Efficient Algorithms for Array Redistribution*

Rajeev Thakur† Alok Choudhary† J. Ramanujam†

Corresponding Author: Alok Choudhary
ECE Dept., 121 Link Hall
Syracuse University, Syracuse, NY 13244
choudhar@cat.syr.edu
Tel: (315) 443-4280, Fax: (315) 443-2583

Abstract

Dynamic redistribution of arrays is required very often in programs on distributed memory parallel computers. This paper proposes efficient algorithms for redistribution between different cyclic\(k\) distributions, as defined in High Performance Fortran (HPF). We first propose special optimized algorithms for a cyclic\(x\) to cyclic\(y\) redistribution when \(x\) is a multiple of \(y\), or \(y\) is a multiple of \(x\). We then propose two algorithms, called the GCD Method and the LCM Method, for the general cyclic\(x\) to cyclic\(y\) redistribution when there is no particular relation between \(x\) and \(y\). The GCD and LCM Methods make use of the optimized algorithms developed for the above special cases. We have implemented these algorithms on the Intel Touchstone Delta and we find that they perform well for different array sizes and number of processors. The performance results are presented and analyzed.

Index Terms: Array Redistribution, Distributed Memory Computers, High Performance Fortran, Runtime Support, Parallelizing Compilers

*This work was supported in part by NSF Young Investigator Award CCR-9357849 with a matching grant from Intel SSD. J. Ramanujam is supported in part by NSF Young Investigator Award CCR-9457768, NSF grant CCR-9210422, and by the Louisiana Board of Regents through contract LEQSF (1991-94)-RD-A-09.
†Dept. of Electrical and Computer Eng. and Northeast Parallel Architectures Center, Syracuse University
‡Dept. of Electrical and Computer Eng., Louisiana State University, Baton Rouge
1 Introduction

In distributed memory parallel computers, arrays have to be distributed among processors in some fashion. The distribution can either be regular i.e. block, cyclic or block-cyclic as in Fortran D [2] and High Performance Fortran (HPF) [5, 9]; or irregular in which there is no function specifying the mapping of arrays to processors. The distribution of an array does not need to remain fixed throughout the program. In fact, it is very often necessary to change the distribution of the array at runtime, which is called array redistribution. This involves calculating source and destination processor and index sets as well as data communication. It is essential to use efficient algorithms for redistribution, otherwise the performance of the program may degrade considerably.

This paper describes efficient and practical algorithms for redistributing arrays between different regular distributions. The most general regular distribution is the CYCLIC(k) distribution defined in HPF [5], in which blocks of size k of the array are distributed among processors in a cyclic fashion. This is commonly known as a block-cyclic distribution. Redistribution from a cyclic(x) to a cyclic(y) distribution, for any general x and y, is interesting because there is no direct algebraic formula to calculate the set of elements to send to a destination processor and the local addresses of these elements at the destination [4].

Gupta et al [4] propose a virtual processor approach in which a block-cyclic distribution is considered to be either a virtual block or a virtual cyclic distribution in a virtual processor space, where each physical processor's local data space is a combination of the local data spaces of many virtual processors. Ramaswamy and Banerjee [11] discuss algorithms for redistribution based on a mathematical representation for regular distributions called PITFALLS. There has also been some research on a slightly different problem of determining the local addresses and communication sets for array assignment statements like $A(l_1 : h_1 : s_1) = B(l_2 : h_2 : s_2)$ where A and B have different cyclic(m) distributions. Chatterjee et al [1] present an approach to calculate the sequence of local memory addresses that a given processor must access while doing a computation involving the regular array section $A(l : h : s)$ given that the array A has a cyclic(k) distribution. They show that the local memory access sequence is characterized by a finite state machine of at most k states and involves solving linear Diophantine equations. Stichnoth [12] defines a cyclic(k) distribution as a disjoint union of slices, where a slice is a sequence of array indices specified by a lower bound, upper bound and stride $(l : h : s)$. The processor and index sets are calculated in terms of unions and intersections of slices, which also involves solving linear Diophantine equations.

