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ABSTRACT
Several important combinatorial optimization problems can
be formulated as maximum a posteriori (MAP) inference in
discrete graphical models. We adopt the recently proposed
parallel MAP inference algorithm Bethe-ADMM and imple-
ment it using message passing interface (MPI) to fully utilize
the computing power provided by the modern supercomput-
ers with thousands of cores. The empirical results show that
our parallel implementation scales almost linearly even with
thousands of cores.

Keywords
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1. INTRODUCTION
Several important combinatorial optimization problems

such as max-cut, vertex cover and independent set, etc.,
can be formulated as maximum a posteriori (MAP) infer-
ence problems on discrete graphical models with appropri-
ate underlying dependency graphs and potentials [20]. In
general, the combinatorial problems are NP-hard and hence
the corresponding MAP inference problems. Existing ap-
proaches to solving them often consider a linear program-
ming (LP) relaxation of the integer program. Over the past
few years, several algorithms have been proposed to solve
such graph-structured LPs [19, 10, 14, 13]. Such approaches
can be broadly classified into two groups: primal methods
which work with the original variables [17] and dual meth-
ods, which works on the dual variables [18].

∗indicates equal contribution.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
BigMine’13, August 11-14 2013, Chicago, IL, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-2324-6/13/08 ...$15.00.

One of the key limitations of many existing MAP infer-
ence algorithms is that they are inherently sequential and
thus do not scale to large graphical models. However, given
that in many application domains, datasets are available
at much higher resolutions, we need algorithms for solving
graph structured LPs which efficiently scale to problem sizes
of millions or hundreds of millions of nodes. Consider the
problem of detecting droughts from precipitation data of the
past 100 years at a temporal resolution of a month and spa-
tial resolution of 0.5◦×0.5◦ over land. A 3-dimensional MRF
(latitude × longitude × time) with neighborhood dependen-
cies is a suitable model for such analysis since droughts have
both spatial and temporal continuity. Assuming a boolean
indicator variable of drought at each space-time location,
the graph-structured LP relaxation of the MAP inference
problem in this context has to work with approximately 7
million variables and about double that many constraints.

In this paper, we adopt the recently proposed Bethe-ADMM
algorithm [8] for solving graph-structured LPs. The overall
structure of the algorithm is based on two ideas: tree-based
decomposition of a graph-structured LP [19] and the alter-
nating direction method of multipliers (ADMM) [4]. The
tree decomposition breaks the problem into small but over-
lapping parts, each involving small number of variables and
constraints. The algorithm iterates between doing updates
to variables in individual parts in parallel followed by suit-
able aggregation, all within the framework of ADMM. How-
ever, unlike standard ADMM, Bethe-ADMM is a novel in-
exact ADMM augmented by a Bregman divergence induced
by the Bethe entropy. The unusual modification in Bethe-
ADMM leads to an efficient projection of partial solutions
to subsets of constraints, which results in highly efficient
iterations and avoids double-loop algorithm.

To illustrate the efficiency of the Bethe-ADMM algorithm,
we implement it using message passing interface (MPI), which
is a natural fit for the parallel algorithm given its flexible
message passing mechanism, along with its portability and
wide adoption in distributed and high performance clusters.
The other advantage of using MPI is that its I/O interface
is optimized for a wide variety of underlying parallel file
systems (PFS) and sustains high I/O bandwidth. We eval-
uate our algorithms on a simulation and a real precipitation
dataset, which are both of large scale. The empirical results
show that we manage to obtain almost linear speedup in the
number of cores used.



The rest of the paper is organized as follows: We briefly
review the MAP inference problem and its connections to
some combinatorial problems in Section 2. We introduce
the Bethe-ADMM algorithm in Section 3, and discuss its
MPI implementation in detail in Section 4. We present the
experimental results in Section 5 and conclude in Section 6.

