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ABSTRACT
Hierarchical clustering has been widely used in numerous ap-
plications due to its informative representation of clustering
results. But its higher computation cost and inherent data
dependency prohibits it from performing on large datasets
efficiently. In this paper, we present a distributed single-
linkage hierarchical clustering algorithm (DiSC) based on
MapReduce, one of the most popular programming models
used for scalable data analysis. The main idea is to divide
the original problem into a set of overlapped subproblems,
solve each subproblem and then merge the sub-solutions into
an overall solution. Further, our algorithm has sufficient
flexibility to be used in practice since it runs in a fairly
small number of MapReduce rounds through configurable
parameters for data merge phase. In our experiments, we
evaluate the DiSC algorithm using synthetic datasets with
varied size and dimensionality, and find that DiSC provides
a scalable speedup of up to 160 on 190 computer cores.

1. INTRODUCTION
Clustering is the process of grouping a set of objects in such
a way that the intra-group similarity is maximized while
the inter-group similarity is minimized. It is widely used in
numerous applications: such as outlier detection [6], infor-
mation retrieval [26], bioinformatics [19] and image segmen-
tation [16]. However, as the data becomes much larger and
higher dimensional, the traditional partitional clustering al-
gorithms such as k-means, may not be able to find clustering
results of high quality. Hierarchical clustering, on the other
hand, provides a more informative way to represent the clus-
tering results by returning a tree-based hierarchy (known
as dendrogram), giving the idea of how each data point is
positioned relative to the cluster structure. For example,
hierarchical document clustering organizes documents into
a binary-tree based taxonomy or dendrogram that facili-
tates browsing and navigation. The hierarchy offers insight
about the relationships among clusters whereas the parti-
tional clustering cannot. In addition, hierarchical clustering
does not require the number of clusters as the algorithm in-

put and cluster assignment for each data point is determin-
istic. However, these advantages of hierarchical clustering
come at the cost of low efficiency. The need to parallelize
the hierarchical clustering algorithm becomes even more im-
perative as the explosion in the size of the dataset. But
the recursive representation of the tree structure poses high
data dependency that makes it a very challenging problem
to parallelize. Even though there are many existing parallel
hierarchical clustering algorithms [5, 9–11, 13], few of these
algorithms have been evaluated in a large scale. Further-
more, many realizations of such parallel algorithms store
the distance matrix for a dataset explicitly, making the al-
gorithm memory bound [9–11,13].

In this paper, we present DiSC, a Distributed Single-linkage
hierarchical Clustering algorithm using MapReduce frame-
work. The key idea is to reduce the single-linkage hier-
archical clustering problem to the minimum spanning tree
(MST) problem in a complete graph constructed by the in-
put dataset. The parallelization strategy naturally becomes
to design an algorithm that can partition a large-scale dense
graph and merge the intermediate solution efficiently and
correctly. The algorithm we propose is memory-efficient and
can be scaled out linearly. Given any practical memory size
constraint, this framework guarantees the correct cluster-
ing solution without explicitly having all pair distances in
the memory. The algorithms are general and applicable to
any dataset. In the experiment section, we present a data-
dependent characterization of hardness and evaluate clus-
tering efficiency with up to 500,000 data points. Also our
algorithm can achieve an estimated speedup of up to 160
on 190 computer cores, which demonstrates its scalability.
In addition, we closely examine the various merge schemes
to optimize the algorithm’s overall runtime by taking into
consideration the overhead from each MapReduce iteration.
The main contributions of this paper are:

• A scalable algorithm for Single-linkage hierarchical clus-
tering

• A configurable merge process achieving reasonable trade-
off between the number of MapReduce rounds and the
degree of parallelism

• A tighter upper bound for the computational complex-
ity in overall distance calculations

• Strong-scaling evaluation on synthetic datasets with
varied size and dimensionality

• Seamless integration with MapReduce data pipeline
and analytical tool chain



The rest of paper is organized as follows. Section II re-
views the existing work related to the parallel single-linkage
hierarchical clustering. Section III describes our proposed
distributed algorithm, examines its theoretical bound and
details the system design with MapReduce framework. Sec-
tion IV gives experimental results on various datasets and
section V draws the conclusion.

