
Flexible IO and Integration for Scientific Codes Through
The Adaptable IO System (ADIOS)

Jay Lofstead
College of Computing

Georgia Institute of
Technology

Atlanta, Georgia
lofstead@cc.gatech.edu

Scott Klasky
Oak Ridge National

Laboratories
Oak Ridge, Tennessee
klasky@ornl.gov

Karsten Schwan
College of Computing

Georgia Institute of
Technology

Atlanta, Georgia
schwan@cc.gatech.edu

Norbert Podhorszki
Oak Ridge National

Laboratories
Oak Ridge, Tennessee
pnorbert@ornl.gov

Chen Jin
Oak Ridge National

Laboratories
Oak Ridge, Tennessee

cgj@ornl.gov

ABSTRACT
Scientific codes are all subject to variation in performance
depending on the runtime platform and/or configuration,
the output writing API employed, and the file system for
output. Since changing the IO routines to match the opti-
mal or desired configuration for a given system can be costly
in terms of human time and machine resources, the Adapt-
able IO System provides an API nearly as simple as POSIX
IO that also provides developers with the flexibility of selec-
tion the optimal IO routines for a given platform, without
recompilation. As a side effect, we also gain the ability to
transparently integrate more tightly with workflow systems
like Kepler and Pegasus and visualization systems like Visit
with no runtime impact. We achieve this through our library
of highly tuned IO routines and other transport methods se-
lected and configured in an XML file read only at startup.
ADIOS-based IO has demonstrated high levels of perfor-
mance and scalability. For example, we have achieved 20
GB/sec write performance using GTC on the Jaguar Cray
XT4 system at Oak Ridge National Labs (about 50% of peak
performance). We can change GTC output among MPI-
IO synchronous, MPI-IO collective, POSIX IO, no IO (for
baseline testing), asynchronous IO using the Georgia Tech
DataTap system, and Visit directly for in situ visualization
with no changes to the source code. We designed this ini-
tial version of ADIOS based on the data requirements of 7
major scientific codes (GTC, Chimera, GTS, XGC1, XGC0,
FLASH, and S3D) and have successfully adapted all of them
to use ADIOS for all of their IO needs.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
Access Methods

Copyright 2007 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
CLADE’08, June 23, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-60558-156-9/08/06 ...$5.00.

General Terms
Design, Documentation, Experimentation, Human Factors,
Management, Performance, Reliability, Standardization

Keywords
MPI-IO, HDF-5, visualization, workflow, modular IO

1. INTRODUCTION
Scientific codes not only take many years to write, de-

bug, and scale properly, but they also have long lifetimes.
Once they have been finished, the authors and community
are reluctant to redesign or change the code except for ex-
treme cases such as very poor performance when moving to
a new platform. Existing IO routines used in scientific codes
vary from the simple of standard POSIX IO and raw binary
MPI-IO writes to systems like HDF-5 and parallel netCDF
with rich data annotation. The tradeoffs for each of these
vary depending on the IO patterns, runtime compute sys-
tem, and IO system being used [1]. For example, the Jaguar
Cray XT4 system at Oak Ridge National Laboratory uses
Lustre for the parallel file system while the bgl Blue Gene/L
system at Argonne National Laboratory uses PVFS for the
parallel file system. Therefore, to effectively run something
like the GTC fusion code, it may be necessary to replace the
IO routines with something that works better on both the
Blue Gene/L and with PVFS. Complicating matters further,
applications like GTC exhibit multiple different IO patterns
in different parts of the code. Each of these IO operations
or data ‘groups’ need to be independently tuned for optimal
performance.

A second factor driving the need for an approach like the
ADIOS API is the explosion in the number of cores in future
petascale machines, coupled with the need for ever faster file
systems able to service them. Experimentation with new
approaches for performing IO include performing in tran-
sit processing, asynchronous methods that give the IO sys-
tem time to drain the tremendous number of compute nodes
while allowing computations to proceed, varying the degrees
of metadata annotation for improved scalability [2]. The
ADIOS API contributes to these efforts by making it easier

for developers to experiment with diverse, large-scale codes,
in part because the actual IO implementation is separated
from host source code.

A third important factor to consider as IO approaches are
being reconsidered is the need for online simulation monitor-
ing to ensure the scientific validity of code executions and
to prevent ‘useless’ or problematic runs. Such monitoring
typically implies the need to integrate running simulations
with analysis workflows, perhaps using workflow systems
like Kepler [3] or Pegasus [4]. Coupling analysis with on-
line monitoring requires the monitoring system to actively
notify analysis or workflow components about the presence
of new data. Unfortunately, due to the nature of parallel file
systems like Lustre, the common ‘notification’ approach of
looking for file existence to detect the end of a write phase or
the presence of some other output can cause contention and
slowdowns in the whole IO system, thereby impacting the
performance of the scientific code. ADIOS can be used to
address this problem, by supporting alternate methods for
integrating monitoring systems with workflow components.

More broadly, the manner in which ADIOS addresses the
integration of auxiliary tools with high performance codes
meets four key requirements. First, since different IO rou-
tines have been optimized for different machine architectures
and configurations, no single set of routines can give optimal
performance on all different hardware and storage platform
combinations. The ADIOS API, therefore, is designed to be
able to span multiple IO realizations. Second, while richly
annotated data is desirable, the complexity of writing the
code to manage the data and the creation of annotations
can be daunting. In response, the ADIOS API does not re-
quire richly annotated data, but instead, makes it possible
and easy for end users to provide the degree of annotation
they desire. Third, once the code is stable, no source code
changes should be required to support different IO routines
for a different platform or IO system. ADIOS meets this
requirement by embedding changes in XML files associated
with IO rather than in application sources. Fourth, the inte-
gration of analysis or in situ visualization routines should be
transparent to the source code, where ideally, the scientific
code should run with exactly the same performance whether
it is used in conjunction with one of these ancillary tools or
not.