2. PROBLEM DEFINITION
A pairwise Markov random field (MRF) is defined on an

undirected graph G = (V,E), where V is the vertex set
and E is the edge set. Each node u ∈ V has a random
variable Xu associated with it, which can take value xu in
some discrete space X = {1, . . . , k}. Concatenating all the
random variables Xu, ∀u ∈ V , we obtain an n dimensional
random vector X = {Xu|u ∈ V } ∈ Xn. We assume that the
distribution P ofX is a Markov Random Field [20], meaning
that it factors according to the structure of the undirected
graph G as follows: With fu : X 7→ R, ∀u ∈ V and fuv :
X × X 7→ R, ∀(u, v) ∈ E denoting nodewise and edgewise
potential functions respectively, the distribution takes the

form P (x) ∝ exp
{∑

u∈V fu(xu) +
∑

(u,v)∈E fuv(xu, xv)
}

.

An important problem in the context of MRF is that of
maximum a posteriori (MAP) inference, which is the follow-
ing integer programming (IP) problem:

x∗ ∈ argmax
x∈Xn

∑
u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv)

 . (1)

Several important combinatorial optimization problems
can be formulated as MAP inference problems, e.g., the
max-cut problem, which is given a nonnegative weight wuv ≤
0 for each edge (u, v) of an undirected graph, find a patition
(U,Uc) of the vertex set such that the weight of edges across
the partition is maximized:

max
U

∑
{(u,v)|u∈U,v∈Uc}

Wuv . (2)

To cast (2) as a MAP inference problem, let X ∈ {0, 1}n be
an binary membership vector, meaning that Xu = 1 if and
only if u ∈ U . Then define nodewise potentials fu(xu) = 0
for all vertices and define the pairwise potentials

fuv(xu, xv) =

(
0 wuv
wuv 0

)
. (3)

It is easy to show (1) is equivalent to the max-cut problem.
The complexity of (1) depends critically on the struc-

ture of the underlying graph. When G is a tree structured
graph, the MAP inference problem can be solved efficiently
via the max-product algorithm [11]. However, for an ar-
bitrary graph G, the MAP inference algorithm is usually
computationally intractable. The intractability motivates
the development of algorithms to solve the MAP inference
problem approximately. In this paper, we focus on the Lin-
ear Programming (LP) relaxation method [19, 6]. The LP
relaxation of MAP inference problem is defined on a set of
pseudomarginals µu and µuv, which are non-negative, nor-
malized and locally consistent [19, 6]:

µu(xu) ≥ 0 , ∀u ∈ V ,∑
xu∈Xu

µu(xu) = 1, ∀u ∈ V ,

µuv(xu, xv) ≥ 0, ∀(u, v) ∈ E ,∑
xu∈Xu

µuv(xu, xv) = µv(xv), ∀(u, v) ∈ E .

(4)

We denote the polytope defined by (4) as L(G) and the LP
relaxation of MAP inference problem (1) becomes solving
the following LP:

max
µ∈L(G)

〈µ,f〉 =
∑
u∈V

∑
xu

µu(xu)fu(xu) (5)

+
∑

(uv)∈E

∑
xu,xv

µuv(xu, xv)fuv(xu, xv) ,

subject to the constraint that µ ∈ L(G). If the solution
µ to (5) is an integer solution, it is guaranteed to be the
optimal solution of (1). Otherwise, one can apply rounding
schemes [16, 17] to round the fractional solution to an integer
solution.

3. ALGORITHM
In this section, we first show how to solve (5) by the

ADMM based on tree decomposition. The resulting algo-
rithm can be a double loop algorithm since some updates
do not have closed form solution. We then introduce the
Bethe-ADMM algorithm where every update can be com-
puted efficiently.