This paper proposes a new approach for performing the general cyclic(x) to cyclic(y) redistribution. We first propose efficient algorithms for two special cases, when x is a multiple of y, or y is a multiple of x. We then propose two methods called the GCD Method and the LCM Method for the
general case when there is no particular relation between \(x \) and \(y \). The GCD and LCM Methods make use of the optimized algorithms developed for the above special cases. Hence they require a lot less calculations than an algorithm which calculates the source and destination processor for each element of the array.

The rest of this paper is organized as follows. The notations, assumptions and definitions used in this paper are given in Section 2. Section 3 describes the algorithm for the special case of a cyclic(\(x \)) to cyclic(\(y \)) redistribution where \(x \) is a multiple of \(y \). Section 4 describes the algorithm for the special case where \(y \) is a multiple of \(x \). The GCD and LCM Methods for the general case are proposed in Section 5. Section 6 discusses related work in this area followed by Conclusions in Section 7.

2 Notations and Definitions

The notations used in this paper are given in Figure 1. We assume that all arrays are indexed starting from 1, while processors are numbered starting from 0. We also assume that the number of processors on which the array is distributed remains the same before and after the redistribution. In HPF, an array can be distributed as block(\(m \)) or cyclic(\(m \)) which are defined as follows. Consider an array of size \(N \) distributed over \(P \) processors. Let us define the ceiling division function \(CD(j, k) = (j + k - 1)/k \) and the ceiling remainder function \(CR(j, k) = j - k \times CD(j, k) \). Then block(\(m \)) distribution means that index \(j \) of the array is mapped to logical processor number \(CD(j, m) - 1 \).

Note that for a valid block(\(m \)) distribution, \(m \times P \geq N \) must be true. Block by definition means the same as block(\(CD(N, P) \)). In a cyclic(\(m \)) distribution, index \(j \) of the global array is mapped to logical processor number \(MOD(CD(j, m) - 1, P) \). Cyclic by definition means the same as cyclic(\(1 \)).

In other words, in a block distribution, contiguous blocks of the array are distributed among
Table 1: Data Distribution and Index Conversion

Note: This assumes that arrays are indexed starting from 1 and processors are numbered starting from 0

\[CD(j, k) = \frac{j + k - 1}{k} \quad \text{and} \quad CR(j, k) = j - k \times CD(j, k) \]

<table>
<thead>
<tr>
<th>Block (m)</th>
<th>Cyclic</th>
<th>Cyclic (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global index (g) to processor number (p)</td>
<td>(p = CD(g, m) - 1)</td>
<td>(p = \text{MOD}(g - 1, P))</td>
</tr>
<tr>
<td>Global index (g) to local index (l)</td>
<td>(l = m + CR(g, m))</td>
<td>(l = (g - 1)/P + 1)</td>
</tr>
<tr>
<td>Local index (l) to global index (g)</td>
<td>(g = l + mp)</td>
<td>(g = (l - 1)P + p + 1)</td>
</tr>
</tbody>
</table>

Processors. In a cyclic distribution, array elements are distributed among processors in a round-robin fashion. In a cyclic(\(m \)) distribution, blocks of size \(m \) are distributed cyclically. Block and cyclic distributions are special cases of the general cyclic(\(m \)) distribution. A cyclic(\(m \)) distribution with \(m = \lceil N/P \rceil \) is a block distribution and a cyclic(\(m \)) distribution with \(m = 1 \) is a cyclic distribution. The formulae for conversion between local and global indices for the different distributions in HPF are given in Table 1.

