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5.1 Introduction

In this chapter, we look at technology changes affecting scientists who run data-
intensive simulations, particularly concerning the ways in which these computations
are run and how the data they produce is analyzed. As computer systems and tech-
nology evolve, and as usage policy of supercomputers often permit very long runs,
simulations are starting to run for over 24 hours and produce unprecedented amounts
of data. Previously, data produced by supercomputer applications was simply stored
as files for subsequent analysis, sometimes days or weeks later. However, as the
amount of the data becomes very large and/or the rates at which data is produced or
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consumed by supercomputers become very high, this approach no longer works, and
high-throughput data movement techniques are needed.

Consequently, science-driven analytics over the next 20 years must support high-
throughput data movement methods that shield scientists from machine-level details,
such as the throughput achieved by a file system or the network bandwidth available
to move data from the supercomputer site to remote machines on which the data is
analyzed or visualized. Toward this end, we advocate a new computing environment
in which scientists can ask, “What if I increase the pressure by a factor of 10?” and
have the analytics software run the appropriate methods to examine the effects of
such a change without any further work by the scientist. Since the simulations in
which we are interested run for long periods of time, we can imagine scientists doing
in-situ visualization during the lifetime of the run. The outcome of this approach is a
paradigm shift in which potentially plentiful computational resources (e.g., multicore
and accelerator technologies) are used to replace scarce I/O (Input/Output) capabil-
ities by, for instance, introducing high-performance I/O with visualization, without
introducing into the simulation code additional visualization routines.

Such “analytic I/O” efficiently moves data from the compute nodes to the nodes
where analysis and visualization is performed and/or to other nodes where data is
written to disk. Furthermore, the locations where analytics are performed are flexible,
with simple filtering or data reduction actions able to run on compute nodes, data
routing or reorganization performed on I/O nodes, and more generally, with metadata
generation (i.e., the generation of information about data) performed where appropri-
ate to match end-user requirements. For instance, analytics may require that certain
data be identified and tagged on I/O nodes while it is being moved, so that it can be
routed to analysis or visualization machines. At the same time, for performance and
scalability, other data may be moved to disk in its raw form, to be reorganized later into
file organizations desired by end users. In all such cases, however, high-throughput
data movement is inexorably tied to data analysis, annotation, and cataloging, thereby
extracting the information required by end users from the raw data.

In order to illustrate the high-throughput data requirements associated with data-
intensive computing, we describe next in some detail an example of a real, large-scale
fusion simulation. Fusion simulations are conducted in order to model and understand
the behavior of particles and electromagnetic waves in tokomaks, which are devices
designed to generate electricity from controlled nuclear fusion that involves the con-
fining and heating of a gaseous plasma by means of an electric current and magnetic
field. There are a few small devices already in operation, such as DIII-D [1] and
NSTX [2], and a large device in progress, ITER [3], being built in southern France.

The example described next, and the driver for the research described in this chapter,
is the gyrokinetic toroidal code (GTC) [4] fusion simulation that scientists ran on the
250+ Tflop computer at Oak Ridge National Laboratory (ORNL) during the first
quarter of 2008. GTC is a state-of-the-art global fusion code that has been optimized
to achieve high efficiency on a single computing node and nearly perfect scalability on
massively parallel computers. It uses the particle-in-cell (PIC) technique to model the
behavior of particles and electromagnetic waves in a toroidal plasma in which ions and
electrons are confined by intense magneticfields. One of the goals of GTC simulations
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is to resolve the critical question of whether or not scaling in large tokamaks will
impact ignition for ITER.

In order to understand these effects and validate the simulations against exper-
iments, the scientists will need to record enormous amounts of data. The particle
data in the PIC simulations is five-dimensional, containing three spatial dimensions
and two velocity dimensions. The best estimates are that the essential information
can be 55 GB of data written out every 60 seconds. However, since each simulation
takes 1.5 days, and produces roughly 150 TB of data (including extra information
not included in our previous calculation), it is obvious that there will not be enough
disk space for the next simulation scheduled on the supercomputer unless the data is
archived on the high-performance storage system, HPSS [32], while the simulation
is running. Moving the data to HPSS, running at 300 MB/sec still requires staging
simulations, one per week. This means that runs will first need to move the data from
the supercomputer over to a large disk. From this disk, the data can then move over
to HPSS, at the rate of 300 MB/sec.

Finally, since human and system errors can occur, it is critical that scientists mon-
itor the simulation during its execution. While running on a system with 100,000
processors, every wasted hour results in 100,000 wasted CPU hours. Obviously we
need to closely monitor simulations in order to conserve the precious resources on
the supercomputer, and the time of the application scientist after a long simulation.
The general analysis that one would do during a simulation can include taking multi-
dimensional FFTs (fast fourier transforms) and looking at correlation functions over
a specified time range, as well as simple statistics. Adding these routines directly to
the simulation not only complicates the code, but it is also difficult to make all of the
extra routines scale as part of the simulation. To summarize, effectively running the
large simulations to enable cutting-edge science, such as the GTC fusion simulations
described above, requires that the large volumes of data generated must be (a) moved
from the compute nodes to disk, (b) moved from disk to tape, (c) analyzed during the
movement, and finally (d) visualized, all while the simulation is running. Workflow
management tools can be used very effectively for this purpose, as described in some
detail in Chapter 13.

In the future, codes like GTC, which models the behavior of the plasma in the center
of the device, will be coupled with other codes, such as XGC1 [5], which models the
edge of the plasma. The early version of this code, called XGC0, is already producing Please
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very informative results that fusion experimentalists are beginning to use to validate
against experiments such as DIII-D and NSTX. This requires loose coupling of the
kinetic code, XGC0, with GTC and other simulation codes. It is critical that we
monitor the XGC0 simulation results and generate simple images that can be selected
and displayed while the simulation is running. Further, this coupling is tight, that
is, with strict space and time constraints, and the data movement technologies must
be able to support such a coupling of these codes while minimizing programming
effort. Automating the end-to-end process of configuring, executing, and monitoring
of such coupled-code simulations, using high-level programming interfaces and high-
throughput data movement is necessary to enable scientists to concentrate on their
science and not worry about all of the technologies underneath.