3.1 ADMM for MAP Inference
We first show how to decompose (5) into a series of sub-

problems. We can decompose the graph G into overlapping
subgraphs and rewrite the optimization problem with con-
sensus constraints to enforce the pseudomarginals on sub-
graphs (local variables) to agree with µ (global variable).
Throughout the paper, we focus on tree-structured decom-
positions. To be more specific, let T = {(V1, E1), . . . , (V|T|, E|T|)}
be a collection of subgraphs of G which satisfies two criteria:
(i) Each subgraph τ = (Vτ , Eτ ) is a tree-structured graph
and (ii) Each node u ∈ V and each edge (u, v) ∈ E is in-
cluded in at least one subgraph τ ∈ T. We also introduce
local variable mτ ∈ L(τ) which is the pseudomarginal [19,
6] defined on each subgraph τ . We use θτ to denote the
potentials on subgraph τ . We denote µτ as the components
of global variable µ that belong to subgraph τ . Note that
since µ ∈ L(G) and τ is a tree-structured subgraph of G, µτ
always lies in L(τ). In the newly formulated optimization
problem, we will impose consensus constraints for sharing
nodes and edges. For the ease of exposition, we simply use
the equality constraint µτ = mτ to enforce the consensus.

The new optimization problem we formulate based on
graph decomposition is then as follows:

min
mτ ,µ

|T|∑
τ=1

ρτ 〈mτ ,θτ 〉 (6)

subject to mτ − µτ = 0, τ = 1, . . . , |T| (7)

mτ ∈ L(τ), τ = 1, . . . , |T| (8)

where ρτ is a positive constant associated with each sub-
graph. We use the consensus constraints (7) to make sure



that the pseudomarginals agree with each other in the shar-
ing components across all the tree-structured subgraphs.
Besides the consensus constraints, we also impose feasibil-
ity constraints (8), which guarantee that, for each subgraph,
the local variable mτ lies in L(τ). When the constraints (7)
and (8) are satisfied, the global variable µ is guaranteed to
lie in L(G).

To make sure that problem (5) and (6) are equivalent, we
also need to guarantee that

min
mτ

|T|∑
τ=1

ρτ 〈mτ ,θτ 〉 = max
µ
〈µ,f〉 , (9)

assuming the constraints (7) and (8) are satisfied. It is easy
to verify that, as long as (9) is satisfied, the choice of ρτ and
θτ do not change the problem. Let 1[.] be a binary indicator
function and l = −f . A straightforward approach to obtain
the potential θτ can be:

θτ,u(xu) =
lu(xu)∑

τ ′ ρτ ′1[u ∈ Vτ ′ ]
, u ∈ Vτ ,

θτ,uv(xu, xv) =
luv(xu, xv)∑

τ ′ ρτ ′1[(u, v) ∈ Eτ ′ ]
, (u, v) ∈ E(τ) .

Plugging in the equality constraints, we then have the
augmented Lagrangian of (6) as:

L(mτ ,µτ ,λτ )=

|T|∑
τ=1

(
ρτ 〈mτ ,θτ 〉+〈λτ ,mτ−µτ 〉+

β

2
||mτ−µτ ||22

)
,

(10)
where λτ is the dual variable and β > 0 is the penalty pa-
rameter. The following updates constitute a single iteration
of the ADMM [4]:

mt+1
τ = argmin

mτ∈L(τ)

〈mτ , ρτθτ + λtτ 〉+
β

2
||mτ − µtτ ||22 , (11)

µt+1 = argmin
µ

|T|∑
τ=1

(
−〈µτ ,λtτ 〉+

β

2
||mt+1

τ − µτ ||22
)
, (12)

λt+1
τ = λtτ + β(mt+1

τ − µt+1
τ ) . (13)

Now, the problem turns to whether the updates (11) and (12)
can be solved efficiently which we analyze as follows:

Updating µ: Since we have an unconstrained optimiza-
tion problem (12) and the objective function decomposes
component-wisely, taking the derivatives and setting them
to zero yield the solution. In particular, let Su be the set of
subgraphs which contain node u, for the node components,
we have:

µt+1
u (xu) =

1

|Su|β
∑
τ∈Su

(
βmt+1

τ,u (xu) + λtτ,u(xu)
)
. (14)

(14) can be further simplified by observing that
∑
τ∈Suλ

t
τ,u(xu)=

0:

µt+1
u (xu) =

1

|Su|

T∑
τ=1

mt+1
τ,u (xu) . (15)