The ADIOS API addresses both high-end IO requirements
and low-impact auxiliary tool integration under the guidance
of the four observations described above. It provides an API
nearly as simple standard Fortran POSIX IO. An external
XML configuration file describes the data and how to pro-
cess it using provided, highly tuned IO routines. More im-
portantly, output can simultaneously use multiple IO imple-
mentations, using the concept of ‘data grouping’ embedded
into ADIOS. The idea is to facilitate changing IO methods
based on the IO patterns of different IO operations and to
make it possible to create “dummy” methods that can be
trigger events for other systems like workflows. Once the
code has been changed to use ADIOS for IO, any of the var-
ious IO routines can be selected just by changing the XML
file. No source code changes are ever required.

The remainder of this paper will be organized as follows.
Section 2 describes related work. Section 3 describes a rep-
resentative petascale application, the GTC fusion modeling
code. Section 4 outlines the ADIOS architecture, with sec-
tion 5 presenting experimental evaluations of ADIOS. Sec-

tion 6 contains conclusion and future work.

2. RELATED WORK
Related work falls into three main categories. First, there

are the IO APIs attempting to bridge the gap between the
code and the storage system. Second are the file systems
used for storage and the facilities they provide and/or re-
quire and the impact those decisions have on performance.
Finally, there are the auxiliary tools and how they can be
used in concert with the scientific codes.

Many groups have investigated the problems of platform
independent IO performance, annotated data, and auxiliary
tool integration separately. For example, MPI-IO provides
the ADIO Abstract-Device Interface for IO layer for different
parallel file systems that is independent from the API layer,
but does not address annotation or tool integration. HDF-5
provides excellent annotation and data organization APIs,
but the virtual file layer relies on MPI-IO, POSIX, or other
custom libraries for supporting the actual writing to disk
and does not have a concept for integration with auxiliary
tools. Silo [5] provides support for Visit with no additional
support for IO performance tuning or extra data annotation
beyond what was needed for Visit.

Parallel file systems universally separate metadata from
storage services, to enhance parallel access. Lustre [6] pro-
vides custom APIs for configuring the striping, storage server
selection, buffer sizes, and other factors likely to impact per-
formance. However, they still are limited to a single meta-
data server, causing a known bottleneck. In addition, there
are known expensive operations, such as ‘ls -l’, which cause
the metadata server to talk with each storage server to cal-
culate the sizes of the pieces of the files stored on that device.
PVFS [7] partially addresses the metadata scalability issues
of Lustre by having distributed metadata servers, but at the
cost of client-side complexity. Each client must use multi-
ple steps to create files [8]. LWFS [9] has taken an extreme
position on this topic by eliminating the requirement for on-
line metadata, then using offline methods to generate it. In
all of these cases, parallel file systems are focused on mov-
ing blocks of data with the best performance. They do not
address the components of the data itself and not surpris-
ingly, they do not provide for low-impact integration with
auxiliary tools due to their specialized nature.

Integration with visualization systems is commonly needed.
This is generally handled either through a workflow or through
custom calls to the visualization engine. For example, AVS
Express [10] can render data files once they have been fixed
up in an appropriate format. This can easily be done through
a workflow system with the impact of file discovery. In situ
visualization systems may require something like VTK [11]
or some other custom API calls directly in the scientific code
to perform the integration. This nicely addresses the inte-
gration, but at the cost of requiring source code changes.

None of these examples handle all three problems. The
platform independent IO systems all provide either great
performance or annotation. With careful use, systems like
HDF-5 and parallel netCDF can achieve both. The paral-
lel file systems all achieve great performance, but none give
support for detailed data annotation or integrating auxiliary
processing such as triggering a workflow system. Custom
API integration with auxiliary tools provides tight integra-
tion, but at the cost of source code changes and revalidation.
The performance impact of these integrations is also strictly

dependent on downstream system. Loose integration with
workflows addresses the need for low-impact integration su-
perficially, but can suffer from indirect impact from file sys-
tem watchers, still require manual annotation and fixup of
data before further processing can happen, and are always
behind the simulation due to the lag of looking for completed
file writes.

3. MOTIVATING EXAMPLES
Over the life of the GTC fusion code, it has changed how

it performs IO eight times, each motivated by a change of
platform or a need for more data annotation. Specialized
routines have had to be added for each in situ visualization
system employed. Each time one of these changes occurred,
the base code had to be reevaluated to ensure that it was
both operating properly and generating the proper data in
the output. These evaluations cost days to weeks of time
for the developers and thousands of hours of compute time
with no science output. Through a system like ADIOS, the
user can quickly test the various IO method available and
select one that gives the best combination of performance
and required features.

The initial development of ADIOS was motivated by the
GTC fusion code and the Chimera supernova code. GTC
provided a variety of different outputs with varying fre-
quency and sizes while Chimera offered a vastly larger num-
ber of variables output per write with some different re-
porting/formatting requirements. We have further demon-
strated the generality of ADIOS by integrating successfully
with XGC0, XGC1, FLASH, GTS, and S3D with at most,
only minor tweaks of the system required.

Based on GTC and Chimera, we extracted these five main
requirements.

