
An Architectural Characterization Study of
Data Mining and Bioinformatics Workloads

Berkin Özıs.ıkyılmaz† Ramanathan Narayanan† Joseph Zambreno§ Gokhan Memik† Alok Choudhary†
†Electrical Engineering and Computer Science §Electrical and Computer Engineering

Northwestern University Iowa State University
Evanston, IL 60208, USA Ames, IA 50011, USA

{boz283, ran310, memik, choudhar}@eecs.northwestern.edu zambreno@iastate.edu

Abstract— Data mining is the process of automatically finding
implicit, previously unknown, and potentially useful information
from large volumes of data. Recent advances in data extraction
techniques have resulted in tremendous increase in the input
data size of data mining applications. Data mining systems,
on the other hand, have been unable to maintain the same
rate of growth. Therefore, there is an increasing need to un-
derstand the bottlenecks associated with the execution of these
applications in modern architectures. In this paper, we present
MineBench, a publicly available benchmark suite containing
fifteen representative data mining applications belonging to var-
ious categories: classification, clustering, association rule mining
and optimization. First, we highlight the uniqueness of data
mining applications. Subsequently, we evaluate the MineBench
applications on an 8-way shared memory (SMP) machine and
analyze important performance characteristics such as L1 and
L2 cache miss rates, branch misprediction rates.

I. INTRODUCTION

Data mining is a powerful technology that converts raw
data into an understandable and actionable form, which can
then be used to predict future trends or provide meaning to
historical events. Originally limited to scientific research and
medical diagnosis, these techniques are becoming central to a
variety of fields including marketing and business intelligence,
biotechnology, multimedia, and security. As a result, data
mining algorithms have become increasingly complex, incor-
porating more functionality than in the past. Subsequently,
there is a need for faster execution of these algorithms, which
creates ample opportunities for algorithmic and architectural
optimizations. In addition to the changing complexity of
data mining algorithms, increasingly large amounts of data
are being collected every year. Recent trends indicate that
data collection rates are growing at an exponential pace. A
survey done by Intel Corporation indicates that an average
person collects 800MB of data a year [1]. Data mining is
essential to extract useful information from such large amounts
of data. However, limitations in overall system performance
will ultimately result in prohibitive execution times for these
crucial applications. Hence, there is a need to redesign and
customize systems with respect to data mining applications.
Considering the variety of data mining applications and their
unique characteristics (cf. Section 1.1), this is a challenging

task that cannot be accomplished through algorithmic anal-
ysis alone; the algorithmic analysis should be performed in
combination with consideration of system bottlenecks. As data
mining is a relatively new application area, very little is known
in terms of the characteristics of the underlying computations
and data manipulation, and their impact on computer systems.

The increasing performance gap between data mining sys-
tems and algorithms may be bridged by a two phased ap-
proach: a thorough understanding of the system characteristics
and bottlenecks of data mining applications, followed by
design of novel computer systems to cater to the primary
demands of data mining workloads. We address this issue
in this paper by investigating the execution of data mining
applications on a shared-memory parallel (SMP) machine. We
first establish a benchmarking suite of applications that we call
MineBench, which encompasses many algorithms commonly
found in data mining. We then analyze the architectural
properties of these applications to investigate the performance
bottlenecks associated with them.

A. Need for a New Benchmarking Suite

A new benchmarking suite is highly motivated if applica-
tions in a domain exhibit distinctive characteristics. In this
section, we focus on the uniqueness of data mining applica-
tions, as compared to other application domains. We compare
the architectural characteristics of applications across various
benchmark suites. Specifically, data mining applications are
compared against compute intensive applications, multimedia
applications, streaming applications and database applications
to identify the core differences. In this analysis, we used a va-
riety of application suites including integer application bench-
marks (SPEC INT from SPEC CPU2000 [2]), floating point
application benchmarks (SPEC FP from SPEC CPU2000),
multimedia application benchmarks (MediaBench [3]) and
decision support application benchmarks (TPC-H from Trans-
action Processing Council [4]). We perform statistical analysis
on 19 architectural characteristics (such as branch instructions
retired, L1 and L2 cache accesses, etc.) of the applications
and use this information to identify the core differences.
Specifically, we monitor the performance counters of each
application during execution using profiling tools, and obtain