2. RELATED WORK
As mentioned earlier, hierarchical clustering provides a rich
representation about the structure of the data points with-
out predetermining the number of clusters. However the
complexity is at least quadratic in the number of data points
[20]. When the dataset is large and high-dimensional, the
time complexity would be an obstacle to apply the algo-
rithm. Moreover, the algorithms usually require storing the
entire distance matrix in memory, which makes it more chal-
lenging for a single machine to compute. Several efforts were
taken to parallelize hierarchical clustering algorithms. Due
to the advance of modern computer architectures and large-
scale system, there are various implementations using differ-
ent kinds of platforms, including multi-core [15], GPU [10],
MPI [9] as well as recently popularized MapReduce frame-
work [23,27].

SHRINK [15], proposed by Hendrix et al., is an parallel
single-linkage hierarchical clustering algorithm based on SLINK
[25]. SHRINK exhibits good scaling and communication be-
havior, and only keeps space complexity in O(n) with n be-
ing the number of data points. The algorithm trades dupli-
cated computation for the independence of the subproblem,
and leads to good speedup. However, the authors only eval-
uate SHRINK on up to 36 shared memory cores, achieving
a speedup of roughly 19.

While both [20] and [15] are based on low communication-
latency systems, Feng et al. [14] explore the design in PC
cluster system with high communication cost. They propose
a parallel hierarhical clustering (PARC), which implements
CLAP [5] algorithm in a distributed fashion. The algorithm
includes sample clustering phase and global clustering phase.
The main idea is to form a fuzzy global clustering pattern
by exchanging the sample clustering results from each com-
puter node and then refine the initial global clustering with
the entire dataset. In order to achieve high speedup, the au-
thors apply asynchoronous MPI communiction to exchange
the intermediate results. However, the algorithm is only
evaluated with 8 computer nodes.

As a powerful data processing tool, MapReduce is gaining
significant momentum from both industry and academia.
Some researchers have started to explore the possibility of
implementing hierarchical clustering algorithm using MapRe-
duce framework. For example, Wang and Dutta presents
PARABLE [27], a parallel hierarchical clustering algorithm
using MapReduce. The algorithm is decomposed into two
stages. In the first stage, the mappers randomly split the
entire dataset into smaller partitions, on each of which the
reducers perform the sequential hierarchical clustering al-
gorithm. The intermediate dendrograms from all the small
partitions are aligned and merged into a single dendrogram
to suggest a final solution. However, the paper does not pro-
vide the formal theoretical proof on the correctness of the

dendrogram alignment algorithm. The experiments only use
30 mappers and 30 reducers for the local clustering and a
single reducer for the final global clustering.

Rastogi et al. [23] propose an efficient algorithm to find all
the connected components in logarithmic number of MapRe-
duce iterations for large-scale graphs. They present four dif-
ferent hashing schemes, among which Hash-to-Min proved to
finish in O(logn) iterations for path graphs and O(k(|V |+
|E|)) communication cost at round k, and requires at most
2 log d rounds and 3(|V |+|E|) communication cost per round
in practice, with n being the number of vertices in the largest
component and d is the graph diameter. In the same paper,
the algorithm is applied to single-linkage hierarchical clus-
tering by using Hash-to-Min or Hash-to-All function. The
algorithm starts with each vertex and its neighbors as a
starting connected component, all the components hashed
to the same reducer are merged to a bigger component; then
a MST algorithm is applied to return a set of cores by us-
ing the minimum core decomposition (MCD) procedure. A
separate MapReduce job is required to determine the stop
condition at each iteration. Different from our focus on
high-dimensional large dataset, Rastogi et al. concentrate
on general graphs.

Recently, Lattanzi et al. [18] present Filtering, a novel method
for solving graph problem in MapReduce. It tackles dense
graphs with large input data, where the data cannot be
stored on a single machine and must be processed in par-
allel. The authors present algorithms for MSTs as well as
other fundamental graph problems with a constant num-
ber of MapReduce rounds even with machines having sub-
stantially sub-linear memory. However, the algorithms are
mainly focused on meeting memory constraints rather than
improving the scalability, and they only provide theoretical
results.