144 Scientific Data Management

Clearly a paradigm shift must occur for researchers to dynamically and effectively
find the needle in the haystack of data and perform complex code coupling. Enabling
technologies must make it simple to monitor and couple codes and to move data from
one location to another. They must empower scientists to ask “what if” questions and
have the software and hardware infrastructure capable of answering these questions
in a timely fashion. Furthermore, effective data management is not just becoming
important—it is becoming absolutely essential as we move beyond current systems
into the age of exascale computing. We can already see the impact of such a shift in
other domains; for example, the Google desktop has revolutionized desktop comput-
ing by allowing users to find information that might have otherwise gone undetected.
These types of technologies are now moving into leadership-class computing and
must be made to work on the largest analysis machines. High-throughput end-to-end
data movement is an essential part of the solution as we move toward exascale com-
puting. In the remainder of the chapter, we present several efforts toward providing
high-throughput data movement to support these goals.

The rest of this chapter will focus on the techniques that the authors have developed
over the last few years for high-performance, high-throughput data movement and
processing. We begin the next section with a discussion of the Adaptable IO System
(ADIOS), and show how this can be extremely valuable to application scientists
and lends itself to both synchronous and asynheronous data movement. Next, we
describe the Georgia Tech DataTap method underlying ADIOS, which supports high-
performance data movement. This is followed with a description of the Rutgers DART
(decoupled and asynheronous remote transfers) method, which is another method that
uses remote direct memory access (RDMA) for high-throughput asynchronous data
transport and has been effectively used by applications codes including XGC1 and
GTC. Finally, we describe mechanisms, such as autonomic management techniques
and in-transit data manipulation methods, to support complex operations over the
LAN and WAN.

5.2 High-Performance Data Capture

A key prerequisite to high-throughput data movement is the ability to capture data
from high-performance codes with low overheads such that data movement actions
do not unnecessarily perturb or slow down the application execution. More succinctly,
data capture must be flexible in the overheads and perturbation acceptable to end-userPlease
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applications. This section first describes the ADIOS API and design philosophy and
then describes two specific examples of data capture mechanisms, the performance
attained by them, and the overheads implied by their use.

5.2.1 Asynchronous Capture of Typed Data

Even with as few as about 10,000 cores, substantial performance degradation has
been seen due to inappropriately performed I/O. Key issues include I/O systems
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difficulties in dealing with large numbers of writers into the same file system, poor
usage of I/O formats causing metadata-based contention effects in I/O subsystems,
and synchronous I/O actions unable to exploit communication/computation overlap.
For example, when a simulation attempts to open, and then write one file per proces-
sor, the first step is to contact the metadata service of the parallel file system, issuing
tens of thousands of requests at once. This greatly impacts the speed of I/O. Fur-
thermore, scientific data is generally written out in large bursts. Using synchronous
I/O techniques makes the raw speed to write this data the limiting factor. Therefore,
if a simulation demands that the I/O rate take less than 5 percent of the calculation
cost, then the file system must be able to write out, for example, 10 TB of data every
3600 seconds (generated in burst mode at a rate of 56 GB/sec). Using asynchronous
techniques instead would only require a sustained 2.8 GB/sec write in the same case.

A first step to addressing these problems is to devise I/O interfaces for high-
performance codes that can exploit modern I/O techniques while providing levels of
support to end users that do not require them to have intimate knowledge of underlying
machine architectures, I/O, and communication system configurations.

The Adaptable I/O System, ADIOS, is a componentization of the I/O layer. It
provides the application scientist with easy-to-use APIs, which are almost as simple
as standard FORTRAN write statements. ADIOS separates the metadata “pollution”
away from the API, and allows the application scientist to specify the variables in their
output in terms of groups. For example, let’s suppose that a user has a variable, zion,
which is associated with the ion particles of the plasma. The variable has the units of
m/s (meters/second), and has the long name of ion parameters. Conventionally, all of
this metadata must be written in the code, which involves placing these statements
inside the Fortran/C code. In the ADIOS framework, the application scientist creates
an XML file that contains this information, along with the specification of the method
for each group, such as MPI-IO, or POSIX. The method declarations can be switched at Please
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runtime and allow the scientist to change from POSIX I/O, to MPI-IO, to asynchronous
methods such as the DataTap services [6] and the DART system [7] described below.
By allowing the scientist to separate out the I/O implementation from the API, users are
allowed to keep their code the same and only change the underlying I/O method when
they run on different computers. Another advantage of specifying the information in
this manner is that the scientist can just maintain one write statement for all of the
variables in a group, thus simplifying their programs. This system also allows the user
to move away from individual write statements, and as a result, the system can buffer
the data and consequently write large blocks of data, which works best in parallel file
systems. A small example of an XML file is as follows.

< ioconfig >

<datatype name=‘‘restart’’>

<scalar name=‘‘mi’’ path =‘‘/ param’’ type=‘‘ integer ’’/>

<dataset name=‘‘zion’’ type=‘‘ real ’’ dimensions=‘‘n ,1:4,2, mi’’/>
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<data−attribute name=‘‘units ’’ path =‘‘/ param’’ value=‘‘m/s’’/>

<data−attribute name=‘‘long{\ }name’’ path=‘‘/param’’ value=‘‘ion
parameters’’/>

< /datatype >

<method priority=‘‘1’’ method=‘‘DATATAP’’ iterations=‘‘1’’ type=‘‘diagnosis’’>
srv=ewok001.ccs.ornl .gov</method>

< /ioconfig >

Most importantly, however, ADIOS can provide such methods with rich metadata
about the data being moved, thereby enabling the new paradigms for high-throughput
data movement. These new paradigms include: (1) compact binary data transmission
using structure information about the data (e.g., for efficient interpretation of data
layout and access to and manipulation of select data fields): (2) the ability to operate
on data as it is being moved (e.g., for online data filtering or data routing); and (3) the
ability to use appropriate underlying transport mechanisms (e.g., such as switching
from MPI-I/O to POSIX, to netCDF, to HDF-5). Furthermore, we envision building
a code-coupling framework extending the ADIOS APIs that will allow scientists to
try different mathematical algorithms by simply changing the metadata. Beyond pro-
viding information about the structure of the data, ADIOS also has built-in support
for collecting and forwarding to the I/O subsystem key performance information, en-
abling dynamic feedback for scheduling storage-related I/O, the external configuration
of data collection and storage/processing mechanisms, and value-added, additional
in-flight and offline/near-line processing of I/O data. For example, specifying that the
data be reduced in size (using a program that is available where the data is) before
the data is written to the disk.