The redistribution algorithms proposed in this paper are intended to be portable. Hence, we do not specify how data communication should be performed because the best communication algorithms are often machine dependent. Redistribution requires all-to-many personalized communication in general and in many cases it requires all-to-all personalized communication. Algorithms to implement these communication patterns are described in detail in [14, 10, 15]. The performance results presented in this paper were obtained using these algorithms for communication [14, 10, 15]. We do assume that all the data to be sent from any processor \(i \) to processor \(j \) has to be collected in a packet in processor \(i \) and sent in one communication operation, so as to minimize the communication startup cost. The algorithms proposed in this paper are with respect to one dimensional arrays. Multidimensional arrays can be redistributed by applying these algorithms to each dimension of the array separately. In the rest of this paper, any division involving integers should be considered as integer division unless specified otherwise.

3 Cyclic(\(x \)) to Cyclic(\(y \)) Redistribution: Special Case \(x = k \cdot y \)

For a general cyclic(\(x \)) to cyclic(\(y \)) redistribution, there is no direct algebraic formula to calculate the set of elements to send to a destination processor and the local addresses of these elements at
the destination [4]. Hence we first consider two special cases where x is a multiple of y, or y is a multiple of x. For the general case where there is no particular relation between x and y, we propose two algorithms called the GCD Method and the LCM Method, which make use of the optimized algorithms developed for the above two special cases.

Let us first consider the special case where x is a multiple of y. Let $x = k y$.

Theorem 3.1 In a cyclic(x) to cyclic(y) redistribution where $x = k y$, if $k < P$, each processor communicates with k or $k - 1$ processors. If $k \geq P$, each processor communicates with all other processors.

Proof: Assume $k < P$. Since $x = k y$, each block of size x is divided into k sub-blocks of size y and distributed cyclically. Consider any processor p_i. Assume that it has to send its first sub-block of size y to processor p_j. Then the remaining $k - 1$ sub-blocks of the first block are sent to the next $k - 1$ processors in order. The next $k(P - 1)$ sub-blocks of the global array are located in the other $P - 1$ processors. This results in a total of $k P$ sub-blocks. Hence the $(k + 1)^{th}$ sub-block of size y in p_i is also sent to p_j. Thus all sub-blocks from p_i are sent to k processors starting from p_j. One of these processors may be p_i itself, in which case p_i has to send data to $k - 1$ processors.

For the receive phase, consider the first k sub-blocks of size y in the global array corresponding to the first P blocks of size x. Let us number these $k P$ sub-blocks from 0 to $k P - 1$. Out of these, the sub-blocks that are mapped to processor p_i in the new distribution are numbered p_i to $P(k - 1) + p_i$ with stride P. These sub-blocks come from \(\frac{P(k-1)+p_i}{P} + 1 = k \) processors. One of these processors might be p_i itself, in which case p_i receives data from $k - 1$ processors.

If $k \geq P$, each block of size x has to be divided into k sub-blocks and distributed cyclically, where the number of sub-blocks is greater than or equal to the number of processors. So clearly each processor has to send to and receive from all other processors (all-to-all communication).

The algorithm for cyclic(x) to cyclic(y) redistribution, where $x = k y$ is given in Figure 2. We call this the KY.TO.Y algorithm. In the send phase, each processor p calculates the destination processor p_d of the first element of its local array as $p_d = MOD(k p, P)$. The first y elements have to be sent to p_d, the next y to $MOD(p_d + 1, P)$, the next to $MOD(p_d + 2, P)$ and so on till the end of the first block of size x. The next k sub-blocks of size y have to be sent to the same set of k processors starting from p_d. The sequence of destination processors can be stored and need not be calculated for each block of size x. In the receive phase, there are two cases depending on the value of k:

1. $(k \leq P)$ and $(MOD(P,k) = 0)$: In this case, each processor p calculates the source processor of the first block of size y of its local array as $p_s = p/k$. The next block of size y will come from
Send Phase

1. The destination processor \((p_d)\) of the first element of the local array is \(p_d = MOD(k, p, P)\).
2. For each block of size \(x\) in the local array
 3. For \(i = 0\) to \(k - 1\)
 4. The destination processor of elements \((i\, y + 1)\) to \((i + 1)\, y\) of this block of size \(x\) is \(MOD(p_d + i, P)\).