Similarly, let Suv be the subgraphs which contain edge (u, v)
and the update for the edge components is:

µt+1
u,v (xu, xv) =

1

|Suv|
∑
τ∈Suv

mt+1
τ,uv(xu, xv) . (16)

Updating mτ : We need to solve a quadratic optimiza-
tion problem for each tree-structured subgraph. Unfortu-
nately, we do not have a close-form solution for (11) in gen-
eral. One possible approach, similar to the proximal algo-
rithm, is to first obtain the solution m̃τ to the unconstrained
problem of (11) and then project m̃τ to L(τ):

mτ = argmin
m∈L(τ)

||m− m̃τ ||22 . (17)

If we adopt the cyclic Bregman projection algorithm [5] to
solve (17), the algorithm becomes a double-loop algorithm,
i.e., the cyclic projection algorithm projects the solution to
each individual constraint of L(τ) until convergence and the
projection algorithm itself is iterative.

3.2 Bethe-ADMM
Instead of solving (11) exactly, a common way in inexact

ADMMs [21, 9] is to linearize the objective function in (11),
i.e., the first order Taylor expansion at mt

τ , and add a new
quadratic penalty term such that

mt+1
τ = argmin

mτ∈L(τ)

〈ytτ ,mτ −mt
τ 〉+

α

2
‖mτ −mt

τ‖22 , (18)

where α is a positive constant and

ytτ = ρτθτ + λtτ + β(mt
τ − µtτ ) . (19)

However, as discussed in the previous section, the quadratic
problem (18) is generally difficult for a tree-structured graph
and thus the conventional inexact ADMM does not lead to
an efficient update formτ . Next we show that, by taking the
tree structure into account, an inexact minimization of (11)
augmented with a Bregman divergence induced by Bethe
entropy leads to efficient update of mτ .

The basic idea in the new algorithm is that we replace
the quadratic term in (18) with a Bregman-divergence term
dφ(mτ ||mt

τ ) such that

mt+1
τ = argmin

mτ∈L(τ)

〈ytτ ,mτ −mt
τ 〉+ αdφ(mτ ||mt

τ ) , (20)

is efficient to solve for tree τ . Expanding the Bregman di-
vergence and removing the constants, we can rewrite (20)
as

mt+1
τ = argmin

mτ∈L(τ)

〈ytτ/α−∇φ(mt
τ ),mτ 〉+ φ(mτ ). (21)

For a tree-structured problem, what convex function φ(mτ )
should we choose? Recall mτ defines the marginal distribu-
tions of a tree-structured distribution pmτ over the nodes
and edges:

mτ,u(xu) =
∑
¬xu

pmτ (x1, . . . , xu, . . . , xn), ∀u ∈ Vτ ,

mτ,uv(xu, xv) =
∑

¬xu,¬xv

pmτ (x1, . . . , xu, xv, . . . , xn), ∀(uv) ∈ Eτ .

It is well known that the sum-product algorithm [11] effi-
ciently computes the marginal distributions for a tree struc-
tured graph. It can also be shown that the sum-product
algorithm solves the following optimization problem [20] for
tree τ :

max
mτ∈L(τ)

〈mτ ,ητ 〉+HBethe(mτ ) , (22)



where HBethe(mτ ) is the Bethe entropy of mτ . The Bethe
entropy on tree τ is defined as:

HBethe(mτ )=
∑
u∈Vτ

Hu(mτ,u)−
∑

(u,v)∈Eτ

Iuv(mτ,uv) , (23)

where Hu(mτ,u) is the entropy function on each node u ∈
Vτ and Iuv(mτ,uv) is the mutual information on each edge
(u, v) ∈ Eτ .

Combing (21) and (22), we set ητ = ∇φ(mt
τ )−ytτ/α and

choose φ to be the negative Bethe entropy ofmτ so that (21)
can be solved efficiently in linear time via the sum-product
algorithm.