0

1

2

3

4

5

6

7

8

9

gc
c

bz
ip

2

gz
ip

m
cf

tw
ol

f

vo
rt

ex vp
r

pa
rs

er

ap
si ar
t

eq
ua

ke

lu
ca

s

m
es

a

m
gr

id

sw
im

w
up

w
is

e

ra
w

ca
ud

io

ep
ic

en
co

de

cj
ep

g

m
pe

g2

pe
gw

it gs

to
as

t

Q
17 Q
3

Q
4

Q
6

ap
rio

ri

ba
ye

si
an

 

bi
rc

h

ec
la

t

ho
p

sc
al

pa
rc

kM
ea

ns

fu
zz

y 
kM

ea
ns

rs
ea

rc
h

se
m

ph
y 

sn
p 

ge
ne

ne
t

sv
m

-r
fe

C
lu

st
er

 #

SPEC INT SPEC FP MediaBench TPC-H Data Mining

Fig. 1. Classification of data mining, SPEC INT, SPEC FP, MediaBench and TPC-H benchmark applications based on their characteristics. A K-means based
clustering algorithm was used for this classification. Data mining applications tend to form unique clusters.

their individual characteristics. The experimental framework is
identical to the one described in Section 4. The applications
are then categorized using a K-means based approach, which
clusters the applications with similar characteristics together.
A similar approach has been used to identify a representative
workload of SPEC benchmarks [5]. Figure 1 shows the scatter
plot of the final configuration obtained from the results of
the clustering method. Applications belonging to the SPEC
INT, SPEC FP, TPC-H, and MediaBench benchmark suites
are assigned to respective clusters. However, it can be seen
that data mining applications stand out from other benchmark
suites: they are scattered across several clusters. Although
some of the data mining applications share characteristics
with other application domains, they mostly exhibit unique
characteristics. Another important property of the clustering
results is the large variation within data mining applications.
Although most of the applications in other benchmarking
suites fall into one cluster, data mining applications fall into
seven different clusters. This shows the large variation of
characteristics observed in data mining applications. Overall,
this analysis highlights the need for a data mining benchmark
consisting of various representative algorithms that cover the
spectrum of data mining application domains.

Table I shows the distinct architectural characteristics of
data mining applications as compared to other applications.
One key attribute that signifies the uniqueness of data mining
applications is the number of data references per instruction re-
tired. For data mining applications, this rate is 1.103, whereas
for other applications, it is significantly less. The number of
bus accesses originating from the processor to the memory
(per instruction retired) verify the frequency of data access of
data mining applications. These results solidify the intuition
that data mining is data-intensive by nature.

The L2 miss rates are considerably high for data mining

applications. The reason for this is the inherent streaming
nature of data retrieval, which does not provide enough op-
portunities for data reuse. This indicates that current memory
hierarchy is insufficient for data mining applications. It should
be noted that the number of branch instructions (and the branch
mispredictions) are typically low for data mining applications,
which highlights yet another unique behavior of data mining
applications.

Another important difference is the fraction of total instruc-
tion decodes to the instructions retired. This measure identifies
the instruction efficiency of a processor. In our case, the results
indicate that data mining applications are efficiently handled
by the processor. The reason for this value being less than
one is the use of complex SSE2 instructions. Resource related
stalls comprises of the delay that incurs from the contention of
various processor resources, which include register renaming
buffer entries, memory buffer entries, and also the penalty that
occurs during a branch misprediction recovery. The number of
ALU operations per instruction retired is also surprisingly high
for data mining applications, which indicates the extensive
amount of computations performed in data mining applica-
tions. Therefore, data mining applications are computation-
intensive in addition to being data-intensive.

What makes the data mining applications unique is this
combination of high data rates combined with high computa-
tion power requirements. Such a behavior is clearly not seen in
other benchmark suites. In addition, data mining applications
tend to oscillate between data and compute phases, making
the current processors and architectural optimizations mostly
inadequate.

