
Performance Characterization of Data Mining Applications using MineBench

Joseph Zambreno Berkin Özıs.ıkyılmaz Gokhan Memik Alok Choudhary
Department of Electrical Engineering and Computer Science

Northwestern University
Evanston, IL 60208

{zambro1, boz283, memik, choudhar}@eecs.northwestern.edu

Jayaprakash Pisharath
Architecture Performance and Projections Group

Intel Corporation
Santa Clara, CA 95054

jayaprakash.pisharath@intel.com

Abstract

Data mining is the process of finding useful patterns in
large sets of data. These algorithms and techniques have
become vital to researchers making discoveries in diverse
fields, and to businesses looking to gain a competitive ad-
vantage. In recent years, there has been a tremendous
increase in both the size of the data being collected and
also the complexity of the data mining algorithms them-
selves. This rate of growth has been exceeding the rate of
improvements in computing systems, thus widening the per-
formance gap between data mining systems and algorithms.
The first step in closing this gap is to analyze these algo-
rithms and understand their bottlenecks. In this paper, we
present a set of representative data mining applications we
call MineBench. We evaluate the MineBench applications
on an 8-way shared memory machine and analyze some im-
portant performance characteristics. We believe that this
information can aid the designers of future systems with re-
gards to data mining applications.

1. Introduction

Data mining is a powerful technology that converts raw
data into an understandable and actionable form, which can
then be used to predict future trends or provide meaning to
historical events. Originally limited to scientific research
and medical diagnosis, these techniques are becoming cen-
tral to a variety of fields including marketing and business
intelligence, biotechnology, multimedia, and security.

Increasingly large amounts of data are being collected
every year. Recent trends indicate that data collection rates
are growing at an exponential pace. A survey done by In-
tel Corporation indicates that an average person collects
800MB of data a year [14]. Data mining is essential to ex-
tract useful information from such large amounts of data.
However, limitations in overall system performance (recent
computing trends indicate memory-intensive workloads are
improving by only 10-15% every year) will ultimately result
in prohibitive execution times for these crucial applications.
Hence, there is a need to redesign and customize systems
with respect to data mining applications. Given the fact that
each data mining domain is unique, this is a challenging
task that cannot be accomplished through simple algorith-
mic analysis. As data mining is a relatively new applica-
tion area, very little is known in terms of the characteristics
of the underlying computations and data manipulation, and
their impact on computer systems.

We address this issue in this paper by investigating the
execution of data mining applications on a shared-memory
parallel machine. We first establish a benchmarking suite of
applications that we call MineBench, which encompasses
many algorithms commonly found in data mining. We then
analyze the architectural properties of these applications
to investigate the performance bottlenecks associated with
them.

The remainder of this paper is organized as follows. In
the following section we provide a brief overview of the re-
lated work in this area. In Section 3, we discuss the data
mining applications that are included in our benchmarking
suite. Section 4 presents our evaluation methodology, fol-



Table 1. Overview of the MineBench data mining benchmark suite
Application Category Description
ScalParC Classification Decision tree classification
k-Means Clustering Mean-based data partitioning method

Fuzzy k-Means Clustering Fuzzy logic-based data partitioning method
HOP Clustering Density-based grouping method

Apriori ARM Horizontal database, level-wise mining based on Apriori property
Utility ARM Utility-based association rule mining

SNP Classification Hill-climbing search method for DNA dependency extraction
GeneNet Structure Learning Gene relationship extraction using microarray-based method
SEMPHY Structure Learning Gene sequencing using phylogenetic tree-based method
Rsearch Classification RNA sequence search using stochastic Context-Free Grammars
SVM-RFE Classification Gene expression classifier using recursive feature elimination
PLSA Optimization DNA sequence alignment using Smith-Waterman optimization method

lowed by performance characterization results. Finally, the
paper is concluded in Section 5 with a look towards some
planned future efforts.