ADIOS encodes data in a compact, tagged, binary format for transport. This can
either be written directly to storage or parsed for repackaging in another format, such
as HDF-5 or netCDF. The format consists of a series of size-marked elements, each
with a set of tags-values pairs to describe the element and its data. For example, an
array is represented by a tag for a name, a tag for a data path for HDF-5 or similar
purposes, and a value tag. The value tag contains rank of the array, the dimensional
magnitude of each rank, the data type, and the block of bytes that represent the data. In
the previous example where we showed the XML data markup, the large array written
during the restarts for GTC is zion. Zion has rank=4, the dimensions are (n × 4 × 2 ×
mi) on each process, and the block of bytes will be 4*n*4*2*mi bytes. The remainder
of this section demonstrates the utility of ADIOS for driving future work in high-
throughput data movement, by using it with two different asynchronous data capture
and transport mechanisms: the Rutgers DART system and the Georgia Tech LIVE
DataTap system. Before doing so, we first summarize some of the basic elements
of ADIOS.
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ADIOS exploits modern Web technologies by using an external XML configuration
file to describe all of the data collections used in the code. The file describes for each
element of the collection the data types, element paths (similar to HDF-5 paths), and
dynamic and static array sizes. If the data represents a mesh, information about the
mesh, as well as the global bounds of an array, and the ghost regions1 used in the MPI
programming is encoded in the XML structure. For each data collection, it describes
the transport mechanism selection and parameters as well as pacing information for
timing the data transmissions. With this information, the ADIOS I/O implementation
can then control when, how, and how much data is written at a time, thereby affording
efficient overlapping with computation phases of scientific codes and proper pacing
to optimize the write performance of the storage system.

A basic attributes of ADIOS is that it de-links the direct connection between the
scientific code and the manipulation of storage, which makes it possible to add compo-
nents that manipulate the I/O data outside the realm of the supercomputer’s compute
nodes. For example, we can inject filters that generate calls to visualization APIs like
Visit [8], route the data to potentially multiple destinations in multiple formats, and
apply data-aware compression techniques.

Several key high-performance computing (HPC) applications’ driving capacity
computing for petascale machines have been converted to using ADIOS, with early
developments of ADIOS based on two key HPC applications: GTC (a fusion mod-
eling code) and Chimera (an astrophysics supernova code) [9]. Prior to its use of
ADIOS, GTC employed a mixture of MPI-IO, HDF-5, netCDF, and straight Fortran
I/O; and Chimera used straight Fortran I/O routines for writing binary files. Both of
these codes provided different I/O requirements that drove the development of the
API. Specifically, in GTC, there are seven different data formats, corresponding to
various restart, diagnostic, and analysis values. Some of the data storage format re-
quirements, such as combining some data types together in the same file, represent a
good exercise of the capabilities of the ADIOS API. Chimera exercises the ADIOS
API in three different ways. First, it contains approximately 475 different scalars
and arrays for a single restart format. Second, this data ideally needs to be stored in
both an efficient binary format and a readable text format. Third, the large number of
elements encouraged the development of an experimental data reading extension for
the ADIOS API that follows similar API semantics as used for writing, and leverages
the writing infrastructure as much as possible. A simple code fragment showing how
ADIOS is used is presented below:

call adios{\_}init (’config.xml’)

...

! do main loop

call adios{\_}begin{\_}calculation ()

1Ghost regions are regions that overlap adjacent grid cells.
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! do non-communication work

call adios{\_}end{\_}calcuation ()

...

! perform restart write

...

! do communication work

call adios{\_}end{\_}iteration ()

! end loop

...

call adios{\_}finalize ()

Adios init () initiates parsing of the configuration file generating all of the inter-
nal data type information, configures the mechanisms described above, and poten-
tially sets up the buffer. Buffer creation can be delayed until a subsequent call to
adios allocate buffer if it should be based on a percentage of free memory or other
allocation-time-sensitive considerations.

Adios begin calculuation () and adios end calculation () provide the “ticker”
mechanism for asynchronous I/O, providing the asynchronous I/O mechanism with
information about the compute phases, so that the I/O can be performed at times
when the application is not engaged in communications. The subsequent “end” call
indicates that the code wishes to perform communication, ratcheting back any I/O
use of bandwidth.

Adios end iteration () is a pacing function designed to give feedback to asyn-
chronous I/O to gauge what progress must be made with data transmission in order
to keep up with the code. For example, if a checkpoint/restart2 is written every 100
iterations, the XML file may indicate an iteration count that is less than 100, to evac-
uate the data in order to accommodate possible storage congestion or other issues,
such as a high demand on the shared network.

Adios finalize () indicates the code is about to shut down and any asynchronous
operations need to complete. It will block until all of the data has been drained from
the compute node.

2When running simulations with many time steps, it is customary to write out checkpoint/restart data
following a number of time steps, in case the computation needs to backtrack, thus avoiding repeating the
computation from the start.
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We describe next two asynchronous I/O mechanisms underlying ADIOS. Note that
these mechanisms target current day supercomputers, which are typically composed
of login nodes, I/O nodes, and compute nodes.

5.2.2 DataTaps and DataTap Servers

DataTap addresses the following performance issues for high-throughput data
movement:

� Scaling to large data volumes and large numbers of I/O clients given limited
I/O resources

� Avoiding excessive CPU and memory overheads on the compute nodes
� Balancing bandwidth utilization across the system
� Offering additional I/O functionality to the end users, including on-demand

data annotation and filtering

In order to attain these goals, it is necessary to move structured rather than unstruc-
tured data, meaning, as expressed above in describing the ADIOS API, efficiency in
data movement is inexorably tied to knowledge about the type and structure of the data
being moved. This is because such knowledge makes it possible to manipulate data
during movement, including routing it to appropriate sites, reorganizing it for storage
or display, filtering it, or otherwise transforming it to suit current end-user needs.
Next we describe the efficient, asynchronous data capture and transport mechanisms
that underlie such functionality:

� DataTaps — flexible mechanisms for extracting data from or injecting data
into HPC computations; efficiency is gained by making it easy to vary I/O
overheads and costs in terms of buffer usage and CPU cycles spent on I/O and
by controlling I/O volumes and frequency. DataTaps move data from compute
nodes to DataTap servers residing on I/O nodes.

� Structured data — structure information about the data being captured, trans-
ported, manipulated, and stored enables annotation or modification both syn-
chronously and asynchronously with data movement.