Receive Phase

1. If \((k \leq P)\) and \((MOD(P, k) = 0)\) then
2. The source processor \((p_s)\) of the first element of the local array is \(p_s = p/k\).

Synchronous Method:

3. Receive data from all processors.
4. For \(j = 1\) to \([L/x]\)
 5. For \(i = 0\) to \(k - 1\)
 6. Read the next block of size \(y\) from the data received from processor \(MOD(p_s + i(P/k), P)\).

Asynchronous Method:

3. The \(i^{th}\) block of size \(y\), \(0 \leq i \leq k - 1\), is to be received from processor \(MOD(p_s + i(P/k), P)\).
4. For \(i = 0\) to \(k - 1\)
5. Receive data from any processor \(p_i\).
6. Place the first block of size \(y\) in the local array starting from the location calculated above, and the other blocks with stride \(x\).

7. Else
8. Receive data from all processors.
9. For \(i = 0\) to \([L/y] - 1\)
10. The source processor \((p_s)\) of the first element \((j = i\, y + 1)\) of this block of size \(y\) is \(p_s = MOD((i\, P + p)/k, P)\)
11. Read this block of size \(y\) from the data received from \(p_s\).

Figure 2: KY.TO.Y Algorithm for Cyclic\((x)\) to Cyclic\((y)\) Redistribution, where \(x = k\, y\)

processor \(MOD(p_s + P/k, P)\), the next from \(MOD(p_s + 2(P/k), P)\) and so on till the first \(k\) blocks. The above sequence of processors is repeated for the remaining sets of \(k\) blocks of size \(x\) and hence can be stored and reused. The data received from other processors cannot be directly stored in the local array as it has to be stored with some stride. Hence the data has to be first stored in a temporary buffer in memory. This gives us two choices in implementing the receive phase:

- **Synchronous Method:** In this method, each processor waits till it receives data from all other processors, before placing any data in the local array. This increases the memory requirements of the algorithm and also increases the processor idle time. These problems worsen as the number of processors is increased, so this method is not scalable.

- **Asynchronous Method:** In this method, the processors do not wait for data from all processors to arrive. Instead, each processor takes any packet which has arrived.
and places the data into appropriate locations in the local array. This method *overlaps computation and communication*. Each processor posts non-blocking receive calls and waits for data from any processor to arrive. As soon as a packet is received, it places the data in appropriate locations in the local array. During this time, data from other processors may have arrived. When the processor has placed all the data from the earlier packet into the local array, it takes up the next packet, and so on. This reduces processor idle time. Since all packets do not have to be in memory at the same time, it also reduces memory requirements. This method is scalable as neither processor idle time nor memory requirements increase as the number of processors is increased.

If the Synchronous Method is used for receiving data, the local array needs to be scanned only once and the i^{th} block, $0 \leq i \leq \lfloor L/y \rfloor - 1$, of size y of the local array will be read from the data received from processor $MOD(p_s + i(P/k), P)$. If the Asynchronous Method is used, the first block from the data received from some processor p_s will be stored starting at the location calculated above. The remaining blocks will be stored with stride x.

2. If k does not satisfy the above condition, it is necessary to calculate the source processor of the first element ($j = iy + 1$) of each block of size y, $0 \leq i \leq \lfloor L/y \rfloor - 1$, of the local array as $p_s = MOD((iP + p)/k, P)$. The block is read from the data received from p_s. The sequence of processors does not repeat itself and hence cannot be stored. In this case, the Synchronous Method is used.