2. Related Work

Benchmarks play a major role in all domains. SPEC [28]
benchmarks have been well accepted and used by several
chipmakers and researchers to measure the effectiveness
of their designs. Other fields have popular benchmark-
ing suites designed for the specific application domain:
TPC [31] for database systems, SPLASH [32] for parallel
architectures, and MediaBench [20] for media and commu-
nication processors.

Similar performance characterization work to ours has
been previously performed for database workloads [13, 18],
with some of these efforts specifically targeting SMP ma-
chines [25, 30]. Performance characterization of an indi-
vidual data mining algorithm has been done [8, 19], where
the authors focus on the memory and cache behavior of a
decision tree induction program.

Characterization and optimization of data-mining work-
loads is a relatively new field. Our work builds on prior
effort in analyzing the performance scalability of bioinfor-
matic workloads performed by researchers at Intel Corpo-
ration [10]. As will be described in the following sec-
tions, we incorporate their bioinformatics workloads into
our MineBench suite, and where applicable, make direct
comparisons between their results and our own. MineBench
is more generic and covers a wider spectrum then the bioin-
formatics applications studied in [10]. The authors in [16]
examined the last-level cache performance of these same
applications.

The bioinformatic applications presented in MineBench
differ from other recently-developed bioinformatic bench-

mark suites. BioInfoMark [21], BioBench [3], and BioP-
erf [5] all contain several applications in common, includ-
ing Blast, FASTA, Clustalw, and Hmmer.

3. Benchmark Suite Overview

Data mining applications can be broadly classified into
association rule mining, classification, clustering, data visu-
alization, sequence mining, similarity search, and text min-
ing, among others. Each domain contains unique algorith-
mic features. In establishing MineBench, we based our se-
lection of categories on how commonly these applications
are used in industry, and how likely they are to be used in
the future. The twelve applications that currently comprise
MineBench are listed in Table 1, and are described in more
detail in the following sections. Note that these are full-
fledged application implementations of these algorithms (as
opposed to stand-alone algorithmic modules), which have
been extensively optimized to remove all implementation
inefficiencies.

3.1. Classification Workloads

A classification problem has an input dataset called the
training set which consists of example records with a num-
ber of attributes. The objective of a classification algorithm
is to use this training dataset to build a model such that the
model can be used to assign unclassified records into one of
the defined classes [12].

ScalParC is an efficient and scalable variation of deci-
sion tree classification [17]. The decision tree model is built
by recursively splitting the training dataset based on an op-
timality criterion until all records belonging to each of the
partitions bear the same class label. Among many classifi-
cation methods proposed over the years, decision trees are



particularly suited for high-performance data mining, since
they can be built relatively fast when compared to other
methods.

Single nucleotide polymorphisms (SNPs), are DNA se-
quence variations that occur when a single nucleotide is al-
tered in a genome sequence. The SNP [10] benchmark uses
the hill climbing search method, which selects an initial
starting point and searches that point’s nearest neighbors.
The neighbor that has the highest score is then made the
new current point. This procedure iterates until it reaches
a local maximum score. GeneNet [10] uses a similar hill
climbing algorithm as in SNP, the main difference being that
the input data is more complex, requiring much additional
computation during the learning process.

SEMPHY [10] is a structure learning algorithm that is
based on phylogenetic trees. Phylogenetic trees represent
the genetic relationship of a species, with closely related
species placed in nearby branches. This application uses a
probability estimation algorithm to find the best tree topol-
ogy and best branch lengths representing the distance be-
tween two neighbors.

Typically, RNA sequencing problems involve search-
ing the gene database for homologous RNA sequences.
Rsearch [10] uses a grammar-based approach to achieve this
goal. Stochastic context-free grammars are used to build
and represent a single RNA sequence, and a local align-
ment algorithm is used to search the database for homolo-
gous RNAs.

SVM-RFE [10], or Support Vector Machines - Recursive
Feature Elimination, is a feature selection method. SVM-
RFE is used extensively in disease finding (gene expres-
sion). The selection is obtained by a recursive feature elim-
ination process - at each RFE step, a gene is discarded from
the active variables of a SVM classification model, accord-
ing to some support criteria.