1. Multiple, independently controlled IO settings - Each
gross IO operation needs to be independently config-
urable from others within the same code. For example,
the output strategy for diagnostic messages should be
different from restarts.

2. Data items must be optional - Variables that are mem-
bers of a data grouping need to potentially be strictly
optional to account for different output behavior for
different processes within a group. For example, if the
main process in a group writes header information and
the other participating processes do not, the system
should be able to handle it properly.

3. Array sizes are dynamic - The sizes of arrays need to
be specified at runtime, particularly at the moment
the IO is performed. The key insight here is not just
that the values need to be provided at runtime, but we
need a way to do this that is both consistent with the
standard IO API as well as not impacting the actual
data written.

4. Reused buffers must be handled properly - It is impor-
tant to support constructed output values in shared
buffers. This means that we need to accommodate
both copying stack temporary values when they are
given to us as well as being able to handle the source
code reusing a buffer to construct a second output ar-
tifact in an effort to save memory.

5. Buffer space for IO is strictly limited - The scientific
codes have strict limits on how much memory they are
willing to allow IO to use for buffering. For example,
it might be stated that IO can use 100 MB or just
90% of free memory at a particular point in the code
once all of the arrays have been allocated. Respecting
this memory statement like a contract is critical to
acceptance by the community.

Each of these was motivated by specific examples in GTC
and Chimera.

From an IO complexity perspective, GTC has seven differ-
ent groups of output in three categories with each category
being handled differently. The three categories are restarts,
analysis data, and diagnostic messages. Each of these cat-
egories has different IO requirements based on their output
patterns. For example, the large restart data set needs to
be written as quickly as possible with some annotation. To
mitigate the runtime performance impact, it is written in-
frequently. The analysis and particle tracking data, while
much smaller, needs to be written more often with good an-
notation. Finally, the diagnostic messages are written very
frequently, but are little more than a few kilobytes per out-
put and always only from a single process. While there is
only one output for restarts, there are multiple for the anal-
ysis and diagnostic messages. Each of these has different
needs for IO performance, annotation, and potential tool
integration. We also noted that some data is only written
by a single process as a header with the rest only writing
their portion of the payload. ADIOS provides the flexibility
of selecting how each of these seven different data group-
ings perform IO simply by specifying the selected method
for each of these groups in the XML file. It handles the dif-
ferent sizes for the analysis array outputs through the use of
var names for array dimensions. As part of one of the anal-
ysis outputs to convert to Cartesian coordinates, a single
buffer is created and then reused for each of the X, Y, and
Z dimensions. That buffer is passed three times to ADIOS
for output. Through the copy-on-write feature in the XML
file, we both note and handle the transient nature of the
data in that pointer. This also gives us the ability to take
stack-based temporary values and write them properly. Fi-
nally, by not requiring all of the vars specified in the XML
to be provided by all processes writing, we can handle the
optional data elements requirement.

The Chimera supernova code provides very different re-
quirements. It writes three main groups of data. The first is
a set of around 400 different key values. Each of these vari-
ables has annotation data associated with it. The second is
a set of around 75 model variables. These have fewer anno-
tations associated with them. Third is a diagnostic report
output that is a slight superset of the model that has been
processed and formatted as a report. All three of these have
the same output frequency. Like GTC, several of the items
drove the five requirements above. First, several of the vari-
ables output were Fortran array slices created on the stack
as parameters to the write. Again, the copy-on-write feature
addressed this need. And second, many of the array sizes
were driven from calculations within the code requiring that
all sizing for writing be done at runtime.

For both of these applications as well as any code pre-
cisely tweaked to run using the maximum resources on the
compute platform, memory is at a premium. To ensure we
do not break the trust with the users that the IO system

will be well behaved, we instituted a contract in the XML
for the maximum amount of memory all IO through ADIOS
in the system will use for buffer space. By always manag-
ing to this and having a failure mode when no more buffer
space is available, we are able to meet the specifications of
the user reducing unwanted surprises. We address this in
the POSIX IO and MPI-IO transport methods by switching
from a buffering mode where we maximize the write block
sizes to a direct writing mode. We do output a message
indicating that we overflowed the internal buffer allocation,
but fail gracefully by using the lower performance option of
directly writing items to disk rather than aborting the code.
This feedback alerts the user to the problem without causing
a loss of the run.

As mentioned above, since the initial development based
on the GTC and Chimera observed requirements, the ADIOS
API has successfully integrated with XGC1 fusion, FLASH
astrophysics, S3D combustion, GTS fusion, and XGC0 fu-
sion. Global arrays was the only additional feature we needed
to add from the initial version of ADIOS to support all of
these different codes.

The ADIOS API addresses these five requirements while
providing an API nearly as simple as POSIX IO, fast IO,
and transparent low-impact integration of auxiliary tools
like workflow and in situ visualization.

4. ARCHITECTURE

Figure 1: ADIOS Architecture

At a high level, ADIOS structurally looks like Figure 1.
The four parts each provide key benefits.

1. ADIOS API - The core ADIOS API calls that are used
in the scientific codes.

2. Common services - Internal services for encoding/decoding,
buffering and other shared operations are available for
use by any of the transport methods.

3. Transport methods - Perform the data operations and
auxiliary integrations. For example, MPI-IO, POSIX
IO, and Kepler or Visit integration.