In the Synchronous Method, the local array needs to be scanned only once to be filled. In the Asynchronous Method, array elements are filled with a certain amount of stride and the array has to be scanned P times. So, clearly the Synchronous Method makes better use of the cache than the Asynchronous Method. We have tested the performance of the KY.TO.Y Algorithm using both Synchronous and Asynchronous Methods on the Intel Touchstone Delta. Figure 3 compares the performance of the Synchronous and Asynchronous Methods for a cyclic(4) to cyclic(2) redistribution of a global array of 1M integers for different number of processors. We observe that the Asynchronous Method performs better than the Synchronous Method, even though in this case each processor communicates with at most two other processors. This is because the Asynchronous Method overlaps computation and communication and thus reduces processor idle time. The better cache utilization of the Synchronous Method does not improve its overall performance. Figure 4 shows the performance of the KY.TO.Y Algorithm for a cyclic(4) to cyclic(2) redistribution on 64 processors for different array sizes. For small arrays, the difference in performance between the Synchronous and Asynchronous Methods is small, because of the small data sets. For large arrays, the difference is significant because of the higher processor idle time in the Synchronous Method.
Figure 3: KY.TO.Y Algorithm, cyclic(4) to cyclic(2), 1M array, different no. of processors

Figure 4: KY.TO.Y Algorithm, cyclic(4) to cyclic(2), 64 procs, different array sizes
4 Cyclic\((x)\) to Cyclic\((y)\) Redistribution: Special case \(y = k \cdot x\)

We now consider the special case where \(y\) is a multiple of \(x\). Let \(y = k \cdot x\). This is essentially the reverse of the case where \(x = k \cdot y\).

Theorem 4.1 In a cyclic\((x)\) to cyclic\((y)\) redistribution where \(y = k \cdot x\), if \(k < P\), each processor sends data to \(k\) or \(k - 1\) processors and receives data from \(k\) or \(k - 1\) processors. If \(k \geq P\), each processor has to communicate with all other processors (all-to-all communication).

Proof: Assume \(k < P\). Consider the first \(k \cdot P\) sub-blocks of size \(x\) in the global array corresponding to the first \(P\) sub-blocks of size \(y\). Let us number these \(k \cdot P\) sub-blocks from 0 to \(P - 1\). Out of these, the sub-blocks that are located in processor \(p_i\) are numbered from \(p_i\) to \(P(k - 1) - 1 + p_i\) with stride \(P\). In the new distribution, these sub-blocks will be mapped to \((P(k - 1) - 1 + p_i) - p_i + 1 = k\) processors. One of these processors might be \(p_i\) itself, in which case \(p_i\) sends data to \(k - 1\) processors.

In the receive phase, since \(y = k \cdot x\), each block of size \(y\) in the new distribution consists of \(k\) sub-blocks of size \(x\) which will come from \(k\) processors. Consider any processor \(p_i\). Assume that it receives its first sub-block of size \(x\) from processor \(p_j\). Then the remaining \(k - 1\) sub-blocks of the first block are received from the next \(k - 1\) processors in order. The other \(P - 1\) processors receive the next \(k(P - 1)\) sub-blocks of the global array. This results in a total of \(k \cdot P\) sub-blocks. Hence the next sub-block in \(p_i\), which is the first sub-block of the next block of size \(y\), is also received from \(p_j\). Thus all sub-blocks from \(p_i\) are received from \(k\) processors starting from \(p_j\). One of these processors may be \(p_i\) itself in which case \(p_i\) receives data from \(k - 1\) processors.

If \(k \geq P\), each block of size \(y\) will consist of \(k\) sub-blocks of size \(x\), where the number of sub-blocks is greater than or equal to the number of processors. So clearly each processor has to send to and receive from all other processors (all-to-all communication).