3. SINGLE-LINKAGE HIERARCHICAL CLUS-
TERING ON MAPREDUCE

3.1 Hierarchical Agglomerative Clustering
Intuitively, there are two approaches to form the hierarchical
structure of the entire dataset. One is to start with every
data point as its own singleton cluster, each step the two
closest clusters are merged until all the data points belong
to the same cluster. This is called agglomerative hierarchical
clustering. Reversely, a divisive approach works the process
from top to bottom, by dividing a cluster into two most dis-
tant clusters, the procedure is repeated until all the clusters
only contain one data member. Among the agglomerative
approaches, single-linkage hierarchical clustering (SHC) is
one of the most popular algorithms, using the distance be-
tween the closest data pair from two different clusters at
each merge step. There are some other variations on the
distance measure, such as complete linkage, median linkage,
etc. Despite the fact that SHC can produce ”chaining” effect
where a sequence of close observations in different groups
cause early merges of these groups, it is still a widely-used
analysis tool to conduct early-stage knowledge discovery in
various types of datasets.

3.2 Distributed Algorithm Design



Based on the theoretical finding [15] that calculating the
SHC dendrogram of a dataset is equivalent to finding the
MST of a complete weighted graph, where the vertices are
the data points and the edge weight are the distance be-
tween any two points, the original problem can be formu-
lated as: Given a complete undirected graph G(V, E), where
V = {vi|vi ∈ D} and E = {ei,j |ei,j = d(vi, vj)}, design a
parallel algorithm to find the MST in G.

Not surprisingly, we follow the typical parallelization tech-
nique - divide and conquer. First we partition the dataset
into s splits, every two of these splits form a subgraph. In
this way, any possible edge is assigned to some subgraph,
and taking the union of these subgraphs would return us the
original graph. However, this data-independent partitioning
comes with the cost that some edges might be duplicated
on multiple subgraphs. For example, we have a subgraph
Gi,j resulting from a split pair (Di, Dj) and a subgraph Gi,k
from (Di, Dk), then those edges that are exclusively formed
by the data points in Di are duplicated for both Gi,j and
Gi,k. However, we will show later that the duplication ef-
fect is bounded by at most twice as the original number
of edges. Despite the duplication, the simple partitioning
scheme lends us a neat implementation with MapReduce
and linear scalability as the number of subgraphs increases.
Algorithm 1 summarizes the dividing procedure in step 1-2.

Algorithm 1 Outline of DiSC, a distributed SHC algorithm

INPUT: a dataset D, K
OUTPUT: a MST for D

1: Divide D into s roughly equal-sized splits: D1, D2, ..., Ds

2: Form C2s subgraphs containing the complete subgraph
for every pair in {(Di, Dj)|i < j and i, j ∈ [1, s]}

3: Use Prim’s algorithm to compute the local MST for each
subgraph in parallel, and output the MST’s edge list in
increasing order of edge weight

4: repeat
5: Merge the intermediate MSTs for every K subgraphs

using the idea of Kruskal’s algorithm
6: until all vertices belong to the same MST
7: return the final MST

Once we get a much smaller subgraph with the number of
vertices roughly being 2k and the number of edges being C2k,
where k = dn

s
e, we can run a serial MST algorithm locally

for each subgraph. There are three popular MST algorithms,
namely Boru̇vka’s [7], Kruskal’s [17] and Prim’s [22]. As the
earliest known MST algorithm, Boru̇vka’s algorithm pro-
ceeds in a sequence of Boru̇vka steps. It identifies the least
weighted edge incident to each vertex, and then form the
contracted graph for the next step. Each step takes linear
time but the number of vertices is reduced by at least half
for the next step, thus the algorithm takes O(m logn) time,
where m is the number of edges and n is the number of ver-
tices. Prim’s algorithm starts with any random vertex, and
grows the MST one edge at a time. The time complexity for
the dense graph is O(n2) using adjacency matrix. Kruskal’s
algorithm starts with each vertex as a tree and iteratively
picks the least weighted edge that doesn’t create a cycle
from the unused edge set until all the vertices belong to a
single tree. Both Kruskal’s and Boru̇vka’s]s algorithms need

to pick the eligible least weighted edge, which requires pre-
calculating all the edge weights, while Prim’s algorithm can
use the local information for a vertex to proceed. Given the
subgraph is complete and undirected, it avoids construct-
ing the entire weight matrix and keep the space complexity
linear with respect to the number of vertices.