3.2. Clustering Workloads

Clustering is the process of discovering the groups of
similar objects from a database to characterize the underly-
ing data distribution [12]. It has wide applications in market
or customer segmentation, pattern recognition, and spatial
data analysis.

The first clustering application in MineBench is K-
means [23]. K-means represents a cluster by the mean value
of all objects contained in it. Given the user-provided pa-
rameter k, the initial k cluster centers are randomly selected
from the database. Then, each object is assigned a nearest
cluster center based on a similarity function. Once the new
assignments are completed, new centers are found by find-
ing the mean of all the objects in each cluster. This process
is repeated until some convergence criteria is met.

The clusters provided by the K-means algorithm are

sometimes called “hard” clusters, since any data object ei-
ther is or is not a member of a particular cluster. The Fuzzy
K-means algorithm [7] relaxes this condition by assuming
that a data object can have a degree of membership in each
cluster. Compared to the similarity function used in K-
means, the calculation for fuzzy membership results in a
higher computational cost. However, the flexibility of as-
signing objects to multiple clusters might be necessary to
generate better clustering qualities.

HOP [11], originally proposed in astrophysics, is a typ-
ical density-based clustering method. After assigning an
estimation of the density for each particle, HOP associates
each particle with its densest neighbor. The assignment pro-
cess continues until the densest neighbor of a particle is it-
self.

3.3. ARM Workloads

The goal of Association Rule Mining (ARM) is to find
the set of all subsets of items or attributes that frequently
occur in database records [12]. In addition, ARM appli-
cations extract rules regarding how a given subset of items
influence the presence of another subset.

Apriori [2] is arguably the most influential ARM algo-
rithm. It explores the level-wise mining of the property that
all non-empty subsets of a frequent itemset must all be fre-
quent (the so-called “Apriori” property). Utility mining [22]
is another association rule-based mining technique where
higher “utility” itemsets are identified from a database by
considering different values of individual items. The goal
of utility mining is to restrict the size of the candidate set so
as to simplify the total number of computations required to
calculate the value of items.

3.4. Optimization Workloads

Sequence alignment is an important tool in bioinformat-
ics used to identify the similar and diverged regions between
two sequences. PLSA [10] uses a dynamic programming ap-
proach to solve this sequence matching problem. It is based
on the algorithm proposed by Smith and Waterman, which
uses the local alignment to find the longest common sub-
string in sequences.

4. Performance Characterization

In this section, we consider the applications in our
MineBench suite, and distinguish the characteristics that
make each application unique from both the algorithmic and
the system perspective. We chose an Intel IA-32 multipro-
cessor platform for evaluation purposes. Our setup consists
of an Intel Xeon 8-way Shared Memory Parallel (SMP) ma-
chine running Red Hat Advanced Server 2.1. The system



has 4 GB of shared memory. Each processor has a 16 KB
non-blocking, integrated L1 cache and a 1024 KB L2 cache.

For our experiments, we use the VTune Performance An-
alyzer [15] for profiling the functions within our applica-
tions, and for measuring the execution times. Using the
VTune counters, we monitor a wide assortment of perfor-
mance metrics: execution time, communication and syn-
chronization complexity, memory behavior, and Instruc-
tions per Cycle (IPC) statistics. Each application was com-
piled with version 7.1 of the Intel C++ compiler for Linux.

4.1. Input Datasets

Input data is an integral part of data mining applications.
The data used in our experiments are either real-world data
obtained from various fields or widely-accepted synthetic
data generated using existing tools that are used in scien-
tific and statistical simulations. During evaluation, multiple
data sizes were used to investigate the characteristics of the
MineBench applications. For the non-bioinformatics appli-
cations, the input datasets were classified into three different
sizes: Small, Medium, and Large. For the ScalParC bench-
mark, three synthetic datasets were generated by the IBM
Quest data generator [1]. Apriori also uses three synthetic
datasets from the IBM Quest data generator with a varying
number of transactions, average transaction size, and aver-
age size of the maximal large itemsets. For HOP, three sets
of real data were extracted from a cosmology application,
ENZO [24], each having 61440 particles, 491520 particles
and 3932160 particles.

