.74), we get the desired weighting factors by solving the
m*™ order polynomial, which is equivalent to computing the eigenvalues of its companion
matrix. Therefore step 5 also needs m® FLOPS. The ordering of weighting factors is also
based on the moments but independent of K. For the i*! stage it takes no more than 6% to
evaluate (5.13). Hence the complexity of step 5 is roughly 2m3.

In all, the total complexity for updating the weights is no more than (4mK + 6m3 +
19m?), which is independent of the processing gain. Regardless of m, which may be a very
small number as compared to K, we may say that the total complexity is linear in the
number of active users. Hence the complexity of updating the weights is probably negligible
in comparison to O(mK N), which is the complexity of performing code-matched filtering for
all K users in an m-stage interference canceller. It follows that weight updating can be done
on-line and does not conspicuously increase the overall system complexity.

5.4 Numerical Results

3Consider 1 summation, multiplication, division or power function as one floating-point operation
(FLOP).
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Figure 5.3: Stage-by-stage performance of the weighted linear PIC using long codes.
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Fig. 5.3 shows the stage-by-stage BER performance of PIC using long codes. An SNR
of 7 dB is assumed for all 15 users. We observe that the conventional PIC scheme diverges
since the largest eigenvalue for a K = 15, N = 31 system, is almost always greater than 2. A
numerical search indicate that this is the case for 99 % of all the possible code-sets. Divergence
and the ping-pong effect can be overcome by a proper choice of weighting factors. The
weighting factors are optimised for 7 dB and ordered as described in section 5.1.1. Significant
improvement over the conventional detector can be achieved using merely 3 stages where
the weighting factors are (0.63431, 0.39633, 1.6468) for a = 0.099763 (which corresponds to
o? at 7 dB) and (0.79515, 0.40435, 1.2876) for @« = 0. A 5-stage detector can give close
to average MMSE performance, where the weighting factors are (0.60861, 0.42511, 1.0799,
0.34456, 2.5765) for a = 0.099763 and (0.51180 — 0.019155z, 0.51180 + 0.019155¢, 1.4383 —
0.784767, 0.35226, 1.4383 + 0.784767) for « = 0. A 15-stage PIC gives very close to MMSE
performance, however exact MMSE performance is not achieved. This is no surprise since
exact MMSE performance will be achieved only if all relevant weighting factors for all possible
spreading codes are included in the set, i.e., a prohibitively large number of stages are required.

Fig. 5.4 shows the BER performance of a weighted PIC detector for a long-code system
under near-far environment, as compared with that of the conventional detector, the decor-
relator and the MMSE detector. A 15-user system with a processing gain of 31 is considered.
The SNR of the first user is 7 dB while the remaining 14 users have the same SNR but ISR
(dB) different to user 1. The curves show the BER of the first user only. It is observed that
the PIC generally performs better than the conventional detector but worse than the MMSE
detector, and the larger number of PIC stages the better its ability to combat the near-far
effect. In comparison to Fig. 4.5, the near-far ability of a weighted PIC working under long
codes is not as good as that under short codes. The reason is the set of weights used in a
long-code system has to compromise all possible code-sets, hence results in some performance
loss. A 15-stage PIC does not achieve the MMSE detector under random codes and is not
near-far resistant. In fact the near-far resistance of a PIC detector for long-code system is
always 0. The fluctuation of the performance curve of a 15-stage PIC is due to numerical
effects in computing the weights. Note that the BER curve for a 3-stage PIC is not monoton-
ically increasing, i.e., in certain circumstances stronger interfering users help user 1 to achieve
better BER performance. The reason is that the moments of the correlation matrix are not
monotonically increasing functions of the ISR, and we know that smaller moments indicate
that the correlation matrix is “closer” to the identity matrix, a property which makes the
PIC perform better.

