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Abstract—It is known that the execution of programs exhibits 
repetitive phases; in other words, the execution of programs 
can be partitioned into segments of execution, during which the 
application exhibits unique architectural properties. This 
property has been used for various optimization goals. In 
addition, phase information is utilized to reduce the run time 
of the architectural simulation. Conventionally, an application 
is examined in an architecture-independent manner (such as 
the number of times a basic block is executed) to extract 
information about the phases and then only the representative 
execution intervals are executed to analyze architectural 
choices. We claim that such approaches are becoming 
inadequate in the many-core era as application execution is not 
dominated by the instructions only, but instead the 
communication structure of the application is becoming as 
important as the instruction behavior. Hence, we propose to 
utilize communication behavior to determine the phases of an 
application. Our results reveal that the inclusion of the 
communication information can increase the accuracy of the 
phase detection significantly. Specifically, for SPLASH2 and 
MineBench applications, the average (geometric mean) CPI 
error rate with the instruction-based phase detection is 
11.01%, while our phase detection scheme has an average 
error rate of 3.41% when compared to the simulations that run 
the applications to completion.  

I. INTRODUCTION 

Previous works have shown that programs exhibit 
repetitive behavior at different execution intervals. Based on 
this observation, the terminology phase is defined. A phase 
is a set of intervals within a program’s execution that exhibit 
similar behavior. The intervals are not necessarily temporally 
adjacent. In other words, a phase can reoccur at different 
parts of the execution. The information about phases has 
been used for various purposes. Dhodapkar and Smith [1-3] 
use it for reconfiguration of the multi-configuration units to 
save energy. Balasubramonian et al. [4] use phase 
information to guide dynamic cache reconfiguration to save 
energy without sacrificing performance. Merten et al. [5] use 
the phase information to develop a run-time system for 
dynamically optimizing frequently executed code. Barnes et 
al. [6] extend this idea to perform phase-directed compiler 
optimizations. Biesbrouck et al. [7] use phase behavior to 
guide simulation for Simultaneous Multithreading [8]. One 
of the most common means of utilizing the phase 
information is to reduce the architectural simulation time. 

Specifically, if representative intervals can be extracted from 
the execution, an architecture can be simulated for those 
intervals only (rather than running the application to 
completion, which takes considerable simulation time) 
without causing any inaccuracy in the simulation results. 
Such approaches reduce the overall simulation time by 
orders of magnitude. For example, with an interval of 10 
million instructions, no more than 30 simulation points are 
needed to represent the complete execution of SPEC 2000 
benchmarks, for which the whole execution may take over 
100 billion instructions [9, 10]. Simulating only these 
carefully chosen simulation points can save hours to days of 
simulation time with very low error rates. 

The phase analysis for serial programs is already a 
mature area [1, 6, 10-17]. Architectural metrics (for example, 
CPI, cache miss rate or hit rate, branch frequency) and code 
signatures have been examined to extract phase information. 
Results show that the extraction of phases through such 
means is accurate. However, as the manufacturers are 
moving towards chip-multiprocessor (CMP) designs, the 
accuracy of such approaches may degrade. As technology 
scaling continues to increase the amount of transistors 
available, recent trend has been to increase the number of 
cores on a chip instead of adding complexity to a single core. 
Many manufactures, including Intel, IBM, Sun, and AMD, 
have produced microprocessors that incorporate multiple 
processing cores. The increasing number of cores has 
resulted in the on-chip network connecting the cores together 
becoming a crucial component in determining the overall 
performance of the processor.  

As a result, techniques that determine phases without the 
consideration of the communication behavior of the 
application can generate relatively high error rate. In Section 
VI, we present experimental results showing that a typical 
phase detection approach that considers only instruction 
behavior causes over 11% inaccuracy on average. To remedy 
this limitation, we propose to utilize on-chip communication 
information to determine the execution phases. We introduce 
a vector related to the on-chip interconnect network traffic as 
an additional representation of the program execution. This 
vector is a one-dimensional array, with each array element 
recording the traffic information of the on-chip router. Then, 
we combine this structure with the instruction count based 
structure to represent the execution of program on CMP 
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machines. Program phases are then detected based on these 
new arrays. Experimental results show that incorporating the 
communication behavior reduces the CPI error rate from 
11% to 3% on average. As the number of cores on a chip 
scales, it is expected that the interconnection network will 
become an even more important determinant of the overall 
performance; hence the motivation to utilize our approach 
will increase.  