A section of the real image database distributed by Corel
Corporation is used for K-means and Fuzzy K-means. This
database consists of 17695 scenery pictures. Each picture
is represented by two features: color and edge. The color
feature is a vector of 9 floating points while the edge feature
is a vector of size 18. Both K-means implementations use
Euclidian distance as the similarity function and execute it
for the two features separately. Since the clustering quality
of K-means methods highly depends on the input parameter
k, both K-means were executed with 10 different k values
ranging from 4 to 13.

Utility mining uses both real as well as synthetic
datasets. The synthetic data consists of two databases gen-
erated using the IBM Quest data generator. The first syn-
thetic dataset is a dense database, where the average trans-
action size is 10; the other is a relatively sparse database,
where average transaction size is 20. The average size of the
potentially frequent itemsets is 6 in both sets of databases.
In both sets of databases, the number of transactions varies
from 1000K to 8000K and the number of items varies from
1K to 8K. The real dataset consists of only one database of
size 73MB, where the average transaction length is 7.2.

For the bioinformatics applications, the datasets were

Table 2. MineBench executable profiles
Application Instruction Count Size (kB)
ScalParC 27,283,200,000 154
k-Means 77,026,600,000 154

Fuzzy k-Means 564,280,500,000 154
HOP 26,902,400,000 211

Apriori 47,182,100,000 847
Utility 11,075,400,000 853

SNP 241,680,600,000 14016
GeneNet 2,415,428,400,000 13636
SEMPHY 2,049,658,800,000 7991
Rsearch 1,772,200,500,000 676
SVM-RFE 82,385,800,000 1336
PLSA 4,001,675,300,000 836

provided by Intel [10]. SNP uses the Human Genic
Bi-Alletic Sequences (HGBASE) database [9] containing
616,179 SNPs sequences. For GeneNet, the microarray
data used for this study is assembled from [27]; they are
the most popular cell cycle data of Yeast. SEMPHY con-
siders three datasets from the Pfam database [6]. The soft-
ware and the corresponding dataset for Rsearch were ob-
tained from [26]. The experiments use the sequence mir-
40.stk with the length of 97 to search a part of database
Yeastdb.fa with size of 100KB. SVM-RFE uses a bench-
mark microarray dataset on ovarian cancer [4]. This dataset
contains 253 (tissue samples) x 15154(genes) expression
values, including 91 control and 162 ovarian cancer tissues
with early stage cancer samples. For PLSA, nucleotides
ranging in length from 30K to 900K are chosen as test se-
quences. Since true sequences can seldom satisfy this spe-
cific size, some artificial sequences were used in the experi-
ments [10]. To make the experiments more comprehensive,
several real DNA sequences were also chosen from a test
suite provided by the bioinformatics group at Penn State
University. The longest sequence pair used here is named
TCR where the human sequence is 319,030 bp long and the
mouse sequence is 305,636 bp long.

4.2. Execution Time

In Table 2 we present the total number of instructions
executed across all processors along with the size of the ex-
ecutables. We can see that these benchmarks execute from
tens of billions to thousands of billions instructions. In our
study, the usage of Vtune enabled us to examine the charac-
teristics of entire program execution, something that would
not be feasible using simulation for applications of this size.