The algorithm for cyclic\((x)\) to cyclic\((y)\) redistribution, where \(y = k \cdot x\), is given in Figure 5. We call this the X.TO.KX Algorithm. In the send phase, there are two cases depending on the value of \(k\):

1. \((k \leq P)\) and \((MOD(P, k) = 0)\): In this case, each processor \(p\) calculates the destination processor of the first block of size \(x\) of its local array as \(p_d = p/k\). The next block of size \(x\) has to be sent to processor \(MOD(p_d + P/k, P)\), the next to \(MOD(p_d + 2(P/k), P)\) and so on till the first \(k\) blocks. The above sequence of processors is repeated for the remaining sets of \(k\) blocks of size \(x\), and hence need not be calculated again.
Send Phase

1. If \((k \leq P)\) and \((\text{MOD}(P, k) = 0)\) then
2. The destination processor \((p_d)\) of the first element of the local array is \(p_d = p/k\).
3. For \(j = 0\) to \([L/y] - 1\)
4. For \(i = 0\) to \(k - 1\)
5. The destination processor of the next block of size \(z\) of the local array is \(\text{MOD}(p_d + (i(P/k), P))\).
6. Else
7. For \(i = 0\) to \([L/z] - 1\)
8. The destination processor \((p_d)\) of the first element \((j = i z + 1)\) of this block of size \(z\) is \(p_d = \text{MOD}((i P + p)/k, P)\).

Receive Phase

1. The source processor \((p_s)\) of the first element of the local array is \(p_s = \text{MOD}(k P, P)\).

Synchronous Method:
2. Receive data from all processors.
3. For each block of size \(y\) in the local array do
4. For \(i = 0\) to \(k - 1\) do
5. Read elements \((i z + 1)\) to \((i+1)z\) of the current block of size \(y\) from the packet received from processor \(\text{MOD}(p_s + i, P)\).

Asynchronous Method:
2. The \(i^{th}\) block of size \(z\), \(0 \leq i \leq k - 1\), is to be received from processor \(\text{MOD}(p_s + i, P)\).
3. For \(i = 0\) to \(k - 1\) do
4. Receive data from any processor \(p_i\).
5. Place the first block of size \(z\) in the local array starting from the location calculated above, and the other blocks with stride \(y\).

Figure 5: X.TO_KX Algorithm for Cyclic\((z)\) to Cyclic\((y)\) Redistribution, where \(y = k z\)

2. If \(k\) does not satisfy the above condition, it is necessary to individually calculate the destination processor of each block \(i\) of size \(z\), \(0 \leq i \leq [L/z] - 1\), as \(p_d = \text{MOD}((i P + p)/k, P)\).

In the receive phase, each processor \(p\) calculates the source processor of the first element of its local array as \(p_s = \text{MOD}(k P, P)\). As in the KY.TO.Y algorithm, the receive phase can be implemented using either the Synchronous Method or the Asynchronous Method. If the Synchronous Method is used, for each block of size \(y\) of the local array, the \(k\) sub-blocks of size \(z\) are read from the packets received from the \(k\) processors starting from \(p_s\) in order of processor number. If the Asynchronous Method is used, we know that the \(i^{th}\) block of size \(z\) of the local array, \(0 \leq i \leq k - 1\), will be received from processor \(\text{MOD}(p_s + i, P)\). Thus the local index of the first block received from any source processor can be calculated. The remaining blocks have to be stored with stride \(y\).

We have tested the performance of the X.TO.KX Algorithm on the Intel Touchstone Delta for different array sizes and number of processors. Figure 6 compares the performance of the Synchronous and Asynchronous Methods for a cyclic\((2)\) to cyclic\((4)\) redistribution of an array of 1M integers for different number of processors. Figure 7 compares the performance of the two methods for different array sizes on 64 processors. The results are similar to those obtained for the KY.TO.Y Algorithm. The Asynchronous Method is found to perform better in all cases.
Figure 6: X_TO_KX Algorithm, cyclic(2) to cyclic(4), 1M array, different no. of processors

Figure 7: X_TO_KX Algorithm, cyclic(2) to cyclic(4), 64 procs, different array sizes
5 General Cyclic(x) to Cyclic(y) Redistribution:

Let us consider the general case of a cyclic(x) to cyclic(y) redistribution in which there is no particular relation between x and y. One algorithm for doing this is to explicitly calculate the destination and source processor of each element of the local array, using the formulae given in Table 1. We call this General Algorithm and is described below.

