
Analyzing the Impact of On-chip Network Traffic on
Program Phases for CMPs

Yu Zhang, Berkin Ozisikyilmaz, Gokhan Memik, John Kim and Alok Choudhary
EECS Department

Northwestern University
Evanston, IL, USA

{yzh702, boz283, memik, jjk12, choudhar}@eecs.northwestern.edu

Abstract—It is known that the execution of programs exhibits
repetitive phases; in other words, the execution of programs
can be partitioned into segments of execution, during which the
application exhibits unique architectural properties. This
property has been used for various optimization goals. In
addition, phase information is utilized to reduce the run time
of the architectural simulation. Conventionally, an application
is examined in an architecture-independent manner (such as
the number of times a basic block is executed) to extract
information about the phases and then only the representative
execution intervals are executed to analyze architectural
choices. We claim that such approaches are becoming
inadequate in the many-core era as application execution is not
dominated by the instructions only, but instead the
communication structure of the application is becoming as
important as the instruction behavior. Hence, we propose to
utilize communication behavior to determine the phases of an
application. Our results reveal that the inclusion of the
communication information can increase the accuracy of the
phase detection significantly. Specifically, for SPLASH2 and
MineBench applications, the average (geometric mean) CPI
error rate with the instruction-based phase detection is
11.01%, while our phase detection scheme has an average
error rate of 3.41% when compared to the simulations that run
the applications to completion.

I. INTRODUCTION

Previous works have shown that programs exhibit
repetitive behavior at different execution intervals. Based on
this observation, the terminology phase is defined. A phase
is a set of intervals within a program’s execution that exhibit
similar behavior. The intervals are not necessarily temporally
adjacent. In other words, a phase can reoccur at different
parts of the execution. The information about phases has
been used for various purposes. Dhodapkar and Smith [1-3]
use it for reconfiguration of the multi-configuration units to
save energy. Balasubramonian et al. [4] use phase
information to guide dynamic cache reconfiguration to save
energy without sacrificing performance. Merten et al. [5] use
the phase information to develop a run-time system for
dynamically optimizing frequently executed code. Barnes et
al. [6] extend this idea to perform phase-directed compiler
optimizations. Biesbrouck et al. [7] use phase behavior to
guide simulation for Simultaneous Multithreading [8]. One
of the most common means of utilizing the phase
information is to reduce the architectural simulation time.

Specifically, if representative intervals can be extracted from
the execution, an architecture can be simulated for those
intervals only (rather than running the application to
completion, which takes considerable simulation time)
without causing any inaccuracy in the simulation results.
Such approaches reduce the overall simulation time by
orders of magnitude. For example, with an interval of 10
million instructions, no more than 30 simulation points are
needed to represent the complete execution of SPEC 2000
benchmarks, for which the whole execution may take over
100 billion instructions [9, 10]. Simulating only these
carefully chosen simulation points can save hours to days of
simulation time with very low error rates.

The phase analysis for serial programs is already a
mature area [1, 6, 10-17]. Architectural metrics (for example,
CPI, cache miss rate or hit rate, branch frequency) and code
signatures have been examined to extract phase information.
Results show that the extraction of phases through such
means is accurate. However, as the manufacturers are
moving towards chip-multiprocessor (CMP) designs, the
accuracy of such approaches may degrade. As technology
scaling continues to increase the amount of transistors
available, recent trend has been to increase the number of
cores on a chip instead of adding complexity to a single core.
Many manufactures, including Intel, IBM, Sun, and AMD,
have produced microprocessors that incorporate multiple
processing cores. The increasing number of cores has
resulted in the on-chip network connecting the cores together
becoming a crucial component in determining the overall
performance of the processor.

As a result, techniques that determine phases without the
consideration of the communication behavior of the
application can generate relatively high error rate. In Section
VI, we present experimental results showing that a typical
phase detection approach that considers only instruction
behavior causes over 11% inaccuracy on average. To remedy
this limitation, we propose to utilize on-chip communication
information to determine the execution phases. We introduce
a vector related to the on-chip interconnect network traffic as
an additional representation of the program execution. This
vector is a one-dimensional array, with each array element
recording the traffic information of the on-chip router. Then,
we combine this structure with the instruction count based
structure to represent the execution of program on CMP

218978-1-4244-4184-6/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore. Restrictions apply.

machines. Program phases are then detected based on these
new arrays. Experimental results show that incorporating the
communication behavior reduces the CPI error rate from
11% to 3% on average. As the number of cores on a chip
scales, it is expected that the interconnection network will
become an even more important determinant of the overall
performance; hence the motivation to utilize our approach
will increase.