Figure 1 shows the benchmark application execution
speedups when running on multiple processors. The per-
formance numbers for the 2-processor case shows some



k-Means

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

M

L

Fuzzy k-Means

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

M

L

HOP

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

M

L

Apriori

0.0

1.0

2.0

3.0

4.0

5.0

1 2 4 8
Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

M

L

ScalParC

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

M

L

SVM-RFE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 4 8
Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

M

PLSA

0.0

1.0

2.0

3.0

4.0

5.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

M

L

Semphy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

M

L

Rsearch

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

L

SNP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

M

Genenet

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

M

Utility

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

L

Figure 1. Performance speedups for the MineBench applications

trivial performance improvement for clustering and ARM
workloads, while most of the remaining workloads perform
slightly better or worse than the serial case. On the other
hand, several of the benchmarks show good scalability with
a higher number of processors. When running on 8 pro-
cessors, ScalParC executed between 4.84 and 4.97 times
faster than the 1 processor case. The best speedup, 7.55
on 8 processors, is seen in Utility. In this algorithm, data
is uniformly distributed to the 8 processors, which are able
to work concurrently by accessing only its respective data
block in memory, synchronizing only occasionally. Rsearch
and k-Means follow Utility in terms of achieved speedups.
In general, it can be observed that clustering algorithms
show better scalability than the remainder of the applica-
tions. The underlying reason for this observation is the
highly parallelizable distance calculation routine, which is
common to the clustering algorithms.

The worst scalability is observed for SNP and SVM-

RFE. For SVM-RFE, the problem arises due to unnecessary
communication problems and locking of memory struc-
tures. This redundant locking is done to ensure the code
works on distributed and shared memory machines. If the
locks are removed (using shared memory programming),
the program and its kernels scale better.

As previously mentioned, for the Utility benchmark the
small dataset represents real data collected from a grocery
store. The large dataset has been created by the IBM Quest
data generator. Both of the datasets contain a nearly equal
number of transactions and items. However, the speedups
for these two datasets differ widely. When the most time
consuming functions are examined, it is seen that the pro-
gram spends approximately 30% and 50% of the total ex-
ecution time in the serial database read function, respec-
tively. The change in the time of this serial segment causes
the scalability problems for the large dataset.

Intel researchers have done similar analysis for the per-



Table 3. Key MineBench performance characteristics

Application
Memory Efficiency Instruction Efficiency

L1-D Miss
Rate

L1-I Miss
Rate

L2 Miss
Rate

Resource
Related Stalls

Floating
Point Ops

Branch
Miss Rate

Average
IPC

ScalParC 2.54 % 0.0224 % 67.98 % 76.02 % 9.61 % 2.07 % 0.26
k-Means 0.35 % 0.0013 % 24.45 % 32.09 % 19.87 % 3.01 % 0.95

Fuzzy k-Means 0.31 % 0.0007 % 63.36 % 35.37 % 4.64 % 1.37 % 0.83
HOP 3.06 % 0.0046 % 10.04 % 37.90 % 20.14 % 10.17 % 0.71

Apriori 6.12 % 0.0032 % 22.55 % 63.56 % 0.00 % 7.84 % 0.41
Utility 3.89 % 0.0097 % 19.95 % 47.53 % 10.03 % 0.56 % 0.33

SNP 0.64 % 0.0530 % 85.13 % 72.40 % 0.09 % 0.10 % 0.31
GeneNet 1.48 % 0.8016 % 3.44 % 44.05 % 0.23 % 2.63 % 0.78
SEMPHY 0.58 % 0.0053 % 28.81 % 62.84 % 1.74 % 1.09 % 0.69
Rsearch 1.09 % 0.0007 % 11.50 % 26.04 % 0.00 % 0.88 % 1.04
SVM-RFE 8.98 % 0.2582 % 93.97 % 91.82 % 10.05 % 0.49 % 0.09
PLSA 0.89 % 0.0014 % 2.02 % 38.16 % 2.57 % 1.08 % 0.53

formance scalability of the bioinformatics workloads [10].
When the above presented results are compared to their re-
sults, Genenet, Semphy, Rsearch, and PLSA show very sim-
ilar scalability trends. However the results are very differ-
ent for SNP and SVM-RFE, where they are able to have
close to linear speedup until 8 processors and super-linear
speedup for 16 processors. The explanation given for this
super-linearity is that Intel’s system is composed of a 16-
way shared memory machine, which has a large L3 cache
and Cell-sharing L4 caches (4 processors grouped together)
that are interconnected with each other through the crossbar.
Specific optimizations have been applied to these codes tar-
geting their system.