This paper is organized as follows. In Section II, we 
overview the related work. In Section III, we present the 
details of our methodology. Section IV describes the 
technique we use to profile the execution of the programs. 
Section V presents the experimental setup. In Section VI, we 
provide our experimental results. Section VII concludes the 
paper with a summary of our contributions. 

II. RELATED WORK 

Several researchers have examined phase behavior in 
programs. In this section, we provide a brief description of 
studies related to phase identification and phase-based 
optimization. 

Sherwood et al. [18] presented that programs have 
repeatable phase-based behavior over many architecture 
metrics, such as cache behavior, branch prediction, value 
prediction, address prediction, IPC and RUU occupancy for 
SPEC 95 Benchmarks. Repeating patterns were found in 
many of the programs, and the essential architecture metrics 
change similarly over time. They also proposed that phase 
behavior in programs could automatically be identified by 
only examining code execution [19]. They extended their 
work in [16] to develop automatic techniques that are 
capable of finding and exploiting the large scale behavior of 
programs. SimPoint [10] was developed to detect phase by 
using the clustering algorithm (K-means). In our work, we 
extend the use of SimPoint. Instead using the traditional 
Basic Block Vectors, we use new kinds of vectors to classify 
the intervals into clusters. We describe the SimPoint in more 
detail in the next section. Dhodapkar and Smith [2, 3] 
utilized the relationship between phases and instruction 
working set and observed that phase changes at the same 
time as the working set changes. This directed them to 
reconfigure the processor units to save energy.  

Isci et al. [14, 20, 21] used hardware performance 
counters to exploit phase behavior in programs and proposed 
that the power phase behavior could be identified 
dynamically by using power vectors. Deusterwald et al. [22] 
utilized hardware counters and other phase prediction 
schemes to detect phase behavior. Liu et al. [23] dynamically 
detect phase behavior by tracking procedure calls using a call 
stack. Davies et al. [13] used Intel’s VTune Performance 
Analyzer to get a representation of program execution. 
Sampling information is extracted from VTune at runtime on 
native hardware. Then, simulation points are generated 
similar to SimPoint. Annavaram et al. [11] employed this 
VTune approach to identify phase behavior for database 
applications. Perelman et al. [24] used the VTune sampling 
approach to collect Extended Instruction Pointer Vectors and 
then produced Sampled Basic Block Vectors to detect phase 

behavior of parallel applications on a shared memory 
machine. 

Analyzing phase behavior over different time scales has 
also been studied. Hind et al. [25] presented the impact of 
granularity and similarity on phase analysis and provided a 
framework to perform phase analysis appropriately. Lau et 
al. [15] examined the importance of varying interval length 
in phase identification. Vandeputte and Eeckhout [17] 
provided phase complexity surfaces to characterize a 
program’s phase behavior across various time scales. Cho 
and Li [12] proposed an approach to quantitatively analyze 
the changing of phase dynamics across different time scales 
and presented a framework classifying phases which exhibit 
homogeneity in their scaling behavior. 

Most of the above works are done based on one 
important assumption that the programs of interest are 
executed serially, except the work of Perelman et al. [24]. 
However, their phase behavior detection is done on shared 
memory architectures. In this paper, we propose an approach 
to examine the phase behavior in parallel programs on CMP 
machines. 