Now we just focus on how to apply Prim’s algorithm to a
complete subgraph in which edge weights are determined by
the distance between pairs of data points. To start, we ar-
bitrarily select a vertex as the source of our subgraph, and
populate the edge weight array by calculating distance of
every other vertex to this vertex. At the same time we track
the least weighted edge during the population process and
emit the corresponding edge to a reducer. Afterwards, we
update every other distance value with respect to the newly
added vertex, calculating the minimum weighted edge. We
continue expanding the vertex frontier until our subgraph
spans all of the vertices. To further improve efficiency, we
abort the weight computation that exceeds the current max-
imum weight to the subgraph for a vertex.

In steps 4-6 of algorithm 1, we iteratively merge the inter-
mediate MSTs from subgraphs into larger MSTs until we
have the MST for the entire graph. After step 3, we get the
superset of the edges that will form the final MST. In order
to filter out extra edges that not belong to the final solution,
we apply Kruskal algorithm which greedily picks the least
weighted edge that does not create any cycle.

In order to efficiently combine these partial MSTs, we use
union-find (disjoint set) data structure to keep track of the
component to which each vertex belongs. A pseudo-code
description of this procedure is later described in Algorithm
3. By iteratively conducting this merge procedure, we can
quickly eliminate incorrect edges sooner. Recall that when
we form subgraphs, most neighboring subgraphs share half
of the data points. Every K consecutive subgraphs more
likely have a fairly large portion of overlapping vertices, thus,
by combining every K partial MSTs, we can detect and elim-
inate edges that create cycles at an early stage, and reduce
the overall communication cost for the algorithm. The com-
munication cost can be further optimized by choosing the
right K value with respect to the size of dataset, which we
will discuss in the next section.

3.3 Theoretical results
The original graph is decomposed into a series of overlapped
subgraphs, which causes the edge weight between any two
data points in the same partition to get recalculated mul-
tiple times. In the following, we are going to tighten the
upper bound on the total number of distance calculations
performed by DiSC, which is one of the major contributions
in this paper. [15] proves the total number of edge weight
calculations is no more than twice as that in the original
graph when the number of data points is the exact multiple
of the number of partitions. However, for the inexact multi-
ple case, it only gives the upper bound of three times as the
number of weight calculations. Here we provide the proof
for a tighter upper bound for this case.

Theorem 3.1. When n is not exact multiple of the num-
ber of partitions, the total number of edge weight computa-



tion performed by Algorithm 1 is no more than 2 C2n, where
n is the number of data points.

Proof. Assume we divide n data points into a roughly
equal-sized splits, k is the greatest quotient such that the
positive remainder b is less than divisor a (b is positive as n
is not exact muliptle of a), we have

n = ak + b, (1)

where 0 < b < a, a ≥ 1, n > 2 and a, b, k ∈ N

Without loss of generality, we add b extra data points evenly
into the first b splits; each has (k + 1) vertices as a result,
while the other (a − b) splits remain with k vertices each.
This setup leads to three types of subgraphs depending on
how we select the split pairs: both splits from the first b
splits, or from the other (a− b) splits, or one split from the
first b splits while the other from the other (a− b) splits.

Let D(n, k) represent the total number of edge weight cal-
culations performed by all the subgraphs, we have

D(n, k) = C2b C22k+2 + C2a−b C22k + (a− b) b C22k+1 (2)

Applying binomial coefficients’ recursive formula that C2m =
C2m−1 + C1m−1, Equation 2 can be rewritten as follows:

D(n, k) = C22k+1C2a + (2k + 1)C2b − 2k C2a−b

= a(a− 1)k2 + [2ab +
a

2
+ b− 1− a2

2
]k + C2b

≤ a(a− 1)k2 + (2ab− a2

2
)k + C2b (3)

= (n− b)(n + b− k − a/2) + C2b (4)

≤ (n− b)(n + b−
√

2(n− b)) + C2b
≤ (n2 − b2/2)− (n− b)

√
2(n− b)

≤ n2 − b2/2− (n− b) (5)

= n2 − n− [(b− 1

2
)2 − 1

4
]

≤ n2 − n

= 2 C2n

Note that b is no less than 1 based on Equation 1, D(n, k)
can be relaxed to expression (3). By substituting ak with
(n− b), (3) is simplified to (4). After apply Cauchy-Schwarz
inequality on (4), and use the fact that

√
n− b is at least 1,

we can derive expression (5), which eventually leads to the
upper bound 2 C2n.