� I/O graphs — explicitly represent an application’s I/O tasks as configurable
overlay3 topologies of the nodes and links used for moving and operating on
data, and enable systemwide I/O resource management. I/O graphs start with the
lightweight DataTaps on computational nodes; traverse arbitrary additional task
nodes on the petascale machine (including compute and I/O nodes as desired);
and “end” on storage, analysis, or data visualization engines. Developers use
I/O graphs to flexibly and dynamically partition I/O tasks and concurrently

3Overlay networks are virtual networks of nodes on top of another physical network. For the I/O graphs,
data moves between nodes in the I/O graph overlay via logical (virtual) links, whereas in reality it may
traverse one or more physical links between the nodes in the underlying physical network.
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Figure 5.1 I/O graph Example.

execute them across petascale machines and the ancillary engines supporting
their use.

The simple I/O graphs shown in Figure 5.1 span compute to I/O nodes.
This I/O graph first filters particles to only include interesting data — say,
within some bounding boxes or for some plasma species. The filtering I/O
node then forwards the particle data to other I/O nodes, which in turn forward
particle information to in situ visualization clients (which may be remotely ac-
cessed), and to storage services that store the particle information two different
ways — one in which the particles are stored based on the bounding box they
fall in, and one in which the particles are stored based on the timestep and
compute node in which the information was generated.

� Scheduling techniques dynamically manage DataTap and I/O graph execution,
taking into account the I/O costs imposed on petascale applications.

� Experimental results attained with DataTaps and I/O graphs demonstrate sev-
eral important attributes of I/O systems that benefit petascale machines. First,
asynchronous I/O makes it possible to carry out I/O actions while massively par-
allel processor (MPP) computations are ongoing. This computation–I/O over-
lap improves throughput substantially, compared with the synchronous methods
used by current file systems. Second, when performing I/O asynchronously, we
demonstrated that it can scale without perturbing the applications running on
compute nodes. For instance, sustained high-bandwidth data extraction (over
900 MB/s) has been achieved on the Cray XT4 without undue application
perturbation and with moderate buffering requirements [6].

DataTaps Implementation A DataTap is a request-read service designed to address
the difference between the available memory on typical MPP compute partitions and
that on I/O and service nodes. We assume the existence of a large number of compute
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nodes producing data — DataTap clients — and a smaller number of I/O nodes
receiving the data — DataTap servers. The DataTap client issues a data-available
request to the DataTap server, encodes the data for transmission, and registers this
buffer with the transport for remote read. For very large data sizes, the cost of encoding
data can be significant, but it will be dwarfed by the actual cost of the data transfer
[10–12]. On receipt of the request, the DataTap server issues a read call. The DataTap
server feeds an I/O graph, which can replicate the functionality of writing the output
to a file, or it can be used to perform “in-flight” data transformations.

The design and implementation of DataTap servers deal with several performance
issues and constraints present on modern MPP machines. First, due to the limited
amount of memory available on the DataTap server, the server only issues a read call
if there is memory available to complete it. Second, since buffer space used by asyn-
chronous I/O on compute nodes is limited, the server issues multiple read calls each
time it operates. Third, the next generation of DataTap servers will install controls
on the speed and timing of reading data from DataTap buffers. The goal is to prevent
perturbation caused when I/O actions are performed simultaneously with internal
communications of application code (e.g., MPI collectives). Additional constraints
result from in-transit actions performed by I/O graphs; these are evaluated in our
ongoing and future work.

The current implementation of DataTap leverages existing protocols (i.e., Cray
Portals and InfiniBand RDMA). Since the abstraction presented to the programmer
is inherently asynchronous and data driven, data movement can take advantage of
data object optimizations like message aggregation, data filtering, or other types
of in-transit data manipulations, such as data validation. In contrast, the successful
paradigm of MPI-IO, particularly when coupled with a parallel file system, heavily
leverages the file nature of the data target and utilizes the transport infrastructure as
efficiently as possible within that model. That inherently means the underlying file
system concepts of consistency, global naming, and access patterns will be enforced
at higher levels as well. By adopting a model that allows for the embedding of com-
putations within the transport overlay, it is possible to delay execution of or entirely
eliminate those elements of the file object that the application does not immediately
require. If a particular algorithm does not require consistency (as is true of some highly
fault-tolerant algorithms), then it is not necessary to enforce it from the application
perspective. Similarly, if there is an application-specific concept of consistency (such
as validating a checkpoint file before allowing it to overwrite the previous check-
point file), then that could be enforced, as well as all of the more application-driven
specifications mentioned earlier.

DataTaps leverage extensive prior work with high-performance data movement,
including (1) efficient representations of meta-information about data structure and Please
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layout (PBIO [13]); which enables (2) high performance and “structure-aware” ma-
nipulations on data in flight, carried out by dynamically deployed binary codes and
using higher level tools with which such manipulations can be specified, termed
XChange. [14]; (3) a dynamic overlay (i.e., the I/O graph) optimized for efficient data
movement, where data fast path actions are strongly separated from the control actions
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necessary to build, configure, and maintain the overlay4 [15]; and (4) a lightweight
object storage facility (LWFS [16]) that provides flexible, high-performance data
storage while preserving access controls on data.

Because the DataTap API is not common to GTC or other current MPP applica-
tions, we use the ADIOS system to make DataTap (and structured stream) integration
easier. By employing this API, a simple change in an entry in the XML file causes
GTC, for example, to use synchronous MPI-IO, POSIX, our asynchronous DataTap
servers, parallel-netCDF, HDF-5, NULL (no I/O performed), or other transports.
Further, each data grouping, such as a restart versis diagnostic output, can use dif-
ferent transports, at no loss in performance compared with the direct use of methods
like MPI-IO. The outcome is that integration details for downstream processing are
removed from MPP codes, thereby permitting the user to enable or disable integra-
tion without the need for recompilation or relinking. A key property of structured
streams preserved by ADIOS is the description of the structure of data to be moved
in addition to extents or sizes. This makes it possible to describe semantically mean-
ingful actions on data in ADIOS, such as chunking it for more efficient transport,
filtering it to remove uninteresting data for analysis or display [17], and similar
actions.

We describe next the use of DataTap with the GTC code, as an example. Once GTC
had been modified to use ADIOS, it was configured to use the DataTap as an output
transport. The DataTap uses some of the compute node memory, storage that would
otherwise be available to GTC. This method allows the application to proceed with
computation as the data is moved to the DataTap server. Once at the DataTap server,
the data is forwarded into the I/O graph.