4. External metadata XML file - Controls how these lay-
ers interact.

The key success of ADIOS is the simple API and support-
ing XML configuration file. This separation affords us the
opportunity to keep the API in the source code simple and
consistent while placing annotation and configuration infor-
mation in the associated XML file. To deliver on the fast
IO, we provide transport methods implemented and tested
by experts so that high performance IO is easily achieved.
Finally, to achieve the transparent selection of IO methods,
we have a standard transport method interface for cleanly
integrating new IO methods and manipulations as part of
the library. Through these features, we achieve our three
goals: 1) An API almost as simple as POSIX IO, 2) Fast IO,
and 3) Changes in data use require no source code changes.
Highlights of the supporting XML configuration file, simple
API, and the transparent IO selection will be addressed be-
low in more detail. More complete details about the API
and XML format are in the appendices.

4.1 XML Format
Since the XML controls how everything else works, we will

discuss it first. The XML document provides a key break
between the simulation source code and the IO mechanisms
and downstream processing being employed. By defining
the data types externally, we have an additional documen-
tation source as well as a way to easily validate the write
calls compared with the read calls without having to deci-
pher the data reorganization or selection code that may be
interspersed with the write calls.

One nice feature of the XML name attributes is that they
are just strings. The only restrictions for their content are
that if the item is to be used in a dataset dimension, it must
not contain a comma and must contain at least one non-
numeric character. This is useful for putting expressions as
various array dimensions elements.

The main elements of the XML file format are of the for-
mat

<element-name attr1 attr2 ...>

The details of the XML is more fully discussed in Appendix B.
The description below is structured like the XML document:

<adios-config>

<adios-group name>

<global-bounds dimensions offset

coordination-communicator

coordination-var>

<var name path type

dimensions write copy-on-write/>

</global-bounds>

<mesh type time-varying>

...

</mesh>

<attribute name path value/>

</adios-group>

<method group method base-path

priority iterations>

parameters</method>

<buffer size-MB free-memory-percentage

allocate-time/>

</adios-config>

Elements:

• adios-group - a container for a group of variables that
should be treated as a single IO operation (such as a
restart or diagnostics data set).

• global-bounds - [optional] specifies the global space
and offsets within that space for the enclosed var el-
ements. Also specifies MxN-style operations through
the coordination-communicator and/or coordination-
var (more details below).

• var - a variable that is either an array or a primitive
data type, depending on the attributes provided.

• mesh - [optional] a mesh description for the data com-
patible with the VTK data requirements.

• attribute - attributes attached to a var or var path.

• method - mapping a writing method to a data type
including any initialization parameters.

• buffer - internal buffer sizing and creation time. Used
only once.

Attributes:

• path - HDF-5-style path for the element or path to the
HDF-5 group or data item to which this attribute is
attached.

• dimensions - a comma separated list of numbers and/or
names that correspond to integer var elements to de-
termine the size of this item

• write - [optional] if it is set to “no”, then this is an
informational element not to be written intended for
either grouping or dataset dimension usage

• copy-on-write - [optional] if it is set to “yes”, then this
is var must be copied when it is provided rather than
caching a pointer.

• method - a string indicating a transport method to use
with the associated adios-group.

• group - corresponds to an adios-group specified earlier
in the file.

MxN communication is implicit in the XML file through
the use of the global-bounds. If the global-bounds element
is specified, then we have the ability to coordinate either on
the compute nodes using the coordination-communicator or
downstream using the coordination-var. Which communica-
tion mechanism (e.g., MPI or OpenMP) is used to coordi-
nate is left up to the transport method implementer and po-
tentially selected by the parameters provided in the ‘method’
element in the XML file. For example, if the MPI syn-
chronous IO method is employed for a particular IO group, it
uses MPI to coordinate a group write or even an MPI collec-
tive write. Alternatively, a different transport method could
use OpenMP. We define that the communicator ‘passed in’
must make sense to the transport method selected and that
the ordering of processes is assumed to be in rank order
for that communicator. Similarly, if the coordination-var is
provided as well, an asynchronous IO method may choose to
send the data downstream annotated with these attributes
so that an another process can reassemble the data accord-
ing to these parameters.

4.1.1 Changing IO Without Changing Source
The method element provides the hook between the adios-

group and the transport methods. Simply by changing the
method attribute of this element, a different transport method
will be employed. If more than one method element is pro-
vided for a given group, they will be invoked in the or-
der specified. This neatly gives triggering opportunities for
workflows. To trigger a workflow once the analysis data set
has been written to disk, make two element entries for the
analysis adios-group. The first indicates how to write to disk
and the second will perform the trigger for the workflow sys-
tem. No recompilation, relinking, or any other code changes
are required for any of these changes to the XML file.

4.2 ADIOS API
Since scientific codes are written in both Fortran and C-

style languages, we developed and tested ADIOS from the
beginning to have both a Fortran and a C interface. The
calls look nearly identical between the two APIs and only
differ in the use of pointers in C. The details of these calls will
be discussed in more details in Appendix A. The API itself
has two groups of operations. First are the setup/cleanup/main
loop calls and second are those for performing actual IO op-
erations.

4.2.1 Setup/Cleanup/Main Loop
This portion of the API focuses on calls used in generally

a single location within the code. These are also calls with
global considerations.

adios_init ("config.xml")

...

// do main loop

adios_begin_calculation ()

// do non-communication work

adios_end_calculation ()

...

// perform restart write

...

// do communication work

adios_end_iteration ()

! end loop

...

adios_finalize (myproc_id)

Adios init and adios finalize perform the expected sorts
of initialization and cleanup operations. The myproc id
parameter to adios finalize affords the opportunity to cus-
tomize what should happen when shutting down each trans-
port method based on which process is ending. For example,
if an external server needs to be shutdown, only process 0
should send the kill command.