4.3. Memory Hierarchy Behavior

Studies have indicated that memory hierarchy is a sig-
nificant performance bottleneck in modern computing sys-
tems. Consequently, understanding the program character-
istics from the memory hierarchy is essential to improve the
overall performance.

Table 3 summarizes the results obtained for both mem-
ory behavior and instruction efficiency. The results were
obtained by running the applications on 8 processors with
the medium-sized datasets where applicable. The results
presented here represent an average across the 8 processors.
We can make several observations regarding the memory
behavior. First, although the L1 data cache miss rates are
usually small, we see that the applications are drastically
different in their L1 data cache behavior. We can separate
the applications into two categories: those that have a fairly
small miss rate (less than 1.5%), and those that have a larger
miss rate (2–9%). We can see that the applications with low
miss rates tend to have a larger IPC values. Second, we see

that throughout the applications, the L1 instruction cache
miss rates (normalized to the number of instructions retired)
are very low. This is due to the fact that these applications
are relatively small in size and the instructions are able to fit
into the L1 cache.

We also performed an analysis of the L2 cache behav-
ior. The L2 miss rates are many times greater than their L1
counterparts. When the L1 miss rate is so small, it is not
surprising that many of these data references that miss in
the L1 cache would also not be found in the L2 cache. The
SVM-RFE benchmark had the worst L2 miss rate (93.97%).
Combined with the low L1 efficiency, this means that for
SVM-RFE approximately 8.44% of all data references re-
quired off-chip memory access, which causes a very low
IPC for this application. In general, L2 cache performance
varies largely across applications. One reason for this kind
of behavior is that the data distribution is random as dy-
namic scheduling is used for parallelization for some of the
applications. In dynamic schemes, the processor gets as-
signed a new block of data in a random fashion as it be-
comes available. Hence, the data gets distributed to multiple
caches in a random fashion, which increases the likelihood
of not exploiting spatial or temporal data locality. Another
reason for the high L2 cache miss rates for certain applica-
tions are due to the streaming nature of data retrieval, which
does not provide opportunities for data reuse.

4.4. Instruction Efficiency

We also studied the instruction efficiency using the coun-
ters profiled by VTune. Particularly, we measure the branch
misprediction rates, resource related stalls (stalls caused by
register renaming buffer entries, memory buffer entries, and
branch misprediction recovery), the fraction of the floating-



point instructions, and the Instructions per Cycle (IPC) val-
ues observed. These results are also summarized in Table
3.

In general the branch prediction is performing very well
for most of the applications, with a misprediction rate of
less than 3%. This is mostly due to the fact that the al-
gorithms are parallelized implicitly using OpenMP, which
is very good at analyzing large loops to extract data par-
allelism in an efficient way. The highest branch miss rate
is observed for the HOP application. This is partly due to
the algorithmic nature of the program. This code reads the
dataset in a parallel manner and works on local data for the
most part - only synchronizing occasionally. The code does
not have any parallel for loops, hence the branch mispredic-
tion rate increases.

We have also looked at the number of floating point op-
erations performed by the applications. In most of them,
the number of floating point operations is significantly high,
which indicates the extensive amount of (repetitive) compu-
tations performed on the fetched data. Note that Apriori and
PLSA are integer applications and do not contain any float-
ing point operations.

In addition, we have analyzed the resource related stall
rates. We see that most applications suffer from high stall
rates. Particularly, the SVM-RFE applications spends 92%
of its execution time on stalls. Since this applications ex-
hibits a large rate of cache misses, the instructions spend
more time in the pipeline, which causes an increase in the
resource related stalls. In general, we also observe a cor-
relation between the number of floating point instructions
and the resource related stalls. As the fraction of floating
point operations increase, the processor is able to utilize its
resources better and stalls less. On the other hand, for some
applications (e.g., Utility and SVM-RFE), other effects such
as the large cache miss rates result in a higher rate of stalls.