This paper is organized as follows. In Section II, we
overview the related work. In Section III, we present the
details of our methodology. Section IV describes the
technique we use to profile the execution of the programs.
Section V presents the experimental setup. In Section VI, we
provide our experimental results. Section VII concludes the
paper with a summary of our contributions.

II. RELATED WORK

Several researchers have examined phase behavior in
programs. In this section, we provide a brief description of
studies related to phase identification and phase-based
optimization.

Sherwood et al. [18] presented that programs have
repeatable phase-based behavior over many architecture
metrics, such as cache behavior, branch prediction, value
prediction, address prediction, IPC and RUU occupancy for
SPEC 95 Benchmarks. Repeating patterns were found in
many of the programs, and the essential architecture metrics
change similarly over time. They also proposed that phase
behavior in programs could automatically be identified by
only examining code execution [19]. They extended their
work in [16] to develop automatic techniques that are
capable of finding and exploiting the large scale behavior of
programs. SimPoint [10] was developed to detect phase by
using the clustering algorithm (K-means). In our work, we
extend the use of SimPoint. Instead using the traditional
Basic Block Vectors, we use new kinds of vectors to classify
the intervals into clusters. We describe the SimPoint in more
detail in the next section. Dhodapkar and Smith [2, 3]
utilized the relationship between phases and instruction
working set and observed that phase changes at the same
time as the working set changes. This directed them to
reconfigure the processor units to save energy.

Isci et al. [14, 20, 21] used hardware performance
counters to exploit phase behavior in programs and proposed
that the power phase behavior could be identified
dynamically by using power vectors. Deusterwald et al. [22]
utilized hardware counters and other phase prediction
schemes to detect phase behavior. Liu et al. [23] dynamically
detect phase behavior by tracking procedure calls using a call
stack. Davies et al. [13] used Intel’s VTune Performance
Analyzer to get a representation of program execution.
Sampling information is extracted from VTune at runtime on
native hardware. Then, simulation points are generated
similar to SimPoint. Annavaram et al. [11] employed this
VTune approach to identify phase behavior for database
applications. Perelman et al. [24] used the VTune sampling
approach to collect Extended Instruction Pointer Vectors and
then produced Sampled Basic Block Vectors to detect phase

behavior of parallel applications on a shared memory
machine.

Analyzing phase behavior over different time scales has
also been studied. Hind et al. [25] presented the impact of
granularity and similarity on phase analysis and provided a
framework to perform phase analysis appropriately. Lau et
al. [15] examined the importance of varying interval length
in phase identification. Vandeputte and Eeckhout [17]
provided phase complexity surfaces to characterize a
program’s phase behavior across various time scales. Cho
and Li [12] proposed an approach to quantitatively analyze
the changing of phase dynamics across different time scales
and presented a framework classifying phases which exhibit
homogeneity in their scaling behavior.

Most of the above works are done based on one
important assumption that the programs of interest are
executed serially, except the work of Perelman et al. [24].
However, their phase behavior detection is done on shared
memory architectures. In this paper, we propose an approach
to examine the phase behavior in parallel programs on CMP
machines.

III. METHODOLOGY AND METRICS

Phases can be extracted using information about basic
blocks or instruction counts. A basic block is a single-entry,
single-exit section of the code, which does not contain
internal control flow. SimPoint [10] utilizes the Basic Block
Vector (BBV) to create phases. BBV is a one-dimensional
array. Each element in BBV represents the number of times a
basic block is executed during an execution interval. BBV is
a commonly used structure to represent the execution of a
given interval [16, 24] and is an attractive representation of
the execution. However, when the number of cores scales up,
generating the basic block vector becomes complicated.
There would be tens of thousands of basic blocks in the
program, which means the number of elements in one array
(one basic block vector) can exceed hundred thousand. Due
to the implementation difficulty, we don’t use BBV to detect
program phases. Instead of BBV, we introduce the
Instruction Count Vector (ICV), which can also be used on
SimPoint. ICV is much simpler and more straightforward
than the projection of BBVs. ICV is also a one-dimensional
array, where each element in the array corresponds to the
instruction count of a core (number of instructions executed
by a core) within the execution interval. In this paper, the
interval we use is based on global instruction count (total
number of instructions executed by all of the cores). In our
experiment, an interval contains one million instructions
overall. Then, the number of instructions executed by each
core is collected to form the ICV.