Since the optimal set of weights are dependent on the received signal energies, or equiva-
lently, the signal-to-noise ratios, which are to be estimated at the receiver, we would like to
see whether the estimation error severely undermines detector performance. The sensitivity
of the BER to the choice of the working SNR is illustrated in Fig. 5.5. Again equal power
users are assumed. The weighting factors optimised for an SNR of 7 dB together with the
corresponding « are used for various SNRs from 0 to 14 dB. It is compared to the case when
the weighting factors are optimised and « chosen for the SNR under which the system is sup-
posed to be working. In other words, the curves show how the performance can be degraded if
the working SNR is different from what we have estimated (7 dB). Note that for long codes it
still holds that the achievable MMSE is independent of the selection of a. The performance is
therefore virtually the same for @ = 0 and a = o2. Increasing the number of stages increases
the sensitivity to working noise level slightly. It is promising since for 3-stage, 5-stage or even
9-stage PIC, a set of weighting factors optimised for 7 dB would be working well under a wide
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Figure 5.5: BER performance and sensitivity versus SNR using long codes. Weighting factors
(WF) optimised for 7 dB are used for 0 ~ 14 dB, in comparison to when weighting factors
are optimised for each working SNR. Both a ~ 7 dB and a = 0 are shown.
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range of noise level. 9-stage PIC is seen to be very close to MMSE detector in a wide range
of SNRs.

5.5 Summary

In this chapter, we have investigated the case of using a fixed set of weighting factors that
minimises the ensemble averaged value of the MSE over random codes, while the received
signal power distribution is allowed to be changing slowly. The complexity for updating the
weighting factors on-line in case that the received signal power distribution varies or the
number of active users changes is linear to the number of users, which only increase overall
system complexity very slightly.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have developed a mathematical approach to linear PIC. It is shown that the
linear PIC, whether conventional or weighted, is equivalent to a one-shot linear matrix filter.
It follows that the exact bit error rate can be calculated analytically. Conditions for the PIC
to converge is studied and a modified weighted PIC structure is suggested which converges
to the MMSE detector.

Based on analysis of the MSE, it is shown that for a K-user short-code system only K
stages are necessary to achieve the MMSE detector exactly. For fewer stages, an analytical
approach is derived for finding the optimal choice of weighting factors that will lead to the
minimum achievable MSE. An ordering of the weighting factors which will ensure the largest
decrease in the MSE, stage by stage, is suggested and shown to provide a monotonically
decreasing BER for the weighting factor @ = o2. The optimal weighting factors are dependent
on the working SNR. It is demonstrated however, that for « = 0, the detector performance
is practically insensitive to a design mismatch. For o = o2, the detector is however, quite
sensitive when a large number of stages are used.

For long codes, an algorithm is proposed for finding a fixed set of weighting factors that
will give the minimum ensemble average of the MSE over random codes. The coefficients
however, depends on the received signal energies as well as the noise level. The computation
complexity is linear to the number of users but independent of the processing gain, which
enables updating the coeflicients on-line each time the received signal energies or the number
of active users change. Simulation shows that for moderate near-far situations, significant
performance improvements are observed even for a small number of stages. For as few as
3 stages, it is possible for a PIC to get close to the MMSE performance. In this case, the
detector is relatively insensitive to any mismatches in the working SNR for both a = 0 and

Oé:O'Q.

In summary, this thesis presents an MSE-oriented study of linear parallel interference
cancellation. It helps to improve the understanding of interference cancellation techniques
and suggests analytical methods for the optimisation of the linear PIC, both for short-code
and long-code systems.

65
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6.2 Future Work

For the fulfilment of a practical multi-user receiver for CDMA based on interference cancel-
lation techniques, the following areas are of great interest.

e The Conjugate Gradient Method

Recent work done by Elders-Boll et al. [18] reveals that all existing linear interference
cancellation structures belong to the family of iterative methods for computing ma-
trix inversion by means of matrix splitting. The PIC scheme is equivalent to a Jacobi
iteration whereas the SIC corresponds to a Gaufl-Seidel iteration [32]. The linear inter-
ference cancellation concept is further enriched by many other well-developed methods.
Among them the Hestenes-Stiefel conjugate gradient method [32, Chap. 10] is especially
promising. It resembles the steepest descent method but tends to adapt its searching
path according to the residual error and therefore shows superior performance. Its
complexity is slightly higher than the PIC detector.

A new type of interference canceller can be expected based on the conjugate gradient
method. Its properties are yet to be studied.

e Study of Asynchronous Scenario

An asynchronous model is more realistic for the up-link channel of a cellular mobile
system. In this case the MAI includes also interference from the previous and the
following symbols from other users. This has made the channel an IIR rather than
an FIR filter. A suitable weighted structure for an interference canceller coping with
asynchronous scenario is yet to be developed and analysed.

e Non-linear Interference Cancellation

Simulations show that a non-linear interference canceller which makes use of non-linear
decision functions such as hyperbolic tangent, clip function or even hard-decision in
the intermediate stages may perform much better than a linear one. This attractive
phenomenon is yet to be explained and necessary techniques to be introduced to achieve
satisfactory receiver performance.