To express the efficiency of our applications, the num-
ber of instructions per cycle has been studied. It can be
seen that some applications suffer very low IPCs. For ex-
ample, the SVM-RFE application sees an IPC value of 0.09.
The reason for such low IPCs are different: SVM-RFE and
SNP’s low IPCs are related to the high resource related stall
percentages, 92% and 72% respectively; SVM, ScalparC
and Utility, on the other hand, are affected by high L1 data
cache miss rates; and lastly Hop and Apriori seem to suf-
fer from high branch mispredictions. These results indicate
that there is significant room to improve the performance of
the applications by increasing their efficiencies.

5. Conclusion

In this paper, we introduced and evaluated MineBench, a
benchmarking suite for data mining applications. We have
studied important characteristics of the applications when

executed on an 8-way SMP machine. Overall, our results
indicate that there is ample scope for improvement in the
performance of both data mining algorithms and systems.

MineBench is intended for use in computer architecture
research, systems research, performance evaluation, and
high-performance computing. MineBench is completely
open and freely available for download from our Center’s
website [29].

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation (NSF) under grants CNS-0404341, IIS-
0536994, and CCF-0444405, and by a research grant from
Intel Corporation. The authors would like to thank Pradeep
Dubey, Carole Dulong, and others from the Corporate Tech-
nology Group at Intel for providing a set of scientific data-
intensive workloads and for their valuable feedback.

References

[1] R. Agrawal, A. Arning, T. Bollinger, M. Mehta, J. Shafer,
and R. Srikant. The Quest data mining system. In Pro-
ceedings of the 2nd International Conference on Knowledge
Discovery in Databases and Data Mining, Aug. 1996.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. Verkamo. Fast discovery of association rules. Advances
in Knowledge Discovery and Data Mining, pages 307–328,
1996.

[3] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob,
C. Tseng, and D. Yeung. BioBench: A benchmark suite of
bioinformatics applications. In Proceedings of The 5th In-
ternational Symposium on Performance Analysis of Systems
and Software (ISPASS), Mar. 2005.

[4] C. Ambroise and G. J. McLachlan. Selection bias in
gene extraction on the basis of microarray gene-expression
data. Proceedings of the National Academy of Sciences,
99(10):6562–6566, 2002.

[5] D. Bader, Y. Li, T. Li, and V. Sachdeva. BioPerf: A bench-
mark suite to evaluate high-performance computer architec-
ture on bioinformatics applications. In Proceedings of the
IEEE International Symposium on Workload Characteriza-
tion (IISWC), Oct. 2005.

[6] A. Bateman, L. Coin, R. Durbin, R. Finn, V. Hollich,
S. Griffiths-Jones, A. Khanna, M. Marshall, S. Moxon,
E. Sonnhammer, D. Studholme, C. Yeats, and S. Eddy. The
Pfam protein families database. Nucleic Acids Research,
32(Database):D138–D141, 2004.

[7] J. Bezdek. Pattern Recognition with Fuzzy Objective Func-
tion Algorithms. Kluwer Academic Publishers, 1981.

[8] J. Bradford and J. Fortes. Performance and memory-access
characterization of data mining applications. In Workload
Characterization: Methodology and Case Studies, pages
49–59, Nov. 1998.



[9] A. Brookes, H. Lehvaslaiho, M. Siegfried, J. Boehm,
Y. Yuan, C. Sarkar, P. Bork, and F. Ortigao. HGBASE: a
database of SNPs and other variations in and around human
genes. Nucleic Acids Research, 28(1):356–360, Jan. 2000.

[10] Y. Chen, Q. Diao, C. Dulong, W. Hu, C. Lai, E. Li, W. Li,
T. Wang, and Y. Zhang. Performance scalability of data-
mining workloads in bioinformatics. Intel Technology Jour-
nal, 09(12):131–142, May 2005.

[11] D. Eisenstein and P. Hut. Hop: A new group finding al-
gorithm for N-body simulations. Journal of Astrophysics,
(498):137–142, 1998.

[12] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers, Aug. 2000.