Note that the interval can neither be too small nor too
large. A small interval means that to represent the whole
execution, more simulation points are needed, or the error
rate will increase. On the other hand, there is also
requirements on the number of intervals. Hamerly et al. [10]
describes that the number of intervals should be sufficient in
order to make the clustering algorithm work properly. This
number should be no less than a thousand to make sure that
the clustering algorithm can provide a decent partition of the

219

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore. Restrictions apply.

intervals. As a result, to guarantee adequate number of
intervals, each interval should not be too large. For the target
applications in our work, we found that the interval of one
million instructions provides a good trade-off between these
forces.

In addition to the ICV, in this work, we introduce Traffic
Count Vector (TCV), which is also a one-dimensional array
with each element corresponding to the traffic count (number
of packets) going through each router. To make the traffic
profiling more specific, we record the number of packets
generated by each router, number of packets destined for
each router and also the intermediate packets. Finally, we
combine the ICV and TCV into one vector, where each
element contains the corresponding values from the ICV and

the TCV. We then detect phases using this combination of
profiling information.

Figure 1 shows phase detections through three different
methods: ICV-based phase detection, TCV-based phase
detection and phase detection based on the combination
vector. The results are presented for the Barnes application
[26] (please see Section V for details of the application).

In Figure 1, the X-axis represents the execution of the
program and Y-axis is the cluster ID. Each execution interval
is assigned a unique cluster ID by the K-means clustering
algorithm. Figure 1 implies that phases detected by TCVs are
similar to the ones extracted by ICVs in the macro scope but
still they are different in detail. Based on the calculation, the
simulation points selected by the combination vector can
cover more than those selected by ICVs.

We validate the three sets of simulation points with
varying architectural configurations, e.g., different
interconnection network configurations. We present our
results in Section V showing that the combination vector is
the most accurate representation, i.e., it performs closest to
running the applications to completion.

IV. PROFILING PROGRAM BEHAVIOR

As we described in the previous section, BBV is an
attractive structure to represent the execution of a given
interval. The BBV records the number of times a basic block
is executed in the interval. On the other hand, the BBV
element used in SimPoint is the number of times a basic
block is executed multiplied by the number of instructions of
that basic block. The purpose of doing this multiplication is
to make sure that the summation of the elements equals to
the length of the interval (the number of instructions
executed within the interval). The number of basic blocks in
one program usually ranges from several thousands to
hundreds of thousands [16]. For the BBVs, the number of
dimensions is the number of executed basic blocks. With so
many dimensions, K-means, the clustering algorithm inside
SimPoint, hits the so-called “curse of dimensionality”. In
addition, the runtime of SimPoint increases with the number
of dimensions. SimPoint developers introduced the random
linear projection technique to reduce the number of
dimensions. However, this process may lose some profiling
information. It is reported that a dimension number of 15
was found to be sufficient to distinguish the different phases
of execution [16]. However, since we are simulating a 16-
core CMP machine, it is complicated to gather this basic
block information. Our modeling infrastructure is based on
Simics, which complicates the extraction of basic block
information. Compared to BBV, ICV is much easier to
obtain and maintain. It only has 16 dimensions in our case,
and performs similar to BBV. The main goal of our work is
to show that incorporating the network traffic information
will improve the accuracy of the phase analysis. Therefore,
we use ICV to be the representation of the execution. We use
the ICV on a 16-core CMP as our baseline to detect phases
of execution and validate them. To collect the traffic count
vectors, we put several counters in each router. In our
evaluation, we assume a direct topology [27], where for each
processor, there is a single router associated with the

(a) Phase detection based on instruction count

(b) Phase detection based on traffic information

(c) Phase detection based on combination of instruction and traffic

information

Figure 1. Phase clustering of Barnes application based on different profiling
information: (a) instruction count based clustering, (b) traffic based

clustering, and (c) clustering based on combination of instruction and traffic
i f ti

0

1

2

3

4

5

6

7

8
C

lu
st

er
 I

D

Execution

0

1

2

3

4

5

6

7

8

C
lu

st
er

 I
D

Execution

0

1

2

3

4

5

6

7

8

C
lu

st
er

 I
D

Execution

220

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore. Restrictions apply.

processor. In our experiments, each router is directly
connected to a private L1 cache, shared L2 cache, and a
memory directory. In the remainder of this paper, a “node”
always denotes a core including a router with the L1 cache,
L2 cache and directory connected to it. At the runtime, the
counters calculate the number of packets generated by the
node, destined for the node and also the intermediate packets
going through the node separately. The element in the traffic
count vector corresponds to the traffic triggered or responded
or passing by the particular core. The execution interval of
the TCVs has the same length with the ICVs. In this case, the
summation of the elements in a traffic count vector will vary.
However, since SimPoint first normalizes all the frequency
vectors [10], this variation will not affect the extraction of
different execution phases.