We conjecture D(n, k) is a quasi-convex function, due to
the observation that the amount of overhead (in terms of
repeated calculations) in fact decreases beyond a certain
number of processes. In the extreme case, partitioning the
dataset into sets of size 2 results in no repeated distance
calculations; the number of splits that maximizes D(n, k) is

approximately
√

2n [15], which leads to (n −
√

n/2) sub-
graphs. In order to deploy a feasible number of subgraphs
on a cluster, the number of splits should be much less than
this critical value

√
2n, and the duplication effect is less than

2 accordingly.
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Figure 1: DiSC algorithm on MapReduce

3.4 DiSC on MapReduce (MR)
MapReduce, first introduced by Dean and Ghemawat [12],
has become one of the most pervasive programming paradigms
for large-scale data analysis. It alleviates users from dis-
tributed system’s engineering work such as data partition,
data locality, data replication, as well as task scheduling,
data shuffle among tasks and fault tolerance. Programmers
or data analysts only need to implement several MR primi-
tives, including Mapper, Reducer, Combiner, RecordReader,
and Partitioner. These stubs all provide easy-to-use inter-
face and can be adapted to a wide range of applications.

A MapReduce job can split into three consecutive phases:
map, shuffle and reduce. The input, output as well as in-
termediate data, is formated in (key, value) pairs. In the
map phase the input is processed one tuple at a time. All
(key, value) pairs emitted by the map phase which have the
same key are then aggregated by the MapReduce system
during the shuffle phase and sent to the reducer. At the
reduce phase, each key, along with all the values associated
with it, are processed together. In order for all the values
with the same key end up on the same reducer, a partitioning
or hash function need to be provided for the shuffle phase.
The system then makes sure that all of the (key, value) pairs
with the same key are collected on the same reducer.

Hadoop [1], the open source implementation of MapReduce
framework, has become the de-facto standard. It is widely
used in both industry and academia, and strongly supported
by a large open source community. In the following, we
present the detailed implementation of DiSC using Hadoop.
As an integral component of Apache Hadoop framework,
Hadoop Distributed File system (HDFS) is a distributed file
system designed for commodity hardware. MapReduce com-
putational engine retrieves data from HDFS and outputs the
results back to it for the input of next available MR jobs in
the data analytical pipeline. As illustrated in Figure 1, DiSC
algorithm is decomposed into two types of MR jobs. The
first one is called Prim-MR which consists of PrimMapper
and KruskalReducer. It is executed only once and followed
by a series of Kruskal-MR jobs which repetitively do Kruskal
merging process until the final MST is complete.

Figure 2 sketches the detailed implementation of Prim-MR.
The original dataset is divided into s smaller splits. Each
split is stored as the built-in SequenceFile format provided
by Hadoop. SequenceFile is a flat binary file for key-value
pairs and extensively used in Hadoop for input/output for-
mats. In our case, the files are keyed on the data point’s id
and valued on the corresponding feature vector. In order for
a mapper to know which two splits to be read, we generate
C2s input files, each of which contains a single integer value
gid between 1 and C2s to represent the subgraph id. This
value can uniquely represent pair (i, j), and i and j can be
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easily calculated from gid using simple algebra.

Each mapper runs the local sequential Prim’s algorithm
to identify the intermediate MST on subgraph gid. The
PrimMapper is given in Algorithm 2, where the input key is
gid and input value is data point. Once the total number of
vertices exceeds the aggregated number of vertices from the
two data splits, we start to calculate the MST. As described
in the earlier section, given a complete graph, Prim’s algo-
rithm starts with a single-node tree, and then augments the
tree one vertex at a time by the least weighted edge from
all the links between this vertex and all the identified ver-
tices in the tree. Different from the algorithm in [15], we
can emit the newly added edge immediately with no need to
wait until all the MST edges are resolved.