III. METHODOLOGY AND METRICS 

Phases can be extracted using information about basic 
blocks or instruction counts. A basic block is a single-entry, 
single-exit section of the code, which does not contain 
internal control flow. SimPoint [10] utilizes the Basic Block 
Vector (BBV) to create phases. BBV is a one-dimensional 
array. Each element in BBV represents the number of times a 
basic block is executed during an execution interval. BBV is 
a commonly used structure to represent the execution of a 
given interval [16, 24] and is an attractive representation of 
the execution. However, when the number of cores scales up, 
generating the basic block vector becomes complicated. 
There would be tens of thousands of basic blocks in the 
program, which means the number of elements in one array 
(one basic block vector) can exceed hundred thousand. Due 
to the implementation difficulty, we don’t use BBV to detect 
program phases. Instead of BBV, we introduce the 
Instruction Count Vector (ICV), which can also be used on 
SimPoint. ICV is much simpler and more straightforward 
than the projection of BBVs.  ICV is also a one-dimensional 
array, where each element in the array corresponds to the 
instruction count of a core (number of instructions executed 
by a core) within the execution interval. In this paper, the 
interval we use is based on global instruction count (total 
number of instructions executed by all of the cores). In our 
experiment, an interval contains one million instructions 
overall. Then, the number of instructions executed by each 
core is collected to form the ICV.   

Note that the interval can neither be too small nor too 
large. A small interval means that to represent the whole 
execution, more simulation points are needed, or the error 
rate will increase. On the other hand, there is also 
requirements on the number of intervals. Hamerly et al. [10] 
describes that the number of intervals should be sufficient in 
order to make the clustering algorithm work properly. This 
number should be no less than a thousand to make sure that 
the clustering algorithm can provide a decent partition of the 

219

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:31 from IEEE Xplore.  Restrictions apply. 



intervals. As a result, to guarantee adequate number of 
intervals, each interval should not be too large. For the target 
applications in our work, we found that the interval of one 
million instructions provides a good trade-off between these 
forces.  

In addition to the ICV, in this work, we introduce Traffic 
Count Vector (TCV), which is also a one-dimensional array 
with each element corresponding to the traffic count (number 
of packets) going through each router. To make the traffic 
profiling more specific, we record the number of packets 
generated by each router, number of packets destined for 
each router and also the intermediate packets. Finally, we 
combine the ICV and TCV into one vector, where each 
element contains the corresponding values from the ICV and 

the TCV. We then detect phases using this combination of 
profiling information.  

Figure 1 shows phase detections through three different 
methods: ICV-based phase detection, TCV-based phase 
detection and phase detection based on the combination 
vector. The results are presented for the Barnes application 
[26] (please see Section V for details of the application). 

In Figure 1, the X-axis represents the execution of the 
program and Y-axis is the cluster ID. Each execution interval 
is assigned a unique cluster ID by the K-means clustering 
algorithm. Figure 1 implies that phases detected by TCVs are 
similar to the ones extracted by ICVs in the macro scope but 
still they are different in detail. Based on the calculation, the 
simulation points selected by the combination vector can 
cover more than those selected by ICVs. 

We validate the three sets of simulation points with 
varying architectural configurations, e.g., different 
interconnection network configurations. We present our 
results in Section V showing that the combination vector is 
the most accurate representation, i.e., it performs closest to 
running the applications to completion.  

IV. PROFILING PROGRAM BEHAVIOR 

As we described in the previous section, BBV is an 
attractive structure to represent the execution of a given 
interval. The BBV records the number of times a basic block 
is executed in the interval. On the other hand, the BBV 
element used in SimPoint is the number of times a basic 
block is executed multiplied by the number of instructions of 
that basic block. The purpose of doing this multiplication is 
to make sure that the summation of the elements equals to 
the length of the interval (the number of instructions 
executed within the interval). The number of basic blocks in 
one program usually ranges from several thousands to 
hundreds of thousands [16]. For the BBVs, the number of 
dimensions is the number of executed basic blocks. With so 
many dimensions, K-means, the clustering algorithm inside 
SimPoint, hits the so-called “curse of dimensionality”. In 
addition, the runtime of SimPoint increases with the number 
of dimensions. SimPoint developers introduced the random 
linear projection technique to reduce the number of 
dimensions. However, this process may lose some profiling 
information. It is reported that a dimension number of 15 
was found to be sufficient to distinguish the different phases 
of execution [16]. However, since we are simulating a 16-
core CMP machine, it is complicated to gather this basic 
block information. Our modeling infrastructure is based on 
Simics, which complicates the extraction of basic block 
information. Compared to BBV, ICV is much easier to 
obtain and maintain. It only has 16 dimensions in our case, 
and performs similar to BBV. The main goal of our work is 
to show that incorporating the network traffic information 
will improve the accuracy of the phase analysis. Therefore, 
we use ICV to be the representation of the execution. We use 
the ICV on a 16-core CMP as our baseline to detect phases 
of execution and validate them. To collect the traffic count 
vectors, we put several counters in each router. In our 
evaluation, we assume a direct topology [27], where for each 
processor, there is a single router associated with the 