For the sake of completeness, we summarize Bethe-ADMM
algorithm as follows :

mt+1
τ = argmin

mτ∈L(τ)

〈ytτ/α−∇φ(mt
τ ),mτ 〉+ φ(mτ ) , (24)

µt+1 = argmin
µ

T∑
τ=1

(
−〈λtτ ,µτ 〉+

β

2
||mt+1

τ − µτ ||22
)
, (25)

λt+1
τ = λtτ + β(mt+1

τ − µt+1
τ ) , (26)

where ytτ is defined in (19) and φ is defined in (23). Due to
the space constraint, we refer the readers to [8] for the de-
tailed convergence analysis of the Bethe-ADMM algorithm.

It is easy to see that the update of mτ in (24) is inde-
pendent for each tree τ , which motivates the parallel imple-
mentation of the Bethe-ADMM algorithm. We describe our
implementation in detail in the next section.

4. PARALLEL IMPLEMENTATION
In this section, we explain the key components of our MPI

implementation in detail. Our goal is to run the Bethe-
ADMM algorithm on modern high performance computers
with thousands of cores and it requires us to adopt the best
parallelization practice. To achieve this goal, we carefully
design our MPI implementation so that the underlying par-
allel computing architecture can be fully utilized.

Since the update of mτ in (24) for each tree is inde-
pendent, the Bethe-ADMM algorithm is inherently parallel.
In the parallel Bethe-ADMM algorithm, each process only
maintains the information of a subset of trees in T and mτ

is updated simultaneously. According to (25), the update
of variable µ involves averaging over mτ from the relevant
trees. If these trees belong to different processes, the value
of mτ needs to be exchanged among the processes so that µ
can be computed correctly. Because of the communication
occurred among the processes, the message passing frame-
work is a good fit for our parallel implementation. Hence, we
implement the Bethe-ADMM algorithm using MPI. We also
make the following implementation assumptions: (i) The
MRF dependency graph is a regular grid shaped graph, e.g.,
two dimensional four nearest neighbor grid. (ii) Each tree
structured subgraph is simply an edge of G. (iii)The input
to the MAP inference algorithm is some data file, which has
the potential and graph structure information.

An efficient parallel implementation is more challenging
than an efficient sequential implementation. To fully utilize
the computing power provided by the underlying parallel
architecture, we need to address the following issues:

• How to design an efficient I/O scheme to load the data
files, i.e., node potentials, edge potentials and graph
structure?

Input.nc(

Local(Compute(

Exchange(Data(

Update(

Done?(

Yes(

No(

NeighborFinder(

(

Par@@oner(

NeighborFinder(

Local(Compute(
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Done?(

Solu%on'
Yes(

No(

Input.nc'

Figure 1: Bethe-ADMM parallel implementation.

• How to decompose the graph so that the work load on
each process is balanced?

• How to efficiently figure out, for each process, what
‘messages’ it needs to exchange with other processes?

We illustrate in Fig 1 the key components of our MPI
implementation. We take advantage of the PFS so that pro-
cesses can access the data file (input.nc) in parallel. We also
design a simple heuristic to partition the graph to achieve
load balancing. Making use of the graph structure infor-
mation, we deploy a decentralized algorithm to figure out,
for each MPI process, the information it needs to exchange
with other processes. After each process reads the data file
in parallel to fetch the relevant nodewise and edgewise po-
tentials, it computes the local variables mτ , communicate
with other processes and update the global variable µ.

4.1 Parallel File Loading
The data file used as input to the MAP inference algo-

rithm contains the nodewise and edgewise potentials and
the graph structure information. We represent the graph
as a set of edges with two node ids. (Figure 2(a) shows an
example on a simple grid graph.) A naive way to load the
data file is to have a master process read the entire data file
and send to other slave processes the information they need.
This approach is clearly not efficient because a slave process
remains idle when other slave processes receive data from
the master process. Our approach is to take advantage of
the PFS, which stripes a file across multiple storage devices
and enables parallel access to the data file.