Algorithm 2 PrimMapper

1: map(Int gid, Point value)
2: if (cnts < numLocalV ertices) do
3: dataset[cnts + +] = value
4: end
5: if (cnts >= numLocalV ertices) do
6: PrimLocal mst = new PrimLocal(dataset)
7: mst.emitMST()
8: end

While PrimMapper emits the edge one at a time, the output
is spilled into multiple temporary files on the local machine
in a sorted order, and transferred to the designated reducer
based on the partitioner. Before passing to the reducer, the
files are concatenated in the sorted order and merged into
a single input file. This is called data shuffle or sort-and-
merge stage. Since Hadoop sorts key by default, we leverage
this implementation specifics by using edge weight as key.
Moreover, as illustrated in Figure 2, there is a built-in merge
property at the reducer, we can design the partitioning or
hash function simply as gid/K, where gid is the subgraph id,

and K is the number of subgraphs for the merge procedure.

Algorithm 3 outlines the implementation of Kruskal Re-
ducer. It takes edge as key which contains edge weight and
a pair of endpoint ids, the list of values consists of gids that
are associated with a given edge key. We define a union-
find data structure to keep track of the membership of all
the connected components and filter out the incorrect edges
that create cycles.

Algorithm 3 KruskalReducer

1: configure()
2: UnionFind uf = new UnionFind(numV ertices);
3: reduce(Edge edge, Iterator<Int> values)
4: while (values.hasNext()) do
5: gid = values.next()
6: if uf .union(edge.getLeft(), edge.getRight())

then
7: emit(gid/K, edge)
8: end
9: end

In Kruskal-MR job, the mapper is an Identity Mapper which
just passes through (key, value) pairs as they are and reuse
the Kruskal Reducer. The same job is repeated until we
reach the final MST solution.

In the next section, we will evaluate the performance of
these two types of MR jobs respectively, and argue that as
the number of splits increases, the number of MapReduce
rounds also increases accordingly. The overhead incurred
due to setting up and tearing down each MR job can thus
no longer be negligible [8,24]. Reducing the number of iter-
ations also needs to be considered in order to optimize the
total run time, and our implementation provides the natural
mechanism to exploit K-way merge.

4. EXPERIMENTAL RESULTS
Our experiments are conducted on Jesup [2], a Hadoop testbed
at NERSC. Jesup is a 80-node cluster where each compute
node is quad-core Intel Xeon X5550 ”Nehalem” 2.67 GHz
processors (eight cores/node) with 24 GB of memory per
node. It is a part of Carver cluster [3], a liquid-cooled
IBM iDataPlex System with 1202 computer nodes. It is
featured with relatively high memory per core and a batch
system that support long running jobs. All nodes are in-
terconnected by 4X QDR InfiniBand technology, providing
32 Gb/s of point-to-point bandwidth for high-performance
message passing and I/O. However, different from most com-
modity cluster, all compute nodes in Jesup are ”diskless”,
which implies that the data is always resident in RAM.
Therefore no data locality can be leveraged in our experi-
ments. Despite this downside caused by the system specifics,
our experiments still show the real behavior for both com-
putation and data communication as in many other clusters.

4.1 Datasets
We evaluate our MapReduce implementation against 8 datasets,
which are divided into two categories, each with four datasets,
respectively. These two categories, synthetic-cluster and
synthetic-random, have been generated synthetically using



the IBM synthetic data generator [4,21]. In synthetic-cluster
datasets (clust20k, clust100k, and clust500k), first a specific
number of random points are taken as different clusters,
points are then added randomly to these clusters. In the
synthetic-random datasets (rand20k, rand100k, and rand500k),
points in each dataset have been generated uniformly at ran-
dom. Our testbed contains up to 500,000 data points and
each data point is a vector of up to 10 dimensions.

4.2 Performance
We first evaluate the scalability of our algorithm on the
twelve synthetic datasets described in Table ??. Figure 3 il-
lustrates timing results of our algorithm on synthetic-cluster
datasets. ”Total” is the entire execution time, and it breaks
down into two components: ”Prim-MR” measuring the run-
time for the first MapReduce job with Prim Mapper and
Kruskal Reducer, and ”Kruskal-MRs” measuring the run-
time for a series of Kruskal-MR jobs until the algorithm
completes. Figure 3(a) and (b) show that the runtime ac-
tually turns worse for small datasets when increasing the
number of computer cores. This makes sense since small
datasets can fit in one or a few machines’ memory, the over-
head introduced by the duplicated edge weight calculations
and multiple MapReduce rounds would offset the computa-
tional gain from data parallelism. Figure 3 (f) demonstrates
the nice decreasing trend for both ”Total” and ”Prim-MR”.
As ”Prim-MR” is the dominating component in the entire
runtime, the increase of ”Kruskal-MRs” runtime for more
computer cores does not affect the overall performance. Fig-
ure 3 (c), (d) and (e) exhibit the decreasing trend up to a
certain number of computer cores and then it flats out or
even increases afterwards. Therefore, adding more machines
does not necessarily improve the performance. We also need
to take into consideration the algorithm’s constraints (du-
plication effect) and the framework overhead (MapReduce
job setup, tear-down, data shuffle, etc.).