Appendix A

Solution to x

In section 4.6 the minimum of Jex in x is found to satisfy (4.72), rewritten as follows,
K K
[Z >\k§bk7k7—|k—] x* ==Y Myp = Cx*=-p. (A1)
k=1 k=1

There exists a unique solution if C is non-singular. C is positive semi-definite, since for any
real vector v,

K
vICv = Z Ak (vpv)? > 0. (A.2)
k=1

Consequently C is singular if and only if there exists a v # 0 such that 'y;v = 0 for all
1<k<K,ie.,
-
(Y1:72 - 7Yk) v=0. (A.3)

This constitutes K equations in m unknowns. If m or more of the K equations are linearly
independent, there is no non-zero solutions to (A.3), which results in a non-singular C. This
corresponds to that there exists at least m vectors in (yq,7Yq, .-,y K)T that are independent,
or equivalently

31<ki <ky <+ <kp <K sothat det(y;,, Vi, " »Vs,,) 7O (A.4)

Note that (v, Yk, »Vk,,) 18 a Vandermonde system [32], thus

1 1 ... 1
Yk Yk T Yem
det(Yey s Yegs** 2 Vo) = ' S (A.5)
,y](crln—l) ’Y]S;n_l) . 'Y](c::_l)
= II Om—m) (A.6)
1<j<i<m
= JI k=X (A7)
1<j<i<m

It then follows that at least m eigenvalues of R must be distinct for C to be non-singular, so
that the solution to (A.1) is x = —C™'p.
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If this is not the case, C is singular and its inverse does not exist. Assuming there are
[ distinct eigenvalues, [ < m, and the eigenvalue A, 1 < ¢ < [, is hy,-fold. (A.1) is then
reduced to

l l

1=1 i=1
An obvious solution is that 'ygx =—1/¢y, fori=1,2,--- 1, ie,
1 1 1
T. T
’ T X=—\"T 7y 7) - A9
(Vi Vi ) ((/,)k1 P ¢k2) (A9)

At this time J{™ (x,a) = 0 from (4.68). (A.9) is an indefinite group equation since there
are m unknowns, where the coefficient matrix has rank [ < m. There are infinite number
of solutions, including complex ones. It is sufficient to choose an arbitrary real solution to
(A.9), so that Jm (x, @) achieves its minimum 0.

In summary, if R has m or more distinct eigenvalues, C is non-singular and x = —C™'p
is the unique solution. If R has [ < m distinct eigenvalues, any solution to (A.9) will satisfy

Cx = —p and lead to Jim) (x,a) = 0.
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Locating the Real Step Sizes

Based on Definition 4.1, we define a constrained version of mapping 7" with real result region.
Definition B.1. Mapping Tr : G, — R™ is given byx = T(pu), where G, = {p | T(pn) € R™}
and mapping T is given by Definition 4.1 in section 4.6.3.

Theorem B.1. Define Dy = {x| I p € R™, x=Tr(p)} C R™. By, the boundary set of
Dy in R™, is then determined by By = Tr(B,), where

Proof. Since By is the boundary set of Dy,

Vx € By, V6 > 0, 3x(V e Dy, x? ¢ B,, so that |x) —x| <4, [x? —x| <46 (B.2)

Therefore,
{xD ey}, tim xP =x; (B.3)
3 {x53> ¢ Dx}  Jim x®) = x. (B.4)
Making use of Theorem 4.1, we can find corresponding series in G,
3w eR™} C Gy, lim Tr(ulh) = x (B.5)
3 ¢ R} C Gy, lim Tr(p?) =x (B.6)

It is obvious that { ug)} and { u,(f)} are bounded series, otherwise TR(u,(ll)) and TR(M(]Q)) will

not converge. From theory of limitation, bounded series must have sub-series that converge,
therefore,

3l ern}, Jim ) = p; (B.7)
{2 ¢ R}, Jim puf7) = ). (B.8)

Since real vector series will converge only to a real vector, thus u(!) € R™, which has cor-
responding x = Tr(p")) € Dy. Based on Theorem 4.1, u® is a solution to x = Tr(u®),
hence N(Q) € R™.