The GTC simulations use several postprocessing tasks. These include the visualiza-
tion of the simulated plasma toroid with respect to certain parameters. We describe
next how the visualization data is constructed using DataTap and the I/O graph.
The visualization that has proven useful is a display of the electrostatic potential
at collections of points in a cross-section of the simulated toroid, called poloidal
planes. The poloidal plane is described by a grid of points, each of which has a scalar
value — the electrostatic potential at that grid vertex. To construct an image, this
grid can be plotted in two or three dimensions, with appropriate color values as-
signed to represent the range of potential values. The visualization can be constructed
after the simulation is run by coordinating information across several output files.
Using the I/O graph components, we can recover this information with minimal im-
pact on the application and, equally importantly, while the application is running.
This permits end users to rapidly inspect simulation results while the MPP code is
executing.

The DataTap is comprised of two separate components, the server and the client.
The DataTap server operates on the I/O or service nodes, while the DataTap client
is an I/O method provided to GTC through the ADIOS API. Because the number
of compute nodes is so much greater than the number of service nodes, there is a

4Such control actions are referred to as the control layer for the overlay network.
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corresponding mismatch between the number of DataTap clients and servers. To take
advantage of asynchronicity, the DataTap client only issues a transfer request to the
DataTap server instead of sending the entire data packet to the server. Also, to enable
asynchronous communication the data is buffered before the data transfer request is
issued. We use PBIO [18] to marshal the data into a buffer reserved for DataTap usage.
The use of the buffer consumes some of the memory available to GTC but allows the
application to proceed without waiting for I/O. The application only blocks for I/O
while waiting for a previous I/O request to complete.

Once the DataTap server receives the request, it is queued up locally for future
processing. The queuing of the request is necessary due to the large imbalance in the
total size of the data to be transferred and the amount of memory available on the
service node. For each request the DataTap server issues an RDMA read request to
the originating compute node.

To maximize the bandwidth usage for the application, the DataTap server issues
multiple RDMA read requests concurrently. The number of requests is predicated on
the available memory at the service nodes and the size of the data being transferred.
Also to minimize the perturbation caused by asynchronous I/O, the DataTap server
uses a scheduling mechanism so as not to issue read requests when the application is
actively using the network fabric. Once the data buffer is transferred over, the DataTap
server sends the buffer to the I/O graph for further processing.

DataTap Evaluation To evaluate the efficiency and performance of the DataTap we
look at the bandwidth observed at the DataTap server (at the I/O node). In Figure 5.2
we evaluate the scalability of our two DataTap implementations by looking at the
maximum bandwidth achieved during data transfers. The InfiniBand DataTap (on
a Linux Cluster) suffers a performance degradation due to the lack of a reliable
datagram transport in our current hardware. However, this performance penalty only
effects the first iteration of the data transfer, where connection initiation is performed.
Subsequent transfers use cached connection information for improved performance.
For smaller data sizes the Cray XT3 is significantly faster than the InfiniBand DataTap.
The InfiniBand DataTap offers higher maximum bandwidth due to more optimized
memory handling on the InfiniBand DataTap; we are currently addressing this for the
Cray XT3 version.

In GTC’s default I/O pattern, the dominant cost is from each processor’s writ-
ing out the local array of particles into a separate file. This corresponds to writing
out something close to 10% of the memory footprint of the code, with the write
frequency chosen so as to keep the average overhead of I/O within a reasonable
percentage of total execution time. As part of the standard process of accumulat-
ing and interpreting this data, these individual files are then aggregated and parsed
into time series, spatially bounded regions, and so forth, depending on downstream
needs.

To demonstrate the utility of structured streams in an application environment, we
evaluated GTC on a Cray XT3 development cluster at ORNL with two different input
set sizes. For each, we compared GTCs runtime for three different I/O configurations:
no data output, data output to a per-mpi-process Lustre file, and data output using a
DataTap (Table 5.1). We observed a significant reduction in the overhead caused by
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Figure 5.2 DataTap performance, on the left from the Cray XT3, and on the right
from Infiniband.

the data output as the input set size increases, from about 9% on Lustre to about 3%
using DataTap.5

The structured stream is configured with a simple I/O graph: DataTaps are placed
in each of the GTC processes, feeding out asynchronously to an I/O node. From the
I/O node, each message is forwarded to a graph node where the data is partitioned

5We define the I/O overhead as (time with I/O − total time with no I/O)/total time with no I/O.
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TABLE 5.1 Comparison of GTC run times on the ORNL Cray XT3
development machine for two input sizes using different data output mechanisms

Run Time for 100 iterations Time for 100 iterations
Parameters (582,410 ions) (1,164,820 ions)

No Output 213 422
Lustre 232 461
DataTap 220 435

into different bounding boxes. Once the data is received by the DataTap server, we
filter the data based on the bounding box and then transfer the data for visualization.
Copies of both the whole data and the multiple small partitioned datasets are then
forwarded on to the storage nodes. Since GTC has the potential of generating PBs of
data, we find it necessary to filter/reduce the total amount of data. The time taken to
perform the bounding box computation is 2.29s and the time to transfer the filtered
data is 0.037s. In the second implementation we transfer the data first and run the
bounding box filter after the data transfer. The time taken for the bounding box filter
is the same (2.29s) but the time taken to transfer the data increases to 0.297s. The key
is not the particular values for the two cases but rather the relationship between them,
which shows the relative advantages and disadvantages. In the first implementation
the total time taken to transfer the data and run the bounding box filter is lower, but the
computation is performed on the DataTap server. This increases the server’s request
service latency. For the second implementation, the computation is performed on a
remote node and the impact on the DataTap is reduced. The value of this approach is
that it allows an end user to compose a utility function that takes into account the cost
in time at a particular location. Since most centers charge only for time on the big
machines, often times the maximum utility will show that filtering should be done
on the remote nodes. If the transmission time to the remote site was to increase and
slow down the computation more than the filtering time, higher utility would come
from filtering the data before moving it. Thus, it is important that the I/O system be
flexible enough to allow the user to switch between these two cases.