As for the combination approach, we can combine the
two kinds of vectors with different weights. In our
simulation, we assume that the communication structure is as
important as instruction behavior, therefore in the
combination, we give ICV and TCV roughly the same
weights. We suppose that the weights determination should
be related to the number of cores on chip and the complexity
of the on-chip network. We believe that as the number of
cores on chip scales up, the interconnect network traffic will
have more influence on the execution, which means that
TCV will become more important. Even in the combination
vectors, the number of dimensions will not exceed 64 for our
16-core chip multiprocessor simulation. This also indicates
that we will not lose too much information by random linear
projection to reduce the number of dimension to 15.

V. EXPERIMENT SETUP

In our work, we first use GEMS [28] /SIMICS [29] to
profile the target applications’ behavior. We then use
SimPoint [10] to detect phases based on those profiling
information.

SIMICS is a functional full system simulator. We use
SIMICS to simulate a Solaris-Sparc system. GEMS is an
extension of SIMICS, which works together with SIMICS.
GEMS can support chip multiprocessor simulations. It has
two modules, which are all built on top of SIMICS. One is
called Ruby and the other is Opal. The Ruby module
implements a detailed memory system. Garnet [30], a
detailed module of on-chip interconnection network, is also
embedded into Ruby. In our work, we use Ruby module to
simulate the memory hierarchy and the point-to-point on-
chip network topology. The flexible network provided by
Garnet is used to example the impact of different on-chip
network architecture on detecting program phases. Table I

describes the specifications of our simulated machine in
GEMS.

We simulate a 16-core CMP system. Cache coherence is
managed by a 2-level directory protocol for CMP. Two types
of on-chip network topologies are simulated – a point-to-
point (P-To-P) topology and a 2D mesh (4x4) topology. The
point-to-point topology represents an “ideal” on-chip
network topology as all 16 nodes on the chip are fully
connected with zero router delay and no bandwidth
limitation. However, since GEMS require a non-zero link
latency, we introduce a single-cycle link latency in our
simulation. As a result, there is no intermediate router delay
as any node can be reached within a single hop. We also
evaluate a 2D mesh network which is commonly used in
many chip multiprocessors including the TRIPS processor
[31], the 80-node Intel’s Teraflops research chip [32], and
the 64-node chip multiprocessor from Tilera [33]. We run 3
sets of simulations with different router delays. The router
delays are assumed to be 1-cycle, 4-cycle and 8-cycle,
respectively. We assume a dimension-ordered routing (DOR)
where packets are routed first in the X-dimension and then,
in the Y-dimension. The use of DOR simplifies the flow
control as no additional virtual channels are needed to avoid
routing deadlock.

SimPoint [16] is used for automatically characterizing
program behavior. We use SimPoint to process the profiling
information of the execution and then group the execution
intervals into a number of clusters. CPI (cycles/instruction)
and execution time are recorded for the selected simulation
points for the further evaluation.

We run two sets of benchmarks: NU-MineBench [34]
and SPLASH-2 [26]. All the applications are parallel
programs. NU-MineBench is a data mining benchmark suite
containing a mix of representative data mining applications
from different application domains. We use HOP, K-means,
and ScalParC from NU-MineBench, and Barnes, LU, Radix,
and Water-Spatial from SPLASH-2 benchmarking suites.
HOP is a density-based grouping application for clustering.

TABLE I. SIMULATED MACHINE CONFIGURATIONS

CPU Sixteen 1GHz SPARCv9, 2-way, in-order
L1 Cache 4-way split, 64KB, 3-cycle latency

L2 Cache 4-way split, 16MB, 6-cycle latency
Memory 4GB
Directory Split, 80-cycle latency
On-chip Network P-To-P, 4x4 mesh topology, 1-cycle link latency
Router 1, 4, 8-cycle delay

TABLE II. SIMULATION PROPERTY OF THE TARGET APPLICATIONS

Application Instructions
[Million]

Packets Intervals Cycles
[Million]

Barnes 9545 42774860 9545 12564
LU 949 714165 949 1072
Radix 1609 3155094 1609 2064
Water-Spatial 2617 1957989 2617 2845
HOP 219 1115777 219 406
K-means 2387 2417238 2387 2732
ScalParC 2419 48574193 2419 11261

Application Packets/
Interval

Cycles/
Interval

Simulation
Hours

Barnes 4481 1316291 72
LU 753 1129610 7
Radix 1961 1282784 12
Water-Spatial 748 1087122 16
HOP 5095 1853881 1
K-means 1013 1144532 27
ScalParC 20080 4655229 56

221

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore. Restrictions apply.