 
(a) Phase detection based on instruction count 

 
(b) Phase detection based on traffic information 

 
(c) Phase detection based on combination of instruction and traffic 

information 

Figure 1. Phase clustering of Barnes application based on different profiling 
information: (a) instruction count based clustering, (b) traffic based 

clustering, and (c) clustering based on combination of instruction and traffic 
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processor. In our experiments, each router is directly 
connected to a private L1 cache, shared L2 cache, and a 
memory directory. In the remainder of this paper, a “node” 
always denotes a core including a router with the L1 cache, 
L2 cache and directory connected to it. At the runtime, the 
counters calculate the number of packets generated by the 
node, destined for the node and also the intermediate packets 
going through the node separately. The element in the traffic 
count vector corresponds to the traffic triggered or responded 
or passing by the particular core. The execution interval of 
the TCVs has the same length with the ICVs. In this case, the 
summation of the elements in a traffic count vector will vary. 
However, since SimPoint first normalizes all the frequency 
vectors [10], this variation will not affect the extraction of 
different execution phases.  

As for the combination approach, we can combine the 
two kinds of vectors with different weights. In our 
simulation, we assume that the communication structure is as 
important as instruction behavior, therefore in the 
combination, we give ICV and TCV roughly the same 
weights. We suppose that the weights determination should 
be related to the number of cores on chip and the complexity 
of the on-chip network. We believe that as the number of 
cores on chip scales up, the interconnect network traffic will 
have more influence on the execution, which means that 
TCV will become more important. Even in the combination 
vectors, the number of dimensions will not exceed 64 for our 
16-core chip multiprocessor simulation. This also indicates 
that we will not lose too much information by random linear 
projection to reduce the number of dimension to 15. 

V. EXPERIMENT SETUP 

In our work, we first use GEMS [28] /SIMICS [29] to 
profile the target applications’ behavior. We then use 
SimPoint [10] to detect phases based on those profiling 
information.  

SIMICS is a functional full system simulator. We use 
SIMICS to simulate a Solaris-Sparc system. GEMS is an 
extension of SIMICS, which works together with SIMICS. 
GEMS can support chip multiprocessor simulations. It has 
two modules, which are all built on top of SIMICS. One is 
called Ruby and the other is Opal. The Ruby module 
implements a detailed memory system. Garnet [30], a 
detailed module of on-chip interconnection network, is also 
embedded into Ruby. In our work, we use Ruby module to 
simulate the memory hierarchy and the point-to-point on-
chip network topology. The flexible network provided by 
Garnet is used to example the impact of different on-chip 
network architecture on detecting program phases. Table I 

describes the specifications of our simulated machine in 
GEMS. 

We simulate a 16-core CMP system. Cache coherence is 
managed by a 2-level directory protocol for CMP. Two types 
of on-chip network topologies are simulated – a point-to-
point (P-To-P) topology and a 2D mesh (4x4) topology. The 
point-to-point topology represents an “ideal” on-chip 
network topology as all 16 nodes on the chip are fully 
connected with zero router delay and no bandwidth 
limitation. However, since GEMS require a non-zero link 
latency, we introduce a single-cycle link latency in our 
simulation. As a result, there is no intermediate router delay 
as any node can be reached within a single hop.   We also 
evaluate a 2D mesh network which is commonly used in 
many chip multiprocessors including the TRIPS processor 
[31], the 80-node Intel’s Teraflops research chip [32], and 
the 64-node chip multiprocessor from Tilera [33].  We run 3 
sets of simulations with different router delays. The router 
delays are assumed to be 1-cycle, 4-cycle and 8-cycle, 
respectively. We assume a dimension-ordered routing (DOR) 
where packets are routed first in the X-dimension and then, 
in the Y-dimension.  The use of DOR simplifies the flow 
control as no additional virtual channels are needed to avoid 
routing deadlock. 