To be more specific, we adopt the Pnetcdf [1] file format
for parallel data file loading. The Pnetcdf is suitable for
our implementation because the potential data and graph
structure information can be easily stored as Pnetcdf multi-
dimensional arrays. A Pnetcdf file also provides a rich suite
of APIs that allow users to define metadata which describe
datasets in details, such as the number of nodes and edges
of a given graph, the type of graphs and the dimensions of
the datasets. Moreover, it integrates tightly with MPI-IO
and the underlying PFS so that our algorithm can achieve
high degree of parallelism in terms of I/O operations.

4.2 Graph Partitioning



To take advantage of the parallel architecture, the work
load should be split evenly among the processes and the par-
tition should also minimize the intercommunication among
the processes. This problem is usually NP hard and most
practical solutions are based on heuristics. For example,
in Pregel [12] and Giraph [2], the solution is to use node-
centric partition, where assignment of a node to a partition
depends solely on the node id. The simplest implementation
is to calculate the hash value of each node id and modulus
by N, where N is the number of partitions. However this
simple heuristic comes with a cost that neighboring nodes
are likely to be distributed on different processes and thus
incur high communication overhead.

In our implementation, we adopt edge-centric partition,
where we evenly divide the edges among all the processes.
(Figure 2(b) shows the partition on a 2× 3 grid.) Since the
underlying dependency graph is a regular shaped grid graph,
edge partition is empirically a good choice, as shown by the
experimental results in Section 5.

4.3 Inter-process communication
After the graph decomposition step, each process reads

from the input Pnetcdf file, retrieve the nodewise and edge-
wise potentials and compute mτ . To compute µ, a simple
solution is to have a master process collect the value of mτ

from the slave processes and compute µ according to (25).
After µ is updated, the master process has to send µ back
to each slave process so that mτ can be computed in the
next iteration. This approach is clearly not efficient and we
adopt a fully distributed algorithm: each process maintains
a copy of the relevant elements of µ, receive mτ from other
processes and update µ according to (25).

Algorithm 1 NeighborFinder

1: procedure NeighborFinder
2: idList = getNodeId()
3: pairCount = idList.size()
4: MPI Allgather(
5: pairCount, 1,MPI INT,
6: countArr, 1,MPI INT, comm)
7: Copy idList to sendBuf
8: Construct displacementArr from countArr
9: MPI Allgatherv(

10: sendBuf, 2 ∗ pairCount,MPI INT,
11: recvBuf, 2 ∗ countArr, displacementArr,
12: MPI INT, comm)
13: Compute neighbor processes by comparing idLists
14: Count partial degree of sharing nodes
15: Exchange partial degree with neighbor processes
16: Compute full degree of sharing nodes
17: end procedure

To apply the above distributed algorithm, each process
needs to figure out the neighbor processes with which it ex-
changes the value of mτ . This can be done by comparing
the node ids of each process and a pair of processes need
to communicate with each other if they have sharing nodes.
To be more specific, we compactly represent the node list
of a process as a list of pairs {vi, li}, where li is the length
of continuous ids starting from vi. (Figure 2(c) illustrates
the compact representation of node lists on two processes.)
Each process then gathers {(vi, li)} from all other processes,
compare the lists with its own node list and decide what pro-

cesses it communicates with. Beside deciding the neighbor
processes, each process also needs to figure out the degrees
of the sharing nodes. The degree (count) information will be
used when the averaging operation is performed according
to (25). As a result, the neighbor process also exchanges the
local partial degree of the sharing nodes and compute the
full degree accordingly. Algorithm 1 summaries the above
procedure.

Algorithm 2 shows the details on the communication oc-
curred among the processes: we reduce our communication
cost by exchanging the partial sum of mτ rather than indi-
vidual mτ . We use asynchronous MPI APIs, which allows
messages to be send or received asynchronously while not
blocking the following operations.