Adios begin calculation and adios end calculation provide
a mechanism by which the scientific code can indicate when
asynchronous methods should focus their communication ef-
forts since the network should be nearly silent. Outside of
these times, the code is deemed to be likely communicat-
ing heavily. Any attempt to write during those times will
likely negatively impacting both the asynchronous IO perfor-
mance and the interprocess messaging. Adios end iteration
provides a pacing indicator. Based on the entry in the XML
file, this will tell the transport method how much ‘time’ has
elapsed so far in this transfer.

4.2.2 IO Operation
Each IO operation is based around some data collection,

referred to as a data ‘group’, opening a storage name us-
ing that group, writing or reading, and then calling close.
Since our system focuses on supporting both asynchronous
and synchronous operations, the semantics for these calls as-
sume stricter requirements. For example, a supplied buffer
is expected to be valid until after the associated adios close
call returns.

adios_get_group (&io_group, "restart")

...

adios_open (&group_handle, io_group,

"restart.01")

adios_write (group_handle, "comm", comm)

...

adios_write (group_handle, "zion", zion)

...

adios_write (group_handle, "mzeta", mzeta)

...

adios_close (group_handle)

Adios get group retrieves a handle to a structure that
knows the members, types, and attributes of a collection
of var elements. The second parameter corresponds to an
adios-group defined in the XML file. Adios open, adios write,
and adios close all work as expected. The string second pa-
rameter to adios write specifies which var in the XML the
provided data represents. One special note is that adios close
is considered a ‘commit’ operation. Once it returns, all pro-
vided buffers are considered reusable.

4.3 Common Services
In an effort to make writing a transport method as sim-

ple as possible, we have created a few shared services. As
the first two services we have full encoding and decoding
support for our binary format and rudimentary buffer man-
agement. One of the future research goals of ADIOS is to
extend support for more common services including feed-
back mechanisms that can change the what, how, and how
often IO is performed in a running code. For example, if an
analysis routine discovers some important features in one
area of the data, it could indicate to write only that portion
of the data and to write it more often.

4.4 Transport Methods
We have partnered with experts on each IO method we

have at this time. For example, we have a synchronous MPI-
IO method based on work done by and verified by Steve
Hodson at ORNL, a collective MPI-IO method developed
by Wei-keng Liao at Northwestern, a POSIX IO method de-
veloped by Jay Lofstead with recommendations for perfor-
mance enhancements by Wei-keng Liao, DataTap [12] asyn-
chronous IO by Hasan Abbasi at Georgia Tech, and a NULL
method for no output, which is useful for benchmarking the
performance of the code without any or selectively less IO.
For visualization transport methods, we have an initial pass
at a VTK interface into Visit and a custom sockets connec-
tion into an OpenGL based renderer. We have under devel-
opment an asynchronous MPI-IO method by Steve Hodson
and have planned both a parallel netCDF and HDF-5 meth-
ods based on existing tools we have written to convert our
default data encoding into these formats.

5. EVALUATION
To evaluate, we need to examine each of our three goals:

1) an API almost as simple as POSIX IO, 2) fast IO, and 3)
changing IO without changing source.

5.1 Simple API
Standard POSIX IO calls consist of open, write, and close.

ADIOS nearly achieves the same simplicity with the sole
addition of the adios get group call. This one addition links
the IO with metadata in the XML file including the selected
IO method. The write calls are slightly more complex in
that they require a var name as well as a buffer. Note that
since we have described the types fully in the XML, we need
not specify a buffer size directly. If we need to specify the
bounds, we will make additional write calls to add the sizing
information so that ADIOS can properly figure out how large
the buffer should be. We found no way to simplify this API
further except at the cost of functionality or complexity.
All efforts have focused on keeping this API as simple as
possible with descriptive, clear annotation in the XML as
the preferred method for altering the behavior of the write
calls.

Before the official release in Q3 2008, we will be adding
a new feature that simplifies the source code even more by
replacing all of the calls with a single preprocessor string
that will be expanded into all of the proper calls. This will
further insulate the end user from having to deal with the
complexities of their code by solely working within the XML
file for all of their data description and output needs. In or-
der to update what data is part of a group, change the XML
and recompile and the code will be updated automatically.
We realize that this cannot handle all of the ways that data
is written, but we believe it will handle a sufficiently large
percentage that most of the exception cases will be restruc-
tured to fit the new model rather than having to write the
calls manually.

5.2 Fast IO
The main performance evaluations were performed using

the GTC fusion code. We also have some preliminary results
with Chimera as well as GTS. For us, the time that matters
is how long the code runs for a given amount of work. We
judge our IO performance by running the code without IO
and with IO comparing the total runtime difference. We use
that and the data volume generated to determine our IO
performance.

5.2.1 GTC Performance
To evaluate the system, we have run regular tests with

GTC at ORNL just before the machine was partially shut-
down for an upgrade. The system is a Cray XT4, dual core
AMD x64 chips with 2 GB of RAM per core and around 40-
45 GB/sec peak IO bandwidth to a dedicated Lustre parallel
file system. Our tests showed a consistent average aggregate
write performance of 20 GB/sec for a 128 node job [13]. See
Figure 2.

A second evaluation was performed on the ewok system at
ORNL. This is an Infiniband cluster of 81 nodes of dual core
AMD x64 chips, 2 GB of RAM per core, and about 3 GB/sec
peak IO bandwidth to a Lustre file system shared with sev-
eral other clusters. Two sets of 5 runs for GTC on 128 cores
were performed. Each run generated 23 restart outputs for
a total of 74.5 GB. The first set was configured to generate

Figure 2: GTC on Jaguar with ADIOS

output using the MPI synchronous transport method while
the second set was configured to generate no output using
the NULL method. We were able to demonstrate an average
0.46 GB/sec performance. Given the ability to login to var-
ious nodes on the machine directly and the shared storage
system, there is a large variability in the performance. Two
of our runs with IO were faster than one without IO.