SimPoint [16] is used for automatically characterizing 
program behavior. We use SimPoint to process the profiling 
information of the execution and then group the execution 
intervals into a number of clusters. CPI (cycles/instruction) 
and execution time are recorded for the selected simulation 
points for the further evaluation.  

We run two sets of benchmarks: NU-MineBench [34] 
and SPLASH-2 [26]. All the applications are parallel 
programs. NU-MineBench is a data mining benchmark suite 
containing a mix of representative data mining applications 
from different application domains. We use HOP, K-means, 
and ScalParC from NU-MineBench, and Barnes, LU, Radix, 
and Water-Spatial from SPLASH-2 benchmarking suites. 
HOP is a density-based grouping application for clustering. 

TABLE I.  SIMULATED MACHINE CONFIGURATIONS 

CPU Sixteen 1GHz SPARCv9, 2-way, in-order  
L1 Cache 4-way split, 64KB, 3-cycle latency 

L2 Cache 4-way split, 16MB, 6-cycle latency 
Memory 4GB 
Directory Split, 80-cycle latency  
On-chip Network P-To-P, 4x4 mesh topology, 1-cycle link latency 
Router 1, 4, 8-cycle delay 

TABLE II.  SIMULATION PROPERTY OF THE TARGET APPLICATIONS 

Application Instructions 
[Million]

Packets Intervals Cycles 
[Million]

Barnes 9545 42774860 9545 12564 
LU 949 714165 949 1072 
Radix 1609 3155094 1609 2064 
Water-Spatial 2617 1957989 2617 2845 
HOP 219 1115777 219 406 
K-means 2387 2417238 2387 2732 
ScalParC 2419 48574193 2419 11261 

 

Application Packets/ 
Interval

Cycles/ 
Interval 

Simulation 
Hours

Barnes 4481 1316291 72 
LU 753 1129610 7 
Radix 1961 1282784 12 
Water-Spatial 748 1087122 16 
HOP 5095 1853881 1 
K-means 1013 1144532 27 
ScalParC 20080 4655229 56 
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K-means is a well-known mean-based data partitioning 
application. ScalParC is a classification application based on 
decision tree classification. The SPLASH-2 benchmark suite 
contains two kinds of programs: complete applications and 
computational kernels. The Barnes application simulates the 
interaction of a system of bodies in three dimensions. The 
LU kernel factors a dense matrix into a lower triangular and 
an upper triangular matrix. Radix is an integer radix sort 
kernel. Water-Spatial is an extension of Water application in 
SPLASH. Table II describes the simulation properties of 
these target applications; it provides the number of 
instructions executed, simulation time (based on hours) of 
the whole execution, number of cycles simulated, total 
number of interconnect network traffic (total number of 

packets generated), number of intervals, and average number 
of packets per interval for the target applications. The 
simulation time is collected from a detailed architecture 
simulator. We can see that ScalParC, HOP and Barnes are 
the most traffic-intensive applications. 

VI. RESULTS 

In this section, we compare the performance of the three 
techniques in terms of CPI error rate and execution time. 

Figure 2 shows the average CPI error rate of three 
approaches when compared to full application execution 
(i.e., running the applications to completion). Please note that 
many of the full application simulations take several days to 

 
Figure 2. Error rate comparison of basic point-to-point on-chip network 

 

Figure 3. Error rate comparison of 4x4 mesh on-chip network with 1-cycle 
router delay 
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Figure 4. Error rate comparison of 4x4 mesh on-chip network with 4-cycle 

router delay 

 