The remainder of this paper is organized as follows. In the
following section we provide a brief overview of the related
work in this area. In Section 3, we discuss the data mining
applications that are included in our benchmarking suite,



TABLE I

COMPARISON OF DATA MINING APPLICATION WITH OTHER BENCHMARK APPLICATIONS

Benchmark of Applications
Parameter† SPECINT SPECFP MediaBench TPC-H NU-MineBench

Data References 0.81 0.55 0.56 0.48 1.10
Bus Accesses 0.030 0.034 0.002 0.010 0.037

Instruction Decodes 1.17 1.02 1.28 1.08 0.78
Resource Related Stalls 0.66 1.04 0.14 0.69 0.43

CPI 1.43 1.66 1.16 1.36 1.54
ALU Operations 0.25 0.29 0.27 0.30 0.31

L1 Misses 0.023 0.008 0.010 0.029 0.016
L2 Misses 0.003 0.003 0.0004 0.002 0.006
Branches 0.13 0.03 0.16 0.11 0.14

Branch Mispredictions 0.009 0.0008 0.016 0.0006 0.006
† The numbers shown here for the parameters are values per instruction

followed by the description of our methodology and input
data sets in Section 4. In Section 5, we provide performance
characterization results for single and multiprocessor cases.
Finally, the paper is concluded in Section 6.

II. RELATED WORK

Benchmarks play a major role in all domains. SPEC [2]
benchmarks have been well accepted and used by several
chipmakers and researchers to measure the effectiveness of
their designs. Other fields have popular benchmarking suites
designed for the specific application domain: TPC [4] for
database systems, SPLASH [6] for parallel architectures, and
MediaBench [3] for media and communication processors.

Performance characterization studies similar to ours have
been previously performed for database workloads [7], [8],
with some of these efforts specifically targeting SMP ma-
chines [9], [10]. Performance characterization of individual
data mining algorithms have been done [11], [12], where the
authors focus on the memory and cache behavior of a decision
tree induction program.

Characterization and optimization of data-mining workloads
is a relatively new field. Our work builds on prior effort
in analyzing the performance scalability of bioinformatics
workloads performed by researchers at Intel Corporation [13].
As will be described in the following sections, we incorporate
their bioinformatics workloads into our MineBench suite,
and where applicable, make direct comparisons between their
results and our own. However, MineBench is more generic and
covers a wider spectrum than the bioinformatics applications
previously studied [13]. Jaleel et al. examine the last-level
cache performance of these bioinfomatics applications [14].

The bioinformatics applications presented in MineBench
differ from other recently-developed bioinformatics bench-
mark suites. BioInfoMark [15], BioBench [16], BioS-
plash [17], and BioPerf [18] all contain several applications
in common, including Blast, FASTA, Clustalw, and Hmmer.
Srinivasan et al. [19] explore the effects of cache misses
and algorithmic optimizations on performance for one of
the applications in MineBench (SVM-RFE), while our work

investigates several architectural features of data mining ap-
plications. Sanchez et al. [20] perform architectural analysis
of a commonly used biological sequence alignment algorithm,
whereas we attempt to characterize a variety of data mining
algorithms used in biological applications.

III. BENCHMARK SUITE OVERVIEW

Data mining applications can be broadly classified into
association rule mining, classification, clustering, data visual-
ization, optimization, sequence mining, similarity search, and
text mining, among others. Each domain contains unique algo-
rithmic features. In establishing MineBench, we have selected
applications from clustering, classification, association rule
mining, and optimization. The selection of these categories
is based on how commonly these applications are used in
industry and academia, and how likely they are to be used
in the future. The fifteen applications that currently comprise
MineBench are listed in Figure 2, and are described in more
detail in the following sections. Note that these are full-fledged
application implementations of these algorithms (as opposed
to stand-alone algorithmic modules), which have been exten-
sively optimized to remove all implementation inefficiencies.
It is necessary to study these applications in their entirety,
as they are quite complex. A study that evaluates only kernels
will not be able to identify several interesting features of these
applications.

A. Classification Workloads

A classification problem has an input dataset called the
training set which consists of example records with a number
of attributes. The objective of a classification algorithm is to
use this training dataset to build a model such that the model
can be used to assign unclassified records into one of the
defined classes [21].