Algorithm 2 Exchange mτ among neighbor processes

1: procedure ExchMsg
2: for Each node u do
3: partial sum[u] = 0
4: end for
5: for Each edge τ (u, v) do
6: partial sum[u] += mτ [u]
7: partial sum[v] += mτ [v]
8: end for
9: idx = 0

10: MPI Request request[neighbors.size() * 2]
11: for i in neighbors do
12: sharing node = getSharingNode(i)
13: copy partial sum[sharing node] to sendBuf
14: MPI ISend(sendBuf, k ∗ sharing node.size(),
15: MPI FLOAT, i, rank,
16: comm,&request[idx+ +])
17: MPI IRecv(recvBuf, k ∗ sharing node.size(),
18: MPI FLOAT, i, i,
19: comm,&requests[idx+ +])
20: end for
21: end procedure

5. EXPERIMENTAL RESULTS
In this section, we present experimental results on a simu-

lation dataset and a precipitation dataset. Our experiments
are conducted on Hopper [3], the Cray XE6 parallel ma-
chine at the National Energy Research Scientific Comput-
ing Center. Hopper is a 6384 compute node cluster where
each compute node consists of two twelve-core AMD Mag-
nyCours processors with a theoretical peak performance of
8.4 GFlop/sec per core. 6000 compute nodes have 32 GB
DD3 memory each and the rest have 64 GB memory each.
Hopper runs “Cray Linux Environment” (CLE) operating
system which is restricted low-overhead and optimized for
high performance computing. The PFS is Lustre with 156
I/O servers (OSTs). The measured peak write performance
on Hopper is 35 GB per second. To maximize the possible
read bandwidth, we stripe our input file across 128 stripes
and the file stripe size is set to 1 MB.

5.1 Simulation Dataset
We show experimental results on a simulation dataset.

The underlying graph is a 2 dimensional 1,000 × 10,000 grid
with k = 3 and the potentials are random numbers in [0, 1].
The resulting MRF has 10 million nodes and approximately
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(a) A grid with 6 nodes and 7 edges.
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(b) Edge-centric partition with 4 processes.
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(c) Process 0 and 1 share node 0 and 1.

Figure 2: 2(a): We label the nodes row by row and represent the graph structure as a set of edges: (0, 1), (1,
2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5). 2(b): We use 4 MPI processes and apply edge-centric partition. 2(c):
The node list of process 0 can be represented as: {{0, 3}} and the node list of process 1 can be represented
as: {{0, 2}, {3, 2}}. The processes share node 1 and 0. The degree of node 1 is 3. The process 0 has partial
degree of 2 (red nodes) and the process 1 has degree of 1 (green node). The degree of node 0 is 2 and both
processes have local degree of 0.

20 million edges. We apply the edge-centric partitioning and
run the Bethe-ADMM algorithm for 100 iterations.

Figure 3(a) shows the run time performance using 8 to
1024 MPI processes. The algorithm runs about half an hour
on 8 process, and dramatically reduces to 16 seconds on
1024 processes. The input file size is close to 1GB and data
loading only takes 1.2 seconds. We attribute the speedup to
our adoption of PNetCDF as well as stripping the input file
across 128 OSTs.

Figure 3(b) illustrates the average time it takes per process
to compute mτ , update µ and communicate with neighbor
processes respectively and the error bars show the minimum
and maximum time spent on these three steps across all the
processes. Since we evenly distribute the edges to the pro-
cesses, the time spent on computingmτ has little fluctuation
among the processes. The time to update µ, however, also
depends on the number of neighbor processes and the num-
ber of shared nodes, hence the fluctuation between the min
and max time among all the processes becomes more obvi-
ous as the number of processes increases. The plot shows the
communication cost incurred by the edge-centric partition is
negligible. The main reason that the communication cost is
so small is because when we partition the grid, we sweep row
edges and column edges from top to bottom, which essen-
tially behaves as row partitioning where each process has at
most 2 neighbors and only the boundary data are exchanged.

Figure 3(c) shows that the Bethe-ADMM algorithm im-
plementation achieves almost linear speedup while the speedup
of the entire implementation (I/O phase + Bethe-ADMM
optimization) starts to deviate from the ideal case after 256
processes. This is because as the number of MPI processes
increases, each process has less work load and optimization
part becomes less dominating compared with the I/O part.