K-means is a well-known mean-based data partitioning
application. ScalParC is a classification application based on
decision tree classification. The SPLASH-2 benchmark suite
contains two kinds of programs: complete applications and
computational kernels. The Barnes application simulates the
interaction of a system of bodies in three dimensions. The
LU kernel factors a dense matrix into a lower triangular and
an upper triangular matrix. Radix is an integer radix sort
kernel. Water-Spatial is an extension of Water application in
SPLASH. Table II describes the simulation properties of
these target applications; it provides the number of
instructions executed, simulation time (based on hours) of
the whole execution, number of cycles simulated, total
number of interconnect network traffic (total number of

packets generated), number of intervals, and average number
of packets per interval for the target applications. The
simulation time is collected from a detailed architecture
simulator. We can see that ScalParC, HOP and Barnes are
the most traffic-intensive applications.

VI. RESULTS

In this section, we compare the performance of the three
techniques in terms of CPI error rate and execution time.

Figure 2 shows the average CPI error rate of three
approaches when compared to full application execution
(i.e., running the applications to completion). Please note that
many of the full application simulations take several days to

Figure 2. Error rate comparison of basic point-to-point on-chip network

Figure 3. Error rate comparison of 4x4 mesh on-chip network with 1-cycle
router delay

.88 .64 .26.68 .58 .68 .31.30 3.12 .53

0%

5%

10%

15%

20%

25%

C
P

I
E

rr
or

 R
at

e
Instruction Source Destination Combination

.261.22 1.42 .63 .52.26 .64 .62

0%

5%

10%

15%

20%

25%

C
P

I
E

rr
or

 R
at

e

Instruction Source Destination Intermediate Combination

Figure 4. Error rate comparison of 4x4 mesh on-chip network with 4-cycle

router delay

Figure 5. Error rate comparison of 4x4 mesh on-chip network with 8-cycle
router delay

2.14 .45 .41.38 .691.12 .66 .31.76.27

0%

5%

10%

15%

20%

25%

C
P

I
E

rr
or

 R
at

e

Instruction Source Destination Intermediate Combination

.68.34 .30 .42 .60.51 .64.30 .60.53

0%

5%

10%

15%

20%

25%
C

P
I

E
rr

or
 R

at
e

Instruction Source Destination Intermediate Combination

222

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore. Restrictions apply.

complete and hence are impractical when a large number of
architectural configurations are to be tested. In Figure 2, we
show the CPI error rate of phases detected by 4 different
profiling information. First one is phases detected by
instruction profiling – ICV, we denote it as Instruction in the
figure; second one is phases detected by the vector which
records the number of packets generated by each node, we
denote it as Source; the third one is phases detected by the
vector which records the number of packets destined for each
node and is denoted as Destination; the last one is phases
detected by the combined vector which includes all of the
above three kinds of profiling information and is denoted as
Combination. On average, simulation points selected by ICV
perform better than those selected by TCV in the ideal
network and the performance of the combination approach is
the best. We choose geometric mean to evaluate the
performance of our proposed approach. Our experimental
results show that there is large variation in error rates among
different applications. We want to prevent one extreme case
dominating the analysis of the trends. Therefore, we have
used the geometric mean to draw general conclusions about
the main trends in our approach. The average (geometric
mean) CPI error rate of the combination technique is reduced
by 29.0% compared with the error rate of the ICV technique
(from 8.98% to 6.38%). In general, the error rate of the TCV
technique is greater than that of the ICV technique, that is
mainly because that P-To-P on-chip network is
approximately an ideal network. In this ideal network, there
are no bandwidth or buffer size limitations; so the
transactions of interconnect network packets are fast. Since
nodes are fully connected in this network, the interconnect
packet can be delivered directly from the source node to the
destination node. In this case, the interconnect traffic
contributes little to the program execution time. Hence, the
network traffic does not have significant influence on the
CPI in this case. On the other hand, the instruction count
vector is a better representative of the execution of the
interval. While, even though the instruction behavior seems
to dominate the program execution, for some applications,
the CPI error rate of the ICV technique is high, e.g., for
Radix and ScalParC, the error rate is over 25%. These
applications generate relatively larger amount of interconnect
packets. Consequently, the instruction behavior is not as
dominant as other applications. In other words, in the ideal
network, more interconnect traffic contributes to higher error
rate of the ICV technique. For the applications generating
more interconnect traffic, if we only consider the ICV to
identify phases of program execution, this may result in
improper clustering of the execution intervals for these
applications. At last, we combine the ICV technique with the
TCV technique. In this case, since the interconnect traffic
contributes less than the instruction behavior, the
combination vector contain big portion of ICV along with
small portion of TCV. The ICV/TCV ratio vary from ~100 to
~10, this ratio depends on how many interconnect packets
are generated during the program execution. For ScalParC,
HOP, Barnes and Radix, the ICV/TCV ratio is relatively
low. Overall, our combination technique provides better
performance than the base line ICV technique: the arithmetic
mean of the CPI error rate can be reduced by 59.8% (from

26.34% to 10.59%) and the geometric mean can be reduced
by 29.0% (from 8.98% to 6.38%).