5.2.3 High-Speed Asynchronous Data Extraction Using DART

As motivated previously, scientific applications require a scalable and robust substrate
for managing the large amounts of data generated and for asynchronously extract-
ing and transporting them between interacting components. DART (decoupled and
asynchronous remote transfers) [7] is an alternate design strategy to DataTap de-
scribed above, and it is an efficient data transfer substrate that effectively addresses
the requirements described above. Unlike DataTap, which attempts to develop an
overall data management framework, DART is a thin software layer built on RDMA
technology to enable fast, low-overhead, and asynchronous access to data from a
running simulation, and support high-throughput, low-latency data transfers. The de-
sign and prototype implementation of DART using the Portals RDMA library on the
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Figure 5.3 Architectural overview of DART.

Cray XT3/XT4 at ORNL are described next. DART has been integrated with the
applications simulating fusion plasma in a Tokamak, described above, and is another
key component of ADIOS.

The primary goal of DART is to efficiently manage and transfer large amounts
of data from applications running on the compute nodes of an HPC system to the
service nodes and remote locations, to support remote application monitoring, data
analysis, coupling, and archiving. To achieve these goals, DART is designed so that
the service nodes asynchronously extract data from the memory of the compute
nodes, and so we offload expensive data I/O and streaming operations from the com-
pute nodes to these service nodes. DART architecture contains three key compo-
nents as shown in Figure 5.3: (1) a thin client layer (DARTClient), which runs on
the compute nodes of an HPC system and is integrated with the application; (2) a
streaming server (DARTSServer), which runs independently on the service nodes
and is responsible for data extraction and transport; and (3) a receiver (DARTRe-
ceiver), which runs on remote nodes and receives and processes data streamed by
DARTSServer.

A performance evaluation using the GTC simulation demonstrated that DART can
effectively use RDMA technologies to offload expensive I/O operations to service
nodes with very small overheads on the simulation itself, allowing a more efficient
utilization of the compute elements, and enabling efficient online data monitoring and
analysis on remote clusters.

5.2.4 In-transit services

In addition to the data movement and low-level data capture interfaces described
above, applications that require high-throughput adaptive I/O must also depend on
robust transport and specialization services. Such specialization services are required
to perform “in-transit” data inspection and manipulation, including filtering, aggre-
gation, or other types of processing actions that tune the data output to the cur-
rent user- or application-specific requirements. The use of specialization services
jointly with the basic data movement results in attainment of adaptive I/O services,
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needed to address the dynamism in application inputs and outputs, computational and
communication loads and operating conditions, and end-user interests. We focus here
on techniques for the autonomic tuning of these transports to provide the user-level
quality of information and specification of utility that next-generation application data
flows require. An example of this is a scientist who is particularly interested in one
type of interatomic bond during a molecular dynamics simulation and who is, under
bandwidth constraints, willing to rely on a specialized transport service that filters out
simulation output not related to atoms involved in such bonds, or that gives those data
outputs higher priority compared with other outputs. The detection of the bandwidth
limitation and the selection of the appropriate specialization action (i.e., filtering or
change in priority) should happen autonomically, without additional intervention of
the simulation user.

5.2.4.1 Structured Data Transport: EVPath

After data events have been captured through the DataTap implementation of the
ADIOS interface, an event processing architecture is provided in support of high-
performance data streaming in networks with internal processing capacity. EVPath,
the newest incarnation of a publish/subscribe infrastructure developed over many
years [19, 20], is designed to allow for easy implementation of overlay networks with
active data processing, routing, and management at all points within the overlay. In
addition, EVPath allows the use of a higher-level control substrate to enable global
overlay creation and management. Domain-specific control layers allow the man-
agement of the overlay to best utilize the underlying physical resources and provide
for overlays that best address the application needs. For instance, the IFLOW man-
agement layer described in [11] is best suited for large-scale, wide-area, streaming
applications, whereas another version of a control layer is more suitable for a mas-
sively parallel processor (MPP) such as the Cray system, where management com-
ponents on compute nodes have limited ability for interaction with external control
entities.

The basic building block in EVPath is a stone. An overlay path is comprised of a
number of connected stones. A stone is a lightweight entity that roughly corresponds
to processing points in a dataflow diagram. Stones can perform different types of data
filtering and data transformation, as well as transmission of data between processes
over network links.

EVPath is designed to support a flexible and dynamic computational environment
where stones might be created on remote nodes and possibly relocate during the course
of the computation. In order to support such an environment, we use a sandboxed
version of C, coupled with a dynamic code-generation facility to allow native binary
transformation functions to be deployed anywhere in the system at runtime [21].
The interface allows for the specification of data gateways (pass/no-pass) and data
transformations (sum aggregation trees), and calls out to more specialized code (for
example, invocation of a signed, shared library for performing FFTs). From these
elements, the application user can specify in much greater detail how the interaction
between the output of the running code and the data stored for later use should look.
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5.2.4.2 Data Workspaces and Augmentation of Storage Services

As a concrete example of the user-driven interfaces that can be provided for application
scientists, it is useful to consider the concept of data workspaces. In a data workspace,
users are provided with an execution model (i.e., a semitransparent way of creating
and submitting batch MPI jobs), along with a way for specifying the data control
networks for how this data should move and be interpreted while in transit from the
computing resource to the storage. Note that this concept interacts cleanly with the
concept of a workflow — it is a part of a rich transport specification that then feeds
the manipulation of the data once it has reached disk.

As an example of this concept, a team at Georgia Institute of Technology has built a
data workspace for molecular dynamics applications that can make synchronous tests
of the quality of the data and use that to modify the priority and even the desirability
of moving that data into the next stage of its workflow pipeline [14]. Specifically, this
workspace example modifies a storage service (ADIOS) that the molecular dynamics
program invokes. As an example scenario, consider an application scientist who
runs the parallel data output through an aggregation tree so that there is a single
unified dataset (rather than a set of partially overlapping atomic descriptors), and
then undergoes data quality and timeliness evaluation. Raw atomic coordinate data is
compared to a previous graph of nearest neighbors through the evaluation of a central
symmetry function to determine if any dislocations (seed of crack formation) have
occurred in the simulated dataset. The frequency of the data storage is then changed,
in this particular case, dependent on whether the data is from before, during, or after
the formation of a crack, since the data during the crack formation itself is of the
highest scientific value.