5.1 General Algorithm

In the send phase, the destination processor of each element of the local array can be determined by first calculating its global index based on the current distribution and then the destination processor based on the new distribution. These two calculations can be combined into a single expression to give the destination processor of element i of the local array as \(p_d = \text{MOD}[\{\text{MOD}(i - 1, x) + (P((i - 1)/x) + p)x + y)/y - 1, P] \). Similarly in the receive phase, the source processor of each element of the local array can be determined by first calculating its global index based on the new distribution and then the source processor based on the old distribution. These two calculations can be combined into a single expression to give the source processor of element i of the local array as \(p_s = \text{MOD}[\{\text{MOD}(i - 1, y) + (P((i - 1)/y) + p)y + x)/x - 1, P] \).

The drawback of this algorithm is that calculations are needed individually for all elements of the array. We propose two algorithms called the GCD Method and the LCM Method, which make use of the optimized KY.TO.Y and X.TO.KX algorithms and hence require a lot less calculations.

5.2 GCD Method

This method takes advantage of the fact that we have developed special optimized algorithms for a cyclic(x) to cyclic(y) redistribution when \(x = ky \) (the KY.TO.Y Algorithm) and \(y = kx \) (the X.TO.KX Algorithm). In the GCD Method, the redistribution is done as a sequence of two phases — cyclic(x) to cyclic(m) followed by cyclic(m) to cyclic(y), where \(m = \text{GCD}(x, y) \). Since both x and y are multiples of m, the KY.TO.Y Algorithm can be used for the cyclic(x) to cyclic(m) phase and the X.TO.KX Algorithm can be used for the cyclic(m) to cyclic(y) phase. This is described in Figure 8. The GCD Method involves the cost of having to do two separate redistributions. For small arrays, the increased communication may outweigh the savings in computation, but for large arrays in some cases, the performance is better than that of the General Method. This can be observed from Figure 9 which shows the performance of a cyclic(15) to cyclic(10) redistribution, for an array of size 1M integers on the Delta. We see that for small number of processors, the GCD Method performs considerably better than the General Method because of the saving in the amount of computation per processor. Since the size of the global array is kept constant, as the
GCD Method

1. Let \(m = GCD(x, y) \).
2. Distribute from cyclic\((x)\) to cyclic\((m)\)
 using the KY.TOX.Y Algorithm.
3. Distribute from cyclic\((m)\) to cyclic\((y)\)
 using the X.TOX.KX Algorithm.

LCM Method

1. Let \(m = LCM(x, y) \).
2. Distribute from cyclic\((x)\) to cyclic\((m)\)
 using the X.TOX.KX Algorithm.
3. Distribute from cyclic\((m)\) to cyclic\((y)\)
 using the KY.TOX.Y Algorithm.

Figure 8: GCD and LCM Methods for General Cyclic\((x)\) to Cyclic\((y)\) Redistribution

number of processors is increased, the size of the local array in each processor becomes smaller
and each processor spends less time on address calculation. Hence the improvement of the GCD
Method over the General Method is also small.

One disadvantage of the GCD Method is that in the intermediate cyclic\((m)\) distribution, the
block size \(m \) is smaller than both \(x \) and \(y \). In the KY.TOX.Y and X.TOX.KX algorithms, all the
address and processor calculations are done for blocks of size \(x \) or \(y \). Since \(m \) is the GCD of \(x \) and
\(y \), \(m \) can even be equal to 1 in some cases. When \(m = 1 \), calculations have to be done for each
element, which is no better than in the General Method. In this case, the General Method performs
better than the GCD Method. Figure 10 shows an example of cyclic\((11)\) to cyclic\((3)\) redistribution
on the Delta for an array of size 1M integers. Since the GCD of 11 and 3 is 1, we find that the
General Method always performs better than the GCD Method.