5.2.2 Chimera Performance
The Chimera integration demonstrated that ADIOS can

operate well with a much larger number of elements, the
various array dimension variants, and it provided us with
an impetus to develop a clean reading API. This reading
API differs from the writing one in that instead of calling
adios write () for each data item, adios read () is called. On
adios close (), the provided buffers are populated normally.
While the reading API is implemented and tested, not all of
the ADIOS features have been optimized to work well with
reading yet. Initial performance results for Chimera have
been favorable. Without any tuning of parameters and just
using stock ADIOS IO creating the same number of files
with all of the annotation, we were able to reduce the wall
clock runtime by 6.5%. More extensive testing is ongoing.

5.2.3 GTS Performance
We did complete one set of test runs with the GTS fusion

code on the Jaguar system at Oak Ridge National Labo-
ratory. We used 1024 cores writing 64 files per restart to
the attached Lustre system and yielded 13 GB/s aggregate
performance across all of the restarts written.

5.3 Changing IO Without Changing Source
By editing the method entry of the XML file, the IO rou-

tine selected when the code runs will be changed. An impor-
tant concept of this worth repeating is that multiple method
entries can be set for each adios-group within the XML file
specifying multiple outputs for a single data group. These
will be performed in the order specified transparent to each
other and to the scientific code. For example, if the analy-
sis data should be written using MPI-IO to disk and then
be picked up for processing by a workflow system, adding

a transport method that triggers the workflow system as a
second method entry for the analysis data group will cause
the data to be written to disk and then the workflow sys-
tem will be notified. Note that the success of this approach
would depend on the data being written using a synchronous
IO routine. To this end, we have created two visualization
transport methods. The first was tested with Visit through
a VTK API interface and the second to a custom OpenGL
renderer using a socket connection.

6. CONCLUSION AND FUTURE WORK
ADIOS provides a flexible approach for IO within scien-

tific codes while affording an opportunity to integrate cleanly
and transparently with auxiliary tools such as workflow and
visualization systems. Revisiting the four goals from the
introduction, we can conclude for each as follows. First, dif-
ferent IO routines have been optimized for different machine
architectures and configurations. No single set of routines
can give optimal performance on all different hardware and
storage platform combinations. Our supplying a variety of
expert created and verified transport methods gives the flex-
ibility to select whichever approach is best for the current
platform. Second, while richly annotated data is desired,
the complexity of writing the code to manage the data cre-
ation can be daunting. The API must be simple enough to
be easily written yet provide facilities to generate richly an-
notated data with little extra effort for the developer. Our
choice to have a simple, consistent API for the source code
and a richly annotated XML file that describes and anno-
tates the data and controls the IO methods selected achieves
the simplicity in programming. Third, once the code is sta-
ble, no source code changes should be required to support
different IO routines for a different platform or IO system.
We have achieved this by supporting simply changing the
method entry in the XML file. Forth, adding additional IO
integrations such as workflow or in situ visualization routines
should be transparent to the source code and facilitated via
low-impact system approaches. Simply by adding another
method entry to the XML file, a triggering message can be
sent to a passive workflow system avoiding the unintentional
slowdown caused by “passively” watching for files to appear.

There are other approaches for accomplishing these same
goals, but we feel they are inferior. For example, a developer
could use #ifdefs and have a variety of IO methods for their
code. By recompiling with different switches, different IO
routines would be employed. Like ADIOS, each of these will
have to be tested to see which is best for the platform. This
only works well for a code that never changes. However, if
a new variable is added, the #ifdef approach would require
editing each of the possibilities and then testing each one.
With ADIOS, it need only be added to the simulation code
in once place and the XML file in one place for use in any
and all transport methods. Because we have proven trans-
port method implementations and no recompilation neces-
sary to choose a different method for testing, the difficulty
in adding the var and in revalidation of the code is reduced.
The various semantics of the different IO methods are hid-
den and any related errors in constructing the proper syntax
for adding the new variable are reduced. This is especially
true for forgetting to add the new variable to a seldom used
IO method. The overhead ADIOS introduces is two function
calls per ADIOS call. The adios write call first invokes the
language specific (Fortran or C-style) interface. This func-

tion does any necessary parameter adjustments and invokes
a common implementation function. The common function
may do a little work that will be shared across all transport
methods, but it generally just invokes the transport method
implementation for all of the actual work such as encod-
ing and buffering. As a side benefit, when a new transport
method becomes available, no changes are necessary to the
code to see how it impacts the IO performance of a code.
Simply change the XML file to invoke the new method and
run some test cases.

We have demonstrated a simple API and can still generate
annotated data with fast IO performance while transpar-
ently integrating with workflow or visualization. Without
changing the source code, we can then turn off all or any
portion of the IO for a baseline run to cleanly collect base-
line IO performance metrics. While the system works well,
there are many things remaining to experiment with.

First, while we do have written and fully tested support
for reading, we have not optimized the performance or eval-
uated read intensive codes to see how they will impact the
philosophical choices made with ADIOS. For example, data
reorganization on reading in global arrays will require op-
timization for best performance. There are many issues to
examine that shift the performance to favor either write or
read performance to varying degrees. Providing a mecha-
nism for user selection of some of these parameters would
be interesting.