Similarly, in [14], data quality can be adapted based on a requirement for timeliness
of data delivery — if a particular piece of data is too large to be delivered within the
deadline, user-defined functions can be chosen autonomically to change data quality so
as to satisfy the delivery timeline. In the case of an in-line visualization annotation, one
could consider deploying a host of visualization-related functions — changing color
depth, changing frame rate, changing resolution, visualization-specific compression
techniques, and so forth Based on the user-specified priorities (color is unimportant,
but frame rate is crucial), the in-transit manipulation of the extracted data allows for a
much higher fidelity interaction for the application scientist. As the adaptation of the
data stream becomes more complex, it leads naturally to discussion of full-fledged
autonomic control of the network and computer platforms, which is the topic of the
next sections.

5.2.4.3 Autonomic Data Movement Services Using IQ-Paths

Among data-driven high-performance applications, such as data mining and remote
visualization, the ability to provide quality of service (QoS) guarantees is a common
characteristic. However, due to most networking infrastructure being a shared re-
source, there is a need for middleware to assist end-user applications in best utilizing
available network resources.
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An IQ-Path is a novel mechanism that enhances and complements existing adaptive
data streaming techniques. First, IQ-Paths dynamically measure [22, 23] and also
predict the available bandwidth profiles on the network links. Second, they extend
such online monitoring and prediction to the multilink paths in the overlay networks
used by modern applications and middleware. Third, they offer automated methods
for moving data traffic across overlay paths, including splitting a data stream across
multiple paths and dynamically differentiating the volume and type of data traffic
on each path. Finally IQ-Paths use statistical methods to capture the noisy nature of
available network bandwidth, allowing a better mapping to the underlying best-effort
network infrastructure.

The overlay implemented by IQ-Paths has multiple layers of abstraction. First,
its middleware underlay — a middleware extension of the network underlay pro-
posed in [24] — implements the execution layer for overlay services. The underlay
is comprised of processes running on the machines available to IQ-paths, connected
by logical links and/or via intermediate processes acting as router nodes. Second,
underlay nodes continually assess the qualities of their logical links as well as the
available resources of the machines on which they reside. Figure 5.4 illustrates an
overlay node part of an IQ-Path. The routing and scheduling of application data is
performed with consideration of path information generated by the monitoring en-
tities. The service guarantees provided to applications are based on such dynamic
resource measurements, runtime admission control, resource mapping, and a self-
regulating packet routing and scheduling algorithm. This algorithm, termed PGOS
(predictive guarantee overlay scheduling), provides probabilistic guarantees for the
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Figure 5.4 Data Movement services using IQ-Path.
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available bandwidth, packet loss rate, and round-trip time (RTT) attainable across the
best-effort network links in the underlay. More information on IQ-Paths can be found
at [25].

IQ-Paths and PGOS provide the following services:

� Probabilistic and “violation bound” guarantees. Using the PGOS algorithm,
service guarantees can be provided using network behavior prediction. PGOS
can ensure that applications receive the bandwidths they require with high
levels of accuracy (e.g., an application receives its required bandwidth 99%
of the time), and that the occurrence of any violations, such as missed packet
deadlines, is bound (e.g., only 0.1% of packets miss their deadline).

� Reduced jitter. Buffering requirements are minimized by reducing jitter in
time-sensitive applications.

� Differentiated streaming services. Higher priority streams receive better ser-
vice when network approaches maximum utilization.

� Full bandwidth utilization. Even with guarantees, the available and utilized
bandwidths are not sacrificed.

5.3 Autonomic Services for Wide-Area and In-Transit Data

Complementary of the low-overhead asynchronous data extraction capabilities pro-
vided by ADIOS and its underlying mechanisms (i.e., DataTap and DART), wide-area
streaming aims at efficiently and robustly transporting the extracted data from live
simulations to remote services. In the previous sections we talked about services
that worked on the local area network, and in this section we discuss services thatPlease

provide full
term.

must work over the wide area network. For example, in the context of the DOE Sci-
DAC CPES fusion simulation project [26], a typical workflow consists of coupled
simulation codes — the edge turbulence particle-in-cell (PIC) code (GTC) and the
microscopic MHD code (M3D) — running simultaneously on thousands of proces-
sors at various supercomputing centers. The data produced by these simulations must
be streamed to remote sites and transformed along the way, for online simulation
monitoring and control, simulation coupling, data analysis and visualization, online
validation, and archiving. Wide-area data streaming and in-transit processing for such
a workflow must satisfy the following constraints: (1) Enable high-throughput, low-
latency data transfer to support near real-time access to the data. (2) Minimize related
overhead on the executing simulation. Since the simulation is long running and exe-
cutes in batch for days, the overhead due to data streaming on the simulation should
be less than 10% of the simulation execution time. (3) Adapt to network conditions to
maintain desired quality of service (QoS). The network is a shared resource and the
usage patterns vary constantly. (4) Handle network failures while eliminating data
loss. Network failures can lead to buffer overflows, and data has to be written to
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local disks to avoid loss. However, this increases overhead on the simulation and the
data is not available for real-time remote analysis and visualization. (5) Effectively
manage in-transit processing while satisfying the above requirements. This is partic-
ularly challenging due to the heterogeneous capabilities and dynamic capacities of
the in-transit processing nodes.

5.3.1 An Infrastructure for Autonomic Data Streaming

The data streaming service described in this section is constructed using the Accord
programming infrastructure [27–29], which provides the core models and mechanisms
for realizing self-managing Grid services. These include autonomic management
using rules as well as model-based online control. Accord extends the service-based
Grid programming paradigm to relax static (defined at the time of instantiation)
application requirements and system/application behaviors and allows them to be
dynamically specified using high-level rules. Further, it enables the behaviors of
services and applications to be sensitive to the dynamic state of the system and the
changing requirements of the application, and to adapt to these changes at runtime.
This is achieved by extending Grid services to include the specifications of policies
(in the form of high-level rules) and mechanisms for self-management, and providing
a decentralized runtime infrastructure for consistently and efficiently enforcing these
policies to enable autonomic self-managing functional interaction and composition
behaviors based on current requirements, state, and execution context.

An autonomic service extends a Grid service (such as the in-transit services de-
scribed above) with a control port, as shown in Figure 5.5. The control augments the
functional and operational ports that typically define computational elements, and
supports external monitoring and steering. An autonomic service also encapsulates a
service manager, shown in Figure 5.5 on the right, which monitors and controls the
runtime behaviors of the managed service according to changing requirements and
state of applications as well as their execution environment based on user-defined
rules. As shown in the figure, the manager uses the local state of the element as well
as its context along with user-defined rules to generate adaptations as well as man-
agement events. The control port (Figure 5.5, left) consists of sensors that enable the
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state of the service to be queried, and actuators that enable the behaviors of the service
to be modified. Rules are simple if-condition-then-action statements described using
XML and include service adaptation and service interaction rules. Accord is part of
Project AutoMate [29], which provides the required middleware services.