In addition, we measure the speedup on p cores as S =
p0tp
tp0

,

where p0 is the minimum computer cores we conduct our ex-
periments, and tp is the DiSC’s execution time on p cores.
Since we already discussed the speedup for small datasets,
Figure 4 only presents the speedup results for medium and
large datasets from 10 to 190 computer cores with differ-
ent K values, where K is the number of subgraphs that
can be merged at one reducer. For both medium and large
datasets, K = 4 consistently outperforms K = 2 or 8. This
is because K not only affects the number of MapReduce
rounds, but also the number of reducers at the merge phase
at each round. Increasing K value leads to a smaller number
of iterations and smaller degree of parallelism. The value of
4 seems to be a sweet spot achieving a reasonable trade-off
between these two affects.

Figure 5 summarizes the speedup results on these twelve
datasets with different size and dimensionality. As expected,
the number of objects in the dataset significantly influences
the speedups (bigger datasets show better scalability), and
the dimensionality is another factor that affects the perfor-
mance. The type of datasets hardly makes any difference
in our algorithm as we use Euclidean distance as the edge
weight measure, and the distribution of data points has no
impact on the computational complexity in calculating dis-

tances.

4.3 I/O and data shuffle
In this section, we evaluate the data patterns with respect to
MapReduce metrics, including file read/write and data shuf-
fle from mapper to reducer per iteration. Recall that when
we form the subgraphs, each split need actually be paired
with other s− 1 splits. Therefore, the amount of data read
from the disk is

√
pO(|V|) (p = C2s ). In Figure 6, each bar

represents a MapReduce round, and bars in the same color
represent a series of MR rounds that DiSC algorithm re-
quires to find the MST given a certain number of computer
cores. For example, the first bar represents Prim-MR round
in DiSC algorithm. Figure 6 (a) illustrates the increasing
trend of the amount of data shuffle from mapper to reducer.
Notably, as we scale up the number of processes, the number
of MapReduce rounds increases. However, the data is dra-
matically reduced after the first Prim-MR job by almost 2
orders of magnitude, which verifies our claim that incorrect
edges are pruned at a very early stage. The same trend is
observed for file read at mapper’s input and file write at re-
ducer’s output. After the first iteration, the amount of data
shuffle and I/O is proportional to the number of vertices re-
siding in the merged subgraphs, and the amount of vertices
decreases by approximately K times due to the deduplica-
tion effect at the Kruskal reducer’s merging process. Figure
6 reveals that the number of iterations decreases with large
K, so does the amount of the data. This finding also cor-
responds with speedup chart that 4-way merge outperforms
2- and 8-way merges because it provides a good trade-off
between the number of MR rounds and the degree of paral-
lelism per round.

5. CONCLUSION
In this paper, we have presented DiSC, a distributed algo-
rithm for single-linkage hierarchical clustering. We provided
a theoretical analysis of the algorithm, including a upper
bound on the computation cost. We also evaluated DiSC
empirically using both synthetic datasets with varied size
and dimensionality, and observed that it achieves speedup
of up to 160 on 190 computer cores. The parallelization tech-
nique employed by DiSC may be extended to other types of
problems, particularly those that can be modeled as dense
graph problems. Future work on DiSC may involve efforts to
reduce the duplicated work by using better graph partition
scheme and achieve higher speedups.
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(a) Data shuffle (b) File read

Figure 6: Data patterns for DiSC algorithm, including the amount of bytes in the stages of data shuffle, file read. (file write
is omitted here due to lack of space and it exhibits the same trend as file read. Each bar represents a MR round, bars in the

same color represent a series of MR rounds that DiSC algorithm requires to find the MST using a certain number of
computer cores.)