So far it is proved that By C k. In the following we will prove that By = Tr(B).
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-
Rewrite “7(1216) as vy = (Vge),ljék), e ,ur(,ic)) and /,L(Q) as v, then
Vk>oﬂﬂﬂ¢wmueRm,mmkpnwmzu. (B.9)
— 00

Since ) ¢ R™ but Tr(r*)) € R™, there must have at least one complex conjugate pair
(n) (n) (n)
)

among v, .-+ ,Um’, which are the m roots of an m'™ order real coefficient polynomial.
It is not difficult to deduce that there exist ¢ and j, 1 < i < j < m, so that a sub-series

of v*), denoted as {ﬁ(l) =vk) | 1=1,2,... }, satisfies Re({zgl)) = Re(fj(-l)) for any /. In the

meantime,

lim ¢ = v, e B (B.10)
=00
. l
ll_lgtfj() =v; €R (B.11)
Therefore
v; = lim Re{fi(l)} = lim Re{f(-l)} = ;. (B.12)
=00 =00 J

Equivalently, M(Q) = u§2), ie, p? e B, . In conclusion, By = T'(B,). O

i



Appendix C

Results of Computer Aided
Symbolic Manipulations

The exact expression for the first 10 moments of the correlation matrix assuming BPSK
spreading have been obtained with the help of a computer program written in Ct++. They
are listed below. They are found to be polynomials of the processing gain, the number of
active users, and the moments of the received signal energies. Based on these expressions, the
optimal set of weights for up to a 5-stage PIC using random-codes can be computed efficiently.

M,

M3

+ +

1
e

1

KN[gf + & (N —1)]

R

N7 [E3 4 £162(3N — 3) + E3(N? — 3N +2)]

1
W[ef + E2E5(6N — 6) + £1E3(5N? — 13N + 8)

EZ(N? —2N 4+ 1) + E4(N® —6N% + 9N — 4)]

1
W[s{’ + E3E(ION — 10) + E2E3(14N? — 34N + 20)
£1E3(BN? — 11N +5) + £1E4(8N® — 36N? + 48N — 20)

E0E3(2N3 —9IN? 4 7N) + E5(N* — 10N3 + 25N? — 20N + 4)]
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+ 4+ + A+ + + +

+ 4+ + A+t +

ﬁ[sf + E1Ey(15N — 15) 4 E3£3(30N? — TON + 40)

EZE2(20N? — 35N + 15) + £2£,(30N3 — 121N? + 151N — 60)

E1E2E3(19N° — 61N? + 40N + 2)

E1E5(12N* —T9N3 +163N? — 118N + 22)

EI(N® —6N? + 8N — 3)

EE4(2N* — 22N3 + 34N? — 6N — 8)

EZ(N* — 4N? 4+ 2N? + 7N — 6)

E¢(N® —15N* + 55N3 — 61N? + 8N + 12)] (C.6)

1
KN6
E3E2(50N? — 85N + 35) + £3£,(80N3 — 305N? 4 365N — 140)

E2E,E3(84N3 — 233N?% + 137N + 12)

E2E5(59N* — 331N3 4+ 612N? — 412N + 72)

E1E3(11N3 — 43N? + 51N —19)

£16264(29N* — 17T1N3 + 219N? — 25N — 52)

E1E2(14N* — 40N3 — 2N? 4 74N — 46)

£1E6(1TN® — 152N* 4 418N3 — 376 N2 + 11N + 82)

E283(3N* — 39N3 + 81N? — 85N + 40)

E9E5(2N° — 42N* + 118N3 — 87N? + 41N — 32)

E3E4(2N° — 16N* + 17N + 15N?% 4+ 32N — 50)

E7(N® — 21N® + 105N* — 147TN3 4 14N? + 48)] (C.7)

[E] + EPE9(21N — 21) + E1E3(55N? — 125N + 70)
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ﬁ[ef + E86,(28N — 28) + E7E3(91N? — 203N + 112)
ELE2(105N? — 175N + 70) + £1E4(1T5N3 — 645N? + 750N — 280)
EPELE3 (259N — 663N? + 362N + 42)