Figure 5. Error rate comparison of 4x4 mesh on-chip network with 8-cycle 
router delay 
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complete and hence are impractical when a large number of 
architectural configurations are to be tested. In Figure 2, we 
show the CPI error rate of phases detected by 4 different 
profiling information. First one is phases detected by 
instruction profiling – ICV, we denote it as Instruction in the 
figure; second one is phases detected by the vector which 
records the number of packets generated by each node, we 
denote it as Source; the third one is phases detected by the 
vector which records the number of packets destined for each 
node and is denoted as Destination; the last one is phases 
detected by the combined vector which includes all of the 
above three kinds of profiling information and is denoted as 
Combination. On average, simulation points selected by ICV 
perform better than those selected by TCV in the ideal 
network and the performance of the combination approach is 
the best. We choose geometric mean to evaluate the 
performance of our proposed approach. Our experimental 
results show that there is large variation in error rates among 
different applications. We want to prevent one extreme case 
dominating the analysis of the trends. Therefore, we have 
used the geometric mean to draw general conclusions about 
the main trends in our approach. The average (geometric 
mean) CPI error rate of the combination technique is reduced 
by 29.0% compared with the error rate of the ICV technique 
(from 8.98% to 6.38%). In general, the error rate of the TCV 
technique is greater than that of the ICV technique, that is 
mainly because that P-To-P on-chip network is 
approximately an ideal network. In this ideal network, there 
are no bandwidth or buffer size limitations; so the 
transactions of interconnect network packets are fast. Since 
nodes are fully connected in this network, the interconnect 
packet can be delivered directly from the source node to the 
destination node. In this case, the interconnect traffic 
contributes little to the program execution time. Hence, the 
network traffic does not have significant influence on the 
CPI in this case. On the other hand, the instruction count 
vector is a better representative of the execution of the 
interval. While, even though the instruction behavior seems 
to dominate the program execution, for some applications, 
the CPI error rate of the ICV technique is high, e.g., for 
Radix and ScalParC, the error rate is over 25%. These 
applications generate relatively larger amount of interconnect 
packets. Consequently, the instruction behavior is not as 
dominant as other applications. In other words, in the ideal 
network, more interconnect traffic contributes to higher error 
rate of the ICV technique. For the applications generating 
more interconnect traffic, if we only consider the ICV to 
identify phases of program execution, this may result in 
improper clustering of the execution intervals for these 
applications. At last, we combine the ICV technique with the 
TCV technique. In this case, since the interconnect traffic 
contributes less than the instruction behavior, the 
combination vector contain big portion of ICV along with 
small portion of TCV. The ICV/TCV ratio vary from ~100 to 
~10, this ratio depends on how many interconnect packets 
are generated during the program execution. For ScalParC, 
HOP, Barnes and Radix, the ICV/TCV ratio is relatively 
low. Overall, our combination technique provides better 
performance than the base line ICV technique: the arithmetic 
mean of the CPI error rate can be reduced by 59.8% (from 

26.34% to 10.59%) and the geometric mean can be reduced 
by 29.0% (from 8.98% to 6.38%). 

Even though we limited the number of simulation points 
to not exceed 10, the results show that for all the target 
applications the CPI error rate of the combination technique 
is less than 25%.  

Figure 3 through Figure 5 show the results of the second 
on-chip network configuration using a 2D mesh topology, 
which is more representative of topologies used in CMP 
machines. Figure 3, 4, and 5 present the results when the 
router delay is set to 1-cycle, 4-cycles, and 8-cycles, 
respectively. In this set of experiments, the on-chip router 
delay is set to be a single cycle. In Figure 2, we show the CPI 
error rate of phases detected by 5 different profiling 
information. Instruction, Source, Destination and 
Combination have been explained in the former paragraph, 
Intermediate denotes the phases detected by the vector which 
records the number of  packets passing through each node. In 
other words, the packets counted are neither generated by the 
node nor destined for the node, they just pass by. It is 
apparent that, in the former on-chip network (P-To-P), there 
is no intermediate packets, all the interconnect packets are 
transmitted directly from the source node to the destination 
node. However, in the 4x4 mesh network, since the nodes are 
not fully connected, an interconnect packet may traverse 
several nodes to get to the destination. Depending on the 
router delay and link latency, varying number of 
intermediate packets will be accumulated on all the nodes. 
The CPI error rate shows quite different trends compared to 
the basic network configuration. This 4x4 mesh network is 
much more realistic. In this case, the interconnect network 
traffic has a much more profound impact on the execution of 
the program. Contrary to the case in the P-to-P on-chip 
network, the TCV becomes a more important signature of 
the execution for the applications that generate large amounts 
of network packets. On the other hand, for the applications 
with relatively small amount of interconnect network traffic, 
TCV still remains a relatively less important representation 
of execution. We first compare the three kinds of TCV 
(Source, Destination and Intermediate) techniques: on 
average, Intermediate technique gives the best performance 
in terms of CPI error rate (11.80%, 8.10%, and 3.06%, 
respectively). These results indicate that in the more realistic 
on-chip network, the intermediate packets contributes more 
than the source packets, destination packets, and even the 
instruction behavior (9.35% CPI error rate) to the program 
execution. Therefore, in the combination technique, when we 
combine the ICV with the TCV, we only consider the 
intermediate packets, and the ICV/TCV ratio is set to be 
roughly 1:1. On average, the combination technique provides 
a 71.0% improvement (reducing the error rate from 9.35% to 
2.71%) on the accuracy over the base ICV technique. In this 
configuration, LU performs worse with Intermediate 
technique applied; this is because the traffic generated by 
this application is relatively small which results in a small 
amount of intermediate packets. Therefore, the intermediate 
traffic may not be as dominant as the instruction behavior. 
Overall, the combination technique reduces the arithmetic 
mean of CPI error rate by 63.2% (from 12.57% to 4.62%) 
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and reduces the geometric mean of CPI error rate by 71.0% 
(from 9.35% to 2.71%) compared with the basic ICV 
technique. 