Even though we limited the number of simulation points
to not exceed 10, the results show that for all the target
applications the CPI error rate of the combination technique
is less than 25%.

Figure 3 through Figure 5 show the results of the second
on-chip network configuration using a 2D mesh topology,
which is more representative of topologies used in CMP
machines. Figure 3, 4, and 5 present the results when the
router delay is set to 1-cycle, 4-cycles, and 8-cycles,
respectively. In this set of experiments, the on-chip router
delay is set to be a single cycle. In Figure 2, we show the CPI
error rate of phases detected by 5 different profiling
information. Instruction, Source, Destination and
Combination have been explained in the former paragraph,
Intermediate denotes the phases detected by the vector which
records the number of packets passing through each node. In
other words, the packets counted are neither generated by the
node nor destined for the node, they just pass by. It is
apparent that, in the former on-chip network (P-To-P), there
is no intermediate packets, all the interconnect packets are
transmitted directly from the source node to the destination
node. However, in the 4x4 mesh network, since the nodes are
not fully connected, an interconnect packet may traverse
several nodes to get to the destination. Depending on the
router delay and link latency, varying number of
intermediate packets will be accumulated on all the nodes.
The CPI error rate shows quite different trends compared to
the basic network configuration. This 4x4 mesh network is
much more realistic. In this case, the interconnect network
traffic has a much more profound impact on the execution of
the program. Contrary to the case in the P-to-P on-chip
network, the TCV becomes a more important signature of
the execution for the applications that generate large amounts
of network packets. On the other hand, for the applications
with relatively small amount of interconnect network traffic,
TCV still remains a relatively less important representation
of execution. We first compare the three kinds of TCV
(Source, Destination and Intermediate) techniques: on
average, Intermediate technique gives the best performance
in terms of CPI error rate (11.80%, 8.10%, and 3.06%,
respectively). These results indicate that in the more realistic
on-chip network, the intermediate packets contributes more
than the source packets, destination packets, and even the
instruction behavior (9.35% CPI error rate) to the program
execution. Therefore, in the combination technique, when we
combine the ICV with the TCV, we only consider the
intermediate packets, and the ICV/TCV ratio is set to be
roughly 1:1. On average, the combination technique provides
a 71.0% improvement (reducing the error rate from 9.35% to
2.71%) on the accuracy over the base ICV technique. In this
configuration, LU performs worse with Intermediate
technique applied; this is because the traffic generated by
this application is relatively small which results in a small
amount of intermediate packets. Therefore, the intermediate
traffic may not be as dominant as the instruction behavior.
Overall, the combination technique reduces the arithmetic
mean of CPI error rate by 63.2% (from 12.57% to 4.62%)

223

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore. Restrictions apply.

and reduces the geometric mean of CPI error rate by 71.0%
(from 9.35% to 2.71%) compared with the basic ICV
technique.

In Figure 4 and 5, we apply 4-cycle and 8-cycle router
delay, respectively. As the router delay is increased, the
contribution of the intermediate packets becomes more
important. Therefore, in order to increase execution
accuracy, we decrease the ICV/TCV ratio furthermore in the
combination vector. And the combination technique reduces
the CPI error rate by 69.0% (from 11.01% to 3.41%) and
60.0% (from 10.70% to 4.27%), respectively.

We also examine the execution time of the simulation
points based on the three phase detection techniques. Figure

6 through Figure 9 show the execution time of simulation
points selected by the ICV, TCV, and combination-based
phases. The results show that the TCV and the combination
techniques are comparable in terms of their simulation time
and in fact reduce the overall simulation time compared to
the phases selected via the ICV technique. For the ideal
network, the geometric mean of the simulation time of the
points selected by the combination technique is 6.1% less
than that of the basic ICV technique. When compared to the
whole execution, the execution time of the simulation points
generated by SimPoint can be reduced by over two orders of
magnitude. For the 4x4 mesh network, the average execution
time of the combination technique selected simulation points
is 10.2%, 27.3% and 14.2% less than that of the ICV-

Figure 6. Execution time comparison of basic point-to-point on-chip

network

Figure 7. Execution time comparison of 4x4 mesh on-chip network with 1-
cycle router delay