Second, we have specialized hint mechanisms to help in-
terleave asynchronous IO with other communication activi-
ties, but we need to explore various scheduling and buffering
opportunities and tradeoffs within this environment.

Third, while we support global arrays, we have not in-
cluded any special support striding, ghost zones, blocking,
or other automatic array slicing operations. We had initially
created some routines and interfaces to handle some of these
cases, but found no need for them in our initial test cases.
Since they were not fully tested for reading and writing and
memory formatting issues (Fortran vs. C memory layouts),
we opted to delay these features for the second release.

Forth, online steering and other external forces changing
the way the running scientific code operates poses another
whole set of challenges we look forward to addressing. For
example, it would be nice to be able to change what and how
often data is sent to an in situ visualization system while the
code is running.

Fifth, we plan on investigating full end-to-end data move-
ment scheduling from the compute nodes to the storage sys-
tem. For example, if we can detect contention in the storage
system through slow performance, what adjustments can be
made to give optimal end-to-end performance for all users
of the storage system? Second, additional scientific codes,
such as adaptive mesh refinement codes, will generate new
requirements and challenges for data processing and move-
ment. Third, managing the data artifacts of petascale jobs
becomes critical. The size of the restart data collections can
quickly outstrip the storage available or even exceed the abil-
ity to spool it to offline storage for later manipulation before
it is automatically purged. Policies like only maintaining 2
good, complete restart collections at a time, physics-based
lossy compression filters, analysis summarization, and file
merging stripping out redundant elements, can help manage
storage concerns.

Sixth, given our successful integration with visualization

systems and the problems we describe with a typical ap-
proach for integrating with a workflow system like Kepler,
we need to explore various techniques for integration that
makes sense with different workflow styles. The initial in-
tegration measurements will involve signaling rather than
relying on an ‘ls -l’ process. Others will follow as we identify
different workflow integration requirements.

In conclusion, ADIOS provides simple APIs for perform-
ing IO, proven routines for achieving fast IO, and the flex-
ibility to add workflows, visualization, and other auxiliary
tools transparently and with low impact to scientific codes.
ADIOS provides a platform for simplifying efficient IO cod-
ing for scientists, while affording interesting opportunities to
provide value-add features, both without disturbing existing
simulation codes. An XML file used for specifying config-
uration options (and additional information) makes it easy
for end users to take advantage of different IO functionali-
ties underlying the ADIOS API, including asynchronous IO
options. With asynchronous IO, IO costs can be reduced for
certain HPC applications, and with ADIOS’s configuration
options, traditional methods can be used elsewhere. ADIOS
also makes it easier to integrate programs’ IO actions with
other backend systems, such as Kepler [3] and Visit [14],
with low-impact approaches. We have demonstrated the
viability of the approach by fully integrating with seven ma-
jor scientific codes using different IO techniques with direct
integration into two visualization systems. Our excellent
performance results reinforce the viability of this approach.

APPENDIX
A. ADIOS API DETAILS

In addition to the APIs mentioned below, others exist
reading and some other operations. Another entire set of
APIs exist for transport method implementers to make that
job easier. Neither of these additional sets of functions
are described here. For more information, please refer to
http://www.cc.gatech.edu/∼lofstead/adios.

A.0.1 Setup/Cleanup/Main Loop

adios_init ("config.xml")

...

// do main loop

adios_begin_calculation ()

// do non-communication work

adios_end_calculation ()

...

// perform restart write

...

// do communication work

adios_end_iteration ()

! end loop

...

adios_finalize (myproc_id)

Adios init () initiates parsing of the configuration file gen-
erating all of the internal data type information, configures
the mechanisms for each, and potentially sets up the buffer.
Buffer creation can be delayed until a subsequent call to
adios allocate buffer if it should be based on a percentage
of memory free or other allocation-time sensitive considera-
tions.

Adios begin calculation () and adios end calculation () pro-
vide the ‘ticker’ mechanism for asynchronous IO, providing
the asynchronous IO mechanism with information about the
compute phases, so that IO can be performed at times when
the application is not engaged in communications.

Adios end iteration () is a pacing function designed to
give feedback to asynchronous IO for gauging what progress
must be made with data transmission in order to keep up
with the code. For example, if a restart is written every 40
iterations, the XML file may indicate an iteration count of
30 to evacuate the data to give some adjustment for storage
congestion or other issues.

Adios finalize () indicates the code is about to shut down
and any asynchronous operations need to complete. It will
block until all of the data has been drained from the compute
node.

A.0.2 IO Operation

adios_get_group (&io_group, "restart")

...

adios_open (&group_handle, io_group,

"restart.01")

adios_write (group_handle, "comm", comm)

...

adios_write (group_handle, "zion", zion)

...

adios_write (group_handle, "mzeta", mzeta)

...

adios_close (group_handle)

Adios get group () retrieves a handle to a structure that
knows the members, types, and attributes of a collection
of var elements. The name corresponds to a adios-group
defined in the XML file.

Adios open () generates a handle that manages the trans-
port specific information and serves to collect the data buffers
used for writing or reading.

Adios write () specifies for a given name what data buffer
to use. If it is writing a scalar value, the value is copied en-
abling the use of expressions as parameters to this call. If it
is an array with statically defined dimensions, it can resolve
directly the size involved. If it has dynamic dimension ele-
ments, those must be defined before the call to adios close
in order for the write to succeed.