E3E5(191N* — 991N3 + 1717N? — 1099N + 182)

E283(56N3 — 176 N? 4+ 190N — 70)

E2E,E4(1TIN® — TTIN3 4+ 856N? — 58N — 198)

E2E2(T8N* — 187TN3 — 7T0N? + 375N — 196)

E2E5(108N° — 767N + 1761N3 — 1313N2 — 113N + 324)
E1E2E3(49N* — 318N? + 585N? — 642N + 326)

£162E5(42N° — 40TN* 4 941N3 — T47TN? + 533N — 362)
£1E3E4(40N® — 172N* — 10N3 + 395N2 + 155N — 408)
E1E7(23N° — 268N° + 906 N* — 865N — 164N? — 124N + 492)
EF(N* — 20N3 + 42N? — 42N + 19)

E2E4(3N® — 81N* + 236 N3 — 427TN? + 645N — 376)

EyE2(3N® — 5TN* + 202N3 — 396 N? 4 546N — 298)

EoE5(2N° — 69N® + 308N* — 437N3 + 768N? — 1510N + 938)
E3E5(2N® — 30N° + 68N* — 181N3 + 918N? — 1701N + 924)
EZ(N® —11N® + 20N* + 17N> 4 244N? — 689N + 418)

Eg(NT — 28N® + 182N5 — 308 N* + 133N3 — 1120N2 + 2772N — 1632)] (C.8)
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+ 4+ + +

+ 4+ + +

ﬁ[sf + EE9(36N — 36) + £9£5(140N? — 308N + 168)
EPEZ(196N? — 322N + 126) + EPE4(336 N2 — 1211N? + 1379N — 504)
E1E2E3(644N> — 1568N? + 812N + 112)
ELE5(488N* — 2419N3 + 4017N? — 2478 N + 392)
EIEI(196N3 — 539N? + 539N — 196)
E3E2E4(648N* — 2540N3 + 2540N? — 72N — 576)
E3E2(281N* — 601N — 367N? + 1295N — 608)
E3E(419N° — 2653N* + 5436 N3 — 3467N? — 695N + 960)
EZE2E5(329N* — 1491N3 + 2423N? — 2739N + 1478)
E26,E5(326N° — 217T1N* + 4186 N3 — 3313N?% + 2954N — 1982)
E263£,(288N5 — 853N* — 766 N3 + 2805N2 + 448N — 1922)
E2E7(186N® — 1587N> 4 4027N* — 2202N3 — 2000N? — 1066N + 2642)
£1E5(18N* — 176 N3 + 363N? — 380N + 175)
E1E2E4(TON® — 860N* + 2315N3 — 4214N? + 5971N — 3282)
E162E2(69N° — 548N* + 1553 N3 — 3428 N2 + 4944N — 2590)
£162E6(58NS — 849 N5 + 3024N* — 4822N3 4 9387N? — 15016 N + 8218)
£1E3E5(55N® — 388N° + 318N* — 806 N + 8013N? — 14878 N + 7686)
E1EZ(2TN® — 134N° — 142N* + 502N° 4 2530N? — 6013N + 3230)
£1E3(30NT — 443N°® 4 1757N° — 1578 N* + 669N 3

—12875N? 4 25940N — 13500)
E3E3(AN® — 142N* + 455N3 — 869N? + 1096 N — 544)
E2E5(3N® — 141N5 + 706 N* — 1977N3 4 4903N? — 6280N + 2786)
E2E3E4(6N® — 196N° + 891N* — 2623 N3 + 6671N? — 7T841N + 3092)
E2E;(2NT — 103N°® + 664N° — 1540N* + 4927N3

—14818N? + 17802N — 6934)
E3(N® —23N° + 152N* — 558 N3 + 1144N? — 1106 N + 390)
E3E6(2NT — 50NS + 199N5 — 997N* + 5736 N3 — 14251 N? + 13881N — 4520)
E4E5(2NT — 34N® 4+ 110N° — 259N* + 3386 N® — 10256 N2 + 9601 N — 2550)
Eg(N® — 36N7 + 294N° — 588N° 4 861N* — 9360N>

+28044N? — 27504N + 8288)] (C.9)
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Mo

N [E10 + E86,(45N — 45) + £7E3(204N? — 444N + 240)