30 25 44

0

2

4

6

8

10

12

14

S
im

ul
at

io
n

C
yc

le
s

x1
00

00

Instruction Source Destination Combination

52 44

0

2

4

6

8

10

12

14

S
im

ul
at

io
n

C
yc

le
s

x1
00

00

Instruction Source Destination Intermediate Combination

Figure 8. Execution time comparison of 4x4 mesh on-chip network with 4-

cycle router delay

Figure 9. Execution time comparison of 4x4 mesh on-chip network with 8-
cycle router delay

19 57 2740

0

2

4

6

8

10

12

14

S
im

ul
at

io
n

C
yc

le
s

x1
00

00

Instruction Source Destination Intermediate Combination

0

2

4

6

8

10

12

14

S
im

ul
at

io
n

C
yc

le
s

x1
00

00

Instruction Source Destination Intermediate Combination

224

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore. Restrictions apply.

selected simulation points for 1-cycle, 4-cycle and 8-cycle
router delays, respectively. As a result, on the whole, phase
identification through the combination technique performs
better in terms of accuracy without sacrificing performance
in terms of execution time.

VII. SUMMARY

In this paper, we presented the impact of on-chip network
traffic patterns on phase identification of parallel programs
running on CMP machines. We proposed new techniques to
detect program phases. We first introduced a frequency
vector called Traffic Count Vector (TCV) that collects
information about the number of communication packets
generated by each core during an interval. We also utilized a
common technique called Instruction Count Vector (ICV),
which counts the number of instructions executed on a core
during each interval. In addition, we developed a hybrid
scheme by combining the two vectors into a single vector.
We evaluated the simulation points generated by these three
frequency vectors. Our simulation results show that with the
consideration of the on-chip network traffic pattern, higher
accuracy (up to 71.0% less error rate when compared to the
ICV based phase detection) can be achieved when only
simulating the selected simulation points, without sacrificing
performance while saving a significant amount (over 99%)
of simulation time.

ACKNOWLEDGEMENT

This work was supported in part by NSF grants CNS-
0551639, IIS-0536994, CCF-0747201, CCF-0541337, and
OCI-0724599; DoE CAREER Award DEFG02-05ER25691;
and by Wissner-Slivka Chair funds. We would also like to
thank anonymous reviewers for their insightful comments.

REFERENCES
[1] Dhodapkar, A.S. and J.E. Smith. Comparing Program

Phase Detection Techniques. in Microarchitecture,
2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on. 2003.

[2] Smith, J.E. and A.S. Dhodapkar. Dynamic
Microarchitecture Adaptation via Co-Designed Virtual
Machines. in Solid-State Circuits Conference, 2002.
Digest of Technical Papers. ISSCC. 2002 IEEE
International. 2002.

[3] Dhodapkar, A.S. and J.E. Smith. Managing Multi-
Configuration Hardware via Dynamic Working Set
Analysis. in Computer Architecture, 2002. Proceedings.
29th Annual International Symposium on. 2002.

[4] Balasubramonian, R., et al. Memory Hierarchy
Reconfiguration for Energy and Performance in
General-Purpose Processor Architectures. in
Microarchitecture, 2000. MICRO-33. Proceedings. 33rd
Annual IEEE/ACM International Symposium on. 2000.

[5] Merten, M.C., et al., An Architectural Framework for
Runtime Optimization. Computers, IEEE Transactions
on, 2001. 50(6): p. 567-589.

[6] Barnes, R.D., et al. Vacuum Packing: Extracting
Hardware-Detected Program Phases for Post-Link
Optimization. in Microarchitecture, 2002. (MICRO-35).
Proceedings. 35th Annual IEEE/ACM International
Symposium on. 2002.

[7] Biesbrouck, M.V., T. Sherwood, and B. Calder, A Co-
Phase Matrix to Guide Simultaneous Multithreading
Simulation, in Proceedings of the 2004 IEEE

International Symposium on Performance Analysis of
Systems and Software. 2004, IEEE Computer Society.

[8] Tullsen, D.M., S.J. Eggers, and H.M. Levy.
Simultaneous Multithreading: Maximizing On-Chip
Parallelism. in Computer Architecture, 1995.
Proceedings. 22nd Annual International Symposium on.
1995.

[9] Sherwood, T., S. Sair, and B. Calder. Phase Tracking
and Prediction. in Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on.
2003.

[10] Hamerly, G., et al., SimPoint 3.0: Faster and More
Flexible Program Phase Analysis. Journal of
Instruction-Level Parallelism, 2005. 7: p. 1-28.