5.2 CRU Precipitation Dataset
The dataset used in this section is the Climate Research

Unit (CRU) precipitation dataset [15], which has monthly
precipitation from the years 1901-2006. The dataset is of
high gridded spatial resolution (360 × 720, i.e., 0.5 degree
latitude × 0.5 degree longitude) and only includes the pre-
cipitation over land.

Our goal is to detect major droughts of the last century

based on precipitation. We formulate the drought detection
problem as the one of estimating the most likely configura-
tion of a binary hidden MRF. In the underlying graph, each
node represents a location and it can be in two possible
states: dry and normal. We use a four nearest neighbor grid
(m = 360, n = 720) to model the global dependency and
replicate it 106 times. The resulting graph is similar to the
ones used in the previous section and the structure respects
the CRU dataset, i.e, it only has the nodes that correspond
to the locations with precipitation record. Overall, the three
dimensional grid has 7,146,520 nodes and 20,777,480 edges.

We design the potential functions carefully from the CRU
datasets to enforce label consistency, i.e., neighboring nodes
should take same values. We refer the readers to [7] re-
garding the details on designing potential functions. We
obtain the integer solution after rounding the node pseudo-
marginals and we can detect droughts based on it. Figure 5
shows the detected droughts in the 1960s.

We run the Bethe-ADMM algorithm on the CRU dataset
for 500 iterations with edge-centric partitioning. The input
PNetcdf file is around 530 MB. The runtime performance, as
shown in Figure 4(a) exhibits the nice decreasing trend as it
does on the simulation data. The algorithm takes less than
2 minutes to complete with 1024 MPI processes which would
run more than two hours with 8 processes. The amount of
time saved by our implementation is tremendous.

Figure 4(b) illustrates the average time per process to
compute mτ , communicate with neighbors and update µ
respectively. The error bars mark the minimum and maxi-
mum time spent on these three steps across all the processes.
The communication cost on the CRU dataset is no longer
negligible anymore. This is because the underlying 3 di-
mensional grid has missing nodes (CRU only has precipita-
tion over land) and when we apply edge-centric partitioning,
each process may have more than two neighbors. Hence as
the number of processes increases, the number of neighbors
for each process is more dynamic and the communication
pattern becomes more complicated. Figure 4(c) plots the
almost linear speedup on the CRU dataset. It also shows
the trend that our implementation is scalable beyond 1024
processes. This is understandable because I/O time is only
2% of the total execution time, even at 1024 MPI processes.



(a) Time spent on the I/O phase and the
Bethe-ADMM optimization. The I/O cost
is low.

(b) Time spent on the three steps of the
Bethe-ADMM optimization. The commu-
nication overhead can be negligible.

(c) Almost linear speedup in the number
of MPI processes

Figure 3: Results on the simulation dataset with 10 million nodes and 20 million edges using 8-1024 MPI
processes. The I/O and communication cost is relatively low. Overall, the MPI implementation achieves
almost linear speedup in the number of processes.

(a) Time spent on the I/O phase and
Bethe-ADMM optimization. The I/O cost
is low.

(b) Time spent on the three steps of the
Bethe-ADMM optimization. The commu-
nication overhead is low.

(c) Almost linear speedup in the number
of MPI processes

Figure 4: Results on the CRU dataset with 7,146,520 nodes and 20,777,480 edges using 8-1024 MPI processes.
The I/O and communication cost is relatively low. Overall, the MPI implementation achieves almost linear
speedup in the number of processes.

Figure 5: Major droughts starting within the period 1961-1970, which include the three decade long Sahel
drought and the drought in eastern India in the 1960s.



6. CONCLUSIONS
We adopt the recently proposed Bethe-ADMM algorithm

for large scale MRFs. The algorithm is based on the ‘tree
decomposition’ idea from the MAP inference literature and
the alternating direction method from the optimization liter-
ature. The algorithm solves the tree structured subproblems
efficiently via the sum product algorithm and is inherently
parallel. We implement the algorithm using MPI and the
experimental results show that our implementation scales
almost linearly with the number of MPI processes for grid-
structured graphs.
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