Adios close () performs three purposes. First, it indicates
that all of the data buffers for either writing or reading have
been provided. Second, it initiates either the write or read
operation. Finally, it indicates to the transport layer to close
the connection. By delaying the reading or writing until this
point, we eliminate the complexity of processing data values
in exactly the same order for reading, writing, or as they are
specified in the XML file.

B. ADIOS XML DETAILS
The main elements of the XML file format are of the for-

mat

<element-name attr1 attr2 ...>

Most of the attributes share a common definition and are
therefore collected at the end of the section for brevity. The
description below is structured like the XML document:

<adios-config>

<adios-group name>

<global-bounds dimensions offset

coordination-communicator

coordination-var>

<var name path type

dimensions write copy-on-write/>

</global-bounds>

<mesh type time-varying>

...

</mesh>

<attribute name path value/>

</adios-group>

<method group method base-path

priority iterations>

parameters</method>

<buffer size-MB free-memory-percentage

allocate-time/>

</adios-config>

Elements:

• adios-group - a container for a group of variables that
should be treated as a single IO operation (such as a
restart or diagnostics data set).

• global-bounds - [optional] specifies the global space
and offsets within that space for the enclosed var ele-
ments.

• var - a variable that is either an array or a primitive
data type, such as integer or float, depending on the
attributes provided.

• mesh - [optional] a mesh description for the data com-
patible with the VTK data requirements.

• attribute - attributes attached to a var or var path.

• method - mapping a transport method to a data type
including any initialization parameters.

• buffer - internal buffer sizing and creation time. Used
only once.

Attributes

• name - name of this element or attribute. For a datatype,
this is used in the code to select this data type for an
IO operation.

• path - HDF-5-style path for the element or path to the
HDF-5 group or data item to which this attribute is
attached.

• type - data type. Currently supported values (size):
byte (1-byte), integer (4-byte), integer*4 (4-byte), in-
teger*8 (8-byte), long (8-byte), real (4-byte), real*8
(8-byte), double (8-byte), complex (16-byte), string.

• dimensions - a comma separated list of numbers and/or
names that correspond to scalar elements to determine
the size of this item

• value - value for the attribute

• write - [optional, default=“yes”] if it is set to“no”, then
this is an informational element not to be written in-
tended for either grouping or dataset dimension usage

• copy-on-write - [optional, default=“no”] if it is set to
“yes”, then this is var must be copied when it is pro-
vided rather than caching a pointer.

• priority - [optional] a numeric priority for the IO meth-
ods to better schedule this write with others that may
be pending currently

• method - a string indicating a transport method to use
with the associated adios-group.

• iterations - [optional] a number of iterations between
writes of this type used to gauge how quickly this data
should be evacuated from the compute node

• base-path - [optional] the root directory to use when
writing to disk or similar purposes

• group - corresponds to an adios-group specified earlier
in the file.

• parameters - [optional] a string passed to the method
for initialization.

• size-MB - the number of MB to allocate for buffering.
Either size-MB or free-memory-percentage is required.

• free-memory-percentage - the percentage of free ram to
allocate for buffering. Either size-MB or free-memory-
percentage is required.

• allocate-time - either“now”or“oncall”to indicate when
the buffer should be allocated. ‘oncall’ will wait un-
til the programmer decides that all memory needed
for calculation has been allocated and will then call
adios allocate buffer ()

C. REFERENCES
[1] R. Ross, R. Thakur, W. Loewe, and R. Latham,

“Parallel i/o in practice,” in SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing.
New York, NY, USA: ACM, 2006, p. 216.

[2] H. FSIO, “http://institutes.lanl.gov/hec-
fsio/docs/hec-fsio-fy07-gaps roadmap.pdf.”

[3] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao,
“Scientific workflow management and the kepler
system: Research articles,” Concurr. Comput. : Pract.
Exper., vol. 18, no. 10, pp. 1039–1065, 2006.

[4] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,
J. Good, A. Laity, J. C. Jacob, and D. S. Katz,
“Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Sci. Program.,
vol. 13, no. 3, pp. 219–237, 2005.

[5] SILO,
“https://wci.llnl.gov/codes/visit/3rd party/silo.book.pdf.”

[6] P. J. Braam, “Lustre: a scalable high-performance file
system,” Nov. 2002. [Online]. Available:
http://www.lustre.org/docs/whitepaper.pdf

[7] R. Ross, R. Latham, N. Miller, and P. Carns, “A
next-generation parallel file system for linux clusters,”
January 2004.

[8] R. Latham, R. Ross, and R. Thakur, “The impact of
file systems on mpi-io scalability,” in Proceedings of
EuroPVM/MPI 2004, September 2004.

[9] R. Oldfield, L. Ward, R. Riesen, A. Maccabe,
P. Widener, and T. Kordenbrock, “Lightweight i/o for
scientific applications,” Cluster Computing, 2006 IEEE
International Conference on, pp. 1–11, 25-28 Sept.
2006.

[10] A. A. V. System, “http://www.avs.com.”

[11] J. Ahrens, C. Law, W. Schroeder, K. Martin, and
M. Papka, “A parallel approach for efficiently
visualizing extremely large,” 2000. [Online]. Available:
citeseer.ist.psu.edu/ahrens00parallel.html

[12] K. S. Hasan Abbasi, Matthew Wolf, “Live data
workspace: A flexible, dynamic and extensible
platform for petascale applications,” in Cluster
Computing. Austin, TX: IEEE International,
September 2007.

[13] S. O. G. T. Results,
“http://users.nccs.gov/ oral/jagregtests/gtc128.html.”

[14] Visit, “http://www.llnl.gov/visit/home.html.”