The element (service) managers within the Accord programming system are aug-
mented with online controllers [30, 31] as shown in Figure 5.6. The figure shows
the complementary relationship of an element manager and the limited look-ahead
controller (LLC) within an autonomic element. Each manager monitors the state of its
underlying elements and their execution context, collects and reports runtime infor-
mation, and enforces the adaptation actions decided by the controller. These managers
thus augment human-defined rules, which may be error-prone and incomplete, with
mathematically sound models, optimization techniques, and runtime information.
Specifically, the controllers decide when and how to adapt the application behavior,
and the managers focus on enforcing these adaptations in a consistent and efficient
manner.

We use the Accord programming system described above to address end-to-end
QoS management and control at two levels shown in Figure 5.7. The first level in
this figure is at the end points using adaptive buffer management mechanisms and
proactive QoS management strategies based on online control and user-defined polices
[30–32]. The second level shown in the figure is at the in-transit processing nodes,
which are resources in the data path between the source and the destination, using
reactive runtime management strategies, adaptive buffer management mechanisms
[33, 34]. These two levels of management operate cooperatively to address overall
application constraints and QoS requirements.

QoS management at application end-points The QoS management strategy at the
application end-points combines model-based LLCs and policy-based managers with
adaptive multithreaded buffer management [35]. The application-level data stream-
ing service consists of a service manager and an LLC controller. The QoS manager
monitors state and execution context, collects and reports runtime information, and
enforces adaptation actions determined by its controller. Specifically, the controller
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decides when and how to adapt the application behavior, and the QoS manager focuses
on enforcing these adaptations in a consistent and efficient manner. The effectiveness
of this strategy was experimentally demonstrated in [32], which showed that it reduced
overheads on the simulation (less than 5%) as well as buffer overflow and data loss.

5.3.2 QoS Management at In-Transit Nodes

In-transit data processing is achieved using a dynamic overlay of available nodes
(workstations or small to medium clusters, etc.) with heterogeneous capabilities and
loads — note that these nodes may be shared across multiple applications flows.
The goal of in-transit processing is to opportunistically process as much data as
possible before the data reaches the sink. The in-transit data processing service at
each node performs three tasks, namely, processing, buffering and forwarding, and
the processing depends on the capacity and capability of the node and the amount
of processing that is still required for a data block at hand. The basic idea is that
the in-transit data processing service at each node completes at least its share of the
processing (which may be predetermined or dynamically computed) and can perform
additional processing if the network is too congested for forwarding. Key aspects of
the in-transit QoS management include: (1) adaptive buffering and data streaming
that dynamically adjusts buffer input and buffer drainage rates, (2) adaptive run-
time management in response to network congestions by dynamically monitoring the
utility and tradeoffs of local computation versus data transmission, and (3) signal
the application end-points about network state to achieve cooperative end-to-end
self-management — that is, the in-transit management reacts to local services while
the application end-point management responds more intelligently by adjusting its
controller parameters to alleviate these congestions.
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Experiments were conducted using the cooperative end-to-end self-managing data
streaming using the GTC fusion application [32, 33] have shown that adaptive process-
ing by the in-transit data processing service during congestions decrease the average
percent idle time per data block from 25% to 1%. Furthermore, coupling end-point
and in-transit level management during congestion reduces percent average buffer
occupancy at in-transit nodes from 80% to 60.8%. Higher buffer occupancies at the
in-transit lead to failures and result in in-transit data being dropped, and can impact
the QoS of applications at the sink. Finally end-to-end cooperative management de-
creases the amount of data lost due to congestions at intermediate in-transit nodes,
increasing the QoS at the sink. For example, if the average processing time per data
block (1 block is 1 MB) is 1.6 sec at the sink, cooperative management saves about
168 sec (approx. 3 minutes) of processing time at the sink.

5.4 Conclusions

As the complexity and scale of current scientific and engineering applications grow,
managing and transporting the large amounts of data they generate is quickly becom-
ing a significant bottleneck. The increasing application runtimes and the high cost
of high-performance computing resources make online data extraction and analysis
a key requirement in addition to traditional data I/O and archiving. To be effective,
online data extraction and transfer should impose minimal additional synchroniza-
tion requirements, should have minimal impact on the computational performance,
maintain overall QoS and ensure that no data is lost.

A key challenge that must be overcome is getting the large amounts of data being
generated by these applications off the compute nodes at runtime and over to service
nodes or another system for code coupling, online monitoring, analysis, or archiving.
To be effective, such an online data extraction and transfer service must (1) have
minimal impact on the execution of the simulations in terms of performance overhead
or synchronization requirements, (2) satisfy stringent application/user space, time, and
QoS constraints, and (3) ensure that no data is lost. On most expensive HPC resources,
the large numbers of compute nodes are typically serviced by a smaller number of
service nodes where they can offload expensive I/O operations. As the result, the I/O
substrate should be able to asynchronously transfer data from compute nodes to a
service node with minimal delay and overhead on the simulation. Technologies such
as RDMA allow fast memory access into the address space of an application without
interrupting the computational process, and provide a mechanism that can support
these requirements.

In this chapter we described the ADIOS I/O system and underlying mechanisms,
which represent a paradigm shift in which I/O in high-performance scientific applica-
tion is formulated, specified, and executed. In this new paradigm, the construction of
the writes and reads within the application code is decoupled from the specification of
how that I/O should occur at runtime. This allows the end user substantial additional
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flexibility in making use of the latest in high-throughput and asynchronous I/O meth-
ods without rewriting (or even relinking) their code. The underlying mechanisms
include low-level interfaces which enable lightweight data capture, asynchronous
data movement, and specialized adaptive transport services for MPP and wide-area
systems. Our experiences with a number of fusion and other codes have demonstrated
the effectiveness, efficiency, and flexibility of the ADIOS approach and the accom-
panying technologies such as DataTaps, I/O graphs, DART, and the autonomic data
management, transport, and processing services. These services use metadata that
effect I/O operations and access of parallel file systems. Other aspects of metadata
are discussed in Chapter 12.
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