ESE2(336N? — 546N + 210) + E3£,(588N3 — 2086 N? + 2338 N — 840)
EE,E3(1386 N3 — 3262N2 + 1624N + 252)
EPE5(1069N* — 5144N3 + 8292N? — 4973 N + 756)
ELE3 (546N — 1372N? 4 1288N — 462)
ELE2E4(1894N* — 6820N3 + 6299N2 + 41N — 1414)
ELEZ(TIIN® — 1563N° — 1223N? + 3543 N — 1548)
ELE6(1235N5 — 7T307TN* + 13861N2 — 7773N? — 2390N + 2374)
E3£263(1400N* — 5135N2 4 7500N? — 8721 N + 4956)
E362E5(1498N° — 8184N* + 13681N3 — 10656 N2 + 11207N — 7546)
E363E4(1240N5 — 2876 N* — 4639N3 + 11841 N2 + 1088 N — 6654)
E3E:(860N® — 6219N° + 12803N* — 2615N% — 9378 N? — 5415N + 9964)
EXEH(138N* — 883N + 1752N? — 1890N + 883)
E2E28,(628N° — 4758 N* + 11497N3 — 21425N? + 30094N — 16036)
E2E,E2(589N® — 27T2N* + 6497TN? — 16772N? + 25232N — 12774)
E26,E6(581N® — 5281 N5 + 14999N* — 25034 N3 + 55078 N? — 80771N + 40428)
E2E3E5(510N® — 2119N® — 951N* — 413N3 + 41175N? — 74292 N + 36090)
E2E7(244N° — 622N° — 2331N* + 3941 N> 4 13575N2 — 28503 N + 13696)
E263(304N7" — 3028 N6 + 7826 N° — 274N* + 2232N° — 80267N? + 135809N — 62602)
£1E363(101N® — 1627N* + 4867N3 — 9180N? + 10755N — 4916)
E1E2E5(96 N5 — 2025 N° 4 8634N* — 22534 N3 + 49507N? — 57582N + 23904)
£1E9E3E4(188N® — 2455N5 + 8426 N* — 27906 N2 + 69400N?2 — 72649N + 24996)
£162E7(TTNT — 1601 NS + 7800N° — 19224N* + 62562N3 — 154400N? + 160188N — 55402)
E1E3(31N® — 268N° + 1300N* — 5490N> + 11843N? — 10776 N + 3360)
£1E3E(T3NT — 802N® 4 1730N° — 8427N* + 58772N3 — 139370N? + 122738 N — 34714)
E1E4E5(TINT — 509N® — 372N5 — 1611N* + 39454 N3 — 96169N> 4+ 69196 N — 10060)
£1E9(38N® — 696N + 3151N® — 2478 N® + 10794N*

—118147N3 + 282550N? — 228124 N + 52912)
ES(N® — 50N* + 156 N3 — 325N% + 407N — 189)
E3E4(AN® — 244N + 1442N* — 4512N3 + 9144N? — 8482N + 2648)
E2E2(6N® — 312N + 1598 N* — 4602N2 + 9836 N? — 9420 N + 2894)
E3E6(BNT — 219N°® + 1806 N° — 7878 N* + 27173N3 — 51099N? + 39744N — 9530)
E2E3E5(6NT — 311NS + 2115N° — 9781N* + 33007N? — 53474N? + 29416 N — 978)
EE2(3NT — 143N° 4+ 806N — 2711N* + 13698 N3 — 25815N2 + 12778 N + 1384)
E2E3(2N® — 144N7 + 1259N® — 4224 N°® + 21605N*

—87885N2 4 143886 N% — 78405N + 3906)
EZE4(BNT — 107N® + 909N® — 4384N* + 13282 N° — 19556 N2 + 11371N — 1518)
E3E7(2N® — T6N7 + 459N° — 3393 N5 + 23257N* — 71490N° + 89216 N? — 34315N — 3660)
E1E6(2N® — 52N7 4 261N — 1574N° + 14347N* — 49750N 23 + 52008 N2 + 6620N — 21862)
EZ(N® — 22N7 + 120N® — 331N + 6390N* — 20618 N? + 13580N? + 16384N — 15504)
E10(N® — 45N® 4 450N7 — 1050N% + 3633N° — 45741 N*

+157980N? — 173420N? + 15792N + 42400)] (C.10)
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