In Figure 4 and 5, we apply 4-cycle and 8-cycle router 
delay, respectively. As the router delay is increased, the 
contribution of the intermediate packets becomes more 
important. Therefore, in order to increase execution 
accuracy, we decrease the ICV/TCV ratio furthermore in the 
combination vector.  And the combination technique reduces 
the CPI error rate by 69.0% (from 11.01% to 3.41%) and 
60.0% (from 10.70% to 4.27%), respectively. 

We also examine the execution time of the simulation 
points based on the three phase detection techniques. Figure 

6 through Figure 9 show the execution time of simulation 
points selected by the ICV, TCV, and combination-based 
phases. The results show that the TCV and the combination 
techniques are comparable in terms of their simulation time 
and in fact reduce the overall simulation time compared to 
the phases selected via the ICV technique. For the ideal 
network, the geometric mean of the simulation time of the 
points selected by the combination technique is 6.1% less 
than that of the basic ICV technique. When compared to the 
whole execution, the execution time of the simulation points 
generated by SimPoint can be reduced by over two orders of 
magnitude. For the 4x4 mesh network, the average execution 
time of the combination technique selected simulation points 
is 10.2%, 27.3% and 14.2% less than that of the ICV-

 
Figure 6. Execution time comparison of basic point-to-point on-chip 

network 

 

Figure 7. Execution time comparison of 4x4 mesh on-chip network with 1-
cycle router delay 
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Figure 8. Execution time comparison of 4x4 mesh on-chip network with 4-

cycle router delay 

 

Figure 9. Execution time comparison of 4x4 mesh on-chip network with 8-
cycle router delay 
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selected simulation points for 1-cycle, 4-cycle and 8-cycle 
router delays, respectively. As a result, on the whole, phase 
identification through the combination technique performs 
better in terms of accuracy without sacrificing performance 
in terms of execution time. 

VII. SUMMARY 

In this paper, we presented the impact of on-chip network 
traffic patterns on phase identification of parallel programs 
running on CMP machines. We proposed new techniques to 
detect program phases. We first introduced a frequency 
vector called Traffic Count Vector (TCV) that collects 
information about the number of communication packets 
generated by each core during an interval. We also utilized a 
common technique called Instruction Count Vector (ICV), 
which counts the number of instructions executed on a core 
during each interval. In addition, we developed a hybrid 
scheme by combining the two vectors into a single vector. 
We evaluated the simulation points generated by these three 
frequency vectors. Our simulation results show that with the 
consideration of the on-chip network traffic pattern, higher 
accuracy (up to 71.0% less error rate when compared to the 
ICV based phase detection) can be achieved when only 
simulating the selected simulation points, without sacrificing 
performance while saving a significant amount (over 99%) 
of simulation time. 
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