[11] Annavaram, M., et al. The Fuzzy Correlation between
Code and Performance Predictability. in
Microarchitecture, 2004. MICRO-37 2004. 37th
International Symposium on. 2004.

[12] Cho, C.-B. and T. Li, Complexity-Based Program
Phase Analysis and Classification, in Proceedings of the
15th international conference on Parallel architectures
and compilation techniques. 2006, ACM: Seattle,
Washington, USA.

[13] Davies, B., et al., iPART : An Automated Phase
Analysis and Recognition Tool. 2003, Microprocessor
Research Labs - Intel Corporation.

[14] Isci, C. and M. Martonosi. Identifying Program Power
Phase Behavior Using Power Vectors. in Workload
Characterization, 2003. WWC-6. 2003 IEEE
International Workshop on. 2003.

[15] Lau, J., et al. Motivation for Variable Length Intervals
and Hierarchical Phase Behavior. in Performance
Analysis of Systems and Software, 2005. ISPASS
2005. IEEE International Symposium on. 2005.

[16] Sherwood, T., et al., Automatically Characterizing
Large Scale Program Behavior, in Proceedings of the
10th international conference on Architectural support
for programming languages and operating systems.
2002, ACM: San Jose, California.

[17] Vandeputte, F. and L. Eeckhout, Phase Complexity
Surfaces: Characterizing Time-Varying Program
Behavior, in High Performance Embedded
Architectures and Compilers. 2008, Springer Berlin /
Heidelberg. p. 320-334.

[18] Sherwood, T. and B. Calder, Time Varying Behavior of
Programs. 1999, UC San Diego.

[19] Sherwood, T., E. Perelman, and B. Calder. Basic Block
Distribution Analysis to Find Periodic Behavior and
Simulation Points in Applications. in Proceeding of
International Conference on Parallel Architectures and
Compilation Techniques. 2001.

[20] Isci, C. and M. Martonosi. Runtime Power Monitoring
in High-End Processors: Methodology and Empirical
Data. in Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International
Symposium on. 2003.

[21] Isci, C. and M. Martonosi. Phase Characterization for
Power: Evaluating Control-Flow-Based and Event-
Counter-Based Techniques. in High-Performance
Computer Architecture, 2006. The Twelfth
International Symposium on. 2006.

[22] Duesterwald, E., C. Cascaval, and D. Sandhya.
Characterizing and Predicting Program Behavior and Its
Variability. in Parallel Architectures and Compilation
Techniques, 2003. PACT 2003. Proceedings. 12th
International Conference on. 2003.

[23] Liu, W. and M.C. Huang, EXPERT: Expedited
Simulation Exploiting Program Behavior Repetition, in

225

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore. Restrictions apply.

Proceedings of the 18th annual international conference
on Supercomputing. 2004, ACM: Malo, France.

[24] Perelman, E., et al. Detecting Phases in Parallel
Applications on Shared Memory Architectures. in
Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International. 2006.

[25] Hind, M.J., V.T. Rajan, and P.F. Sweeney, Phase Shift
Detection: A Problem Classification. 2003, IBM
Research Division.

[26] Woo, S.C., et al., The SPLASH–2 Programs:
Characterization and Methodological Considerations, in
Proceedings of the 22nd ISCA. 1995.

[27] Dally, W.J. and B. Towles, Principles and Practices of
Interconnection Networks. 2004: Morgan Kaufmann.

[28] Martin, M.M., et al., Multifacet's General Execution-
Driven Multiprocessor Simulator (GEMS) Toolset, in
Computer Architecture News (CAN). 2005.

[29] Magnusson, P.S., et al., Simics: A full system
simulation platform. Computer, 2002. 35(2): p. 50-58.

[30] Agarwal, N., L.-S. Peh, and N. Jha, Garnet: A Detailed
Interconnection Network Model inside a Full-system
Simulation Framework, in CE-P08-001, Dept. of
Electrical Engineering, Princeton University. 2007.

[31] Gratz, P., et al., Implementation and Evaluation of On-
Chip Network Architectures, in International
Conference on Computer Design (ICCD). 2006.

[32] Vangal, S. and e. al., An 80-Tile 1.28TFLOPS
Network-on-Chip in 65nm CMOS, in IEEE Int'l Solid-
State Circuits Conf., Digest of Tech. Papers (ISSCC).
2007.

[33] Agarwal, A., et al., Tile Processor: Embedded
Multicore for Networking and Multimedia. Hot Chips
19, Stanford, CA, 2007.

[34] Narayanan, R., et al., MineBench: A Benchmark Suite
for Data Miningworkloads, in Proceedings of the IEEE
International Symposium on Workload Characterization
(IISWC). 2006.

226

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore. Restrictions apply.