5.3 LCM Method

The key to getting good performance in this two-phase approach for redistribution is to have a
large value for \(m \). One way of ensuring that \(m \) is always large is by choosing \(m \) as the LCM of \(x \)
and \(y \). Since \(m \) is a multiple of both \(x \) and \(y \), the X.TOX.KX Algorithm can be used for the cyclic\((x)\)
to cyclic\((m)\) phase and the KY.TOX.Y algorithm can be used for the cyclic\((m)\) to cyclic\((y)\) phase.
This is described in Figure 8. Also, since \(m \) is larger than \(x \) and \(y \), all calculations are done for
this larger block size. This results in fewer calculations than in the GCD and General Methods.
Figures 9 and 10 compare the performance of the LCM, GCD and General Methods for an array
of 1M integers on different number of processors. We observe that the LCM Method performs
better in all cases. Figure 11 compares the performance of the LCM and General Methods for a
cyclic\((11)\) to cyclic\((3)\) redistribution keeping the number of processors fixed at 64 and varying the
array size. We observe that for small arrays, the General Method performs better because it has
less communication, but for large arrays the LCM method performs better because the saving in
computation is higher than the increase in communication.
Figure 9: Comparison of GCD, LCM and General Methods; cyclic(15) to cyclic(10); 1M array

Figure 10: Comparison of GCD, LCM and General Methods; cyclic(11) to cyclic(3); 1M array
Figure 11: LCM v/s General Methods for different array sizes on 64 processors

6 Related Work

Gupta et al [4] and Koelbel [8] provide closed form expressions for determining the send and receive processor sets and data index sets for redistributing arrays between block and cyclic distributions. A model for evaluating the communication cost of data redistribution using this method is given in [7]. Wakatani and Wolfe [16] describe a method of array redistribution called Strip Mining Redistribution in which parts of an array are redistributed in sequence, instead of redistributing the entire array at one time as a whole. The reason for doing this is to try to overlap the communication involved in redistribution with some of the computation in the program. Kalns and Ni [6] present a technique for mapping data to processors so as to minimize the total amount of data that must be communicated during redistribution. Ramaswamy and Banerjee [11] discuss algorithms for redistribution based on a mathematical representation for regular distributions called PITFALLS. There has also been some research on the closely related problem of determining the local addresses and communication sets for array assignment statements like \(A(l_1 : h_1 : s_1) = B(l_2 : h_2 : s_2) \) where \(A \) and \(B \) have different cyclic \((m)\) distributions [1, 12, 13, 3].

7 Conclusions

We have proposed a new approach for redistributing between different cyclic \((k)\) distributions, which is the most general form of redistribution. We have developed optimized algorithms for two special cases of the cyclic \((x)\) to cyclic \((y)\) redistribution, when \(x \) is a multiple of \(y \) or \(y \) is a multiple of \(x \). We
have also proposed two algorithms called the GCD Method and the LCM Method for the general case where there is no particular relation between \(x \) and \(y \). Although we have considered only one dimensional arrays, multidimensional arrays can be redistributed by applying these algorithms to each dimension of the array separately. The algorithms try to minimize address calculation and communication, and make good use of the cache. At the same time, we have taken care to ensure that the algorithms are simple and practical enough to be easily implemented in the runtime library of an HPF compiler, or directly in application programs requiring redistribution. The algorithms are portable and independent of the communication mechanism used.

The Asynchronous Method is found to perform better than the Synchronous Method in all cases, because it reduces processor idle time. For the general case where there is no particular relation between \(x \) and \(y \), for small arrays the General Method performs well because it requires communication only once. However for large arrays, the LCM Method performs much better than the General Method, because it requires a lot less address calculation. The GCD Method also performs better than the General Method for large arrays provided the GCD of \(x \) and \(y \) is greater than 1. The LCM Method always performs better than the GCD Method because the LCM of \(x \) and \(y \) is always larger than their GCD.

Acknowledgments

This research was performed in part using the Intel Touchstone Delta System operated by Caltech on behalf of the Concurrent Supercomputing Consortium. Access to this facility was provided by CRPC.

References