[13] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eric,
H. Nueckel, and J. Shen. Scaling and characterizing
database workloads: Bridging the gap between research and
practice. In Proceedings of the 36th International Sympo-
sium on Microarchitecture, pages 76–87, Dec. 2003.

[14] Intel Corporation. Architecting the era of tera - technical
white paper. Available at http://www.intel.com, 2005.

[15] Intel Corporation. Intel VTune performance analyzer 7.2.
Available at http://www.intel.com, 2005.

[16] A. Jaleel, M. Mattina, and B. Jacob. Last Level Cache (LLC)
performance of data mining workloads on a CMP – a case
study of parallel bioinformatics workloads. In Proceedings
of the 12th International Symposium on High Performance
Computer Architecture (HPCA), Feb. 2006.

[17] M. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scal-
able and efficient parallel classification algorithm for mining
large datasets. In Proceedings of the 11th International Par-
allel Processing Symposium (IPPS), 1998.

[18] K. Keeton, D. Patterson, Y. Q. He, R. Raphael, and
W. Baker. Performance characterization of a quad Pentium
Pro SMP using OLTP workloads. In Proceedings of the 25th
International Symposium on Computer Architecture (ISCA),
pages 15–26, June 1998.

[19] J. Kim, X. Qin, and Y. Hsu. Memory characterization of
a parallel data mining workload. In Workload Characteri-
zation: Methodology and Case Studies, pages 60–70, Nov.
1998.

[20] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Me-
diaBench: A tool for evaluating and synthesizing multime-
dia and communications systems. In Proceedings of 30th
Annual International Symposium on Microarchitecture (MI-
CRO), pages 330–335, Dec. 1997.

[21] Y. Li, T. Li, T. Kahveci, and J. Fortes. Workload charac-
terization of bioinformatics applications. In Proceedings of

the 13th IEEE International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 15–22, Sept. 2005.

[22] Y. Liu, W. Liao, and A. Choudhary. A two-phase algorithm
for fast discovery of high utility itemsets. In Proceedings of
the Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), May 2005.

[23] J. MacQueen. Some methods for classification and analysis
of multivariate observations. In Proceedings of the Berke-
ley Symposium on Mathematical Statistics and Probability,
1967.

[24] M. Norman, J. Shalf, S. Levy, and G. Daues. Diving deep:
Data management and visualization strategies for adaptive
mesh refinement simulations. Computing in Science and En-
gineering, 1(4):36–47, 1999.

[25] P. Ranganathan, K. Gharachorloo, S. Adve, and L. Barroso.
Performance of database workloads on shared-memory sys-
tems with out-of-order processors. In Proceedings of the
8th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
VIII), pages 307–318, Oct. 1998.

[26] Sean Eddy’s Lab. Rsearch software repository. Available at
http://www.genetics.wustl.edu/eddy, 2005.

[27] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders,
M. Eisen, P. Brown, D. Botstein, and B. Futcher. Com-
prehensive identification of cell cycle-regulated genes of
the yeast saccharomyces cerevisiae by microarray hybridiza-
tion. Molecular Biology of the Cell, 9(12):3273–3297, 1998.

[28] Standard Performance Evaluation Corporation. SPEC
CPU2000 V1.2, CPU Benchmarks. Available at
http://www.spec.org, 2001.

[29] The Center for Ultra-scale Computing and Information Se-
curity (CUCIS) at Northwestern University. NU-Minebench
version 2.0. Available at http://cucis.ece.northwestern.edu,
2006.

[30] P. Trancoso, J. Larriba-Pey, Z. Zhang, and J. Torrelas.
The memory performance of DSS commercial workloads in
shared-memory multiprocessors. In Proceedings of the 3rd
International Symposium on High-Performance Computer
Architecture (HPCA), pages 250–261, Feb. 1997.

[31] Transaction Processing Performance Council. TPC-H
Benchmark Revision 2.0.0, 2004.

[32] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In Proceedings of the 22nd International
Symposium on Computer Architecture (ISCA), pages 24–36,
June 1995.