ScalParC is an efficient and scalable variation of decision
tree classification [22]. The decision tree model is built by
recursively splitting the training dataset based on an optimality
criterion until all records belonging to each of the partitions
bear the same class label. Among many classification methods
proposed over the years, decision trees are particularly suited



MineBench

ClassificationClustering

• K-Means
• Fuzzy K-Means
• HOP
• Birch

Optimization

• ScalParC
• Bayesian
• SNP
• SEMPHY
• RSearch
• SVM-RFE
• GeneNet

• PLSA

Association
Rule

Discovery

• Apriori
• Utility Mining
• Eclat

Fig. 2. Data mining applications in MineBench

for high-performance data mining, since they can be built
relatively fast when compared to other methods.

The Naive Bayesian classifier [23], a simple statistical
classifier, uses an input training dataset to build a predictive
model (containing classes of records) such that the model can
be used to assign unclassified records into one of the defined
classes. It is based on Bayes’ theorem. It is comparable in
performance to decision tree based classification algorithms,
and exhibits high accuracy and speed when applied to large
databases.

Single nucleotide polymorphisms (SNPs), are DNA se-
quence variations that occur when a single nucleotide is altered
in a genome sequence. The SNP [13] benchmark uses the hill
climbing local search method, which selects an initial starting
point (an initial Bayesian Network structure) and searches all
the neighbors of the starting point in the search space. The
neighbor that has the highest score is then made the new
current point. This procedure iterates until it reaches a local
maximum score. GeneNet [13] uses a similar hill climbing
algorithm as in SNP, the main difference being that the input
data is more complex, requiring much additional computation
during the learning process.

SEMPHY [13] is a structure learning algorithm that is based
on phylogenetic trees. Phylogenetic trees represent the genetic
relationship of a species, with closely related species placed in
nearby branches. This application uses a probability estimation
algorithm to find the best tree topology and best branch lengths
representing the distance between two neighbors.

Typically, RNA sequencing problems involve searching the
gene database for homologous RNA sequences. Rsearch [13]
uses a grammar-based approach to achieve this goal. Stochastic
context-free grammars are used to build and represent a single
RNA sequence, and a local alignment algorithm is used to
search the database for homologous RNAs.

SVM-RFE [13], or Support Vector Machines - Recursive
Feature Elimination, is a feature selection method. SVM-RFE
is used extensively in disease finding (gene expression). The
selection is obtained by a recursive feature elimination process
- at each RFE step, a gene is discarded from the active
variables of a SVM classification model, according to some

support criteria.

B. Clustering Workloads

Clustering is the process of discovering the groups of
similar objects from a database to characterize the underlying
data distribution [21]. It has wide applications in market or
customer segmentation, pattern recognition, and spatial data
analysis. The first clustering application in MineBench is
K-means [24]. K-means represents a cluster by the mean
value of all objects contained in it. Given the user-provided
parameter k, the algorithm assigns the entities in the input
data set among k clusters, according to a specific distance
function. The clusters provided by the K-means algorithm
are sometimes called “hard” clusters, since any data object
either is or is not a member of a particular cluster. The Fuzzy
K-means algorithm [25] relaxes this condition by assuming
that a data object can have a degree of membership in each
cluster. Compared to the similarity function used in K-means,
the calculation for fuzzy membership results in a higher com-
putational cost. However, the flexibility of assigning objects
to multiple clusters might be necessary to generate better
clustering qualities.

HOP [26], originally proposed in astrophysics, is a typical
density-based clustering method. After assigning an estima-
tion of the density for each particle, HOP associates each
particle with its densest neighbor. The assignment process
continues until the densest neighbor of a particle is itself.
BIRCH [27] is one of the hierarchical clustering methods
that employ a hierarchical tree to represent the closeness of
data objects. BIRCH scans the database to build a clustering-
feature (CF) tree to summarize the cluster representation. For
a large database, BIRCH can achieve good performance and
scalability. It is also effective for incremental clustering of
incoming data objects.

C. ARM Workloads

The goal of Association Rule Mining (ARM) is to find
the set of all subsets of items or attributes that frequently
occur in database records [21]. In addition, ARM applications
extract rules regarding how a given subset of items influence
the presence of another subset.

Apriori [28] is arguably the most influential ARM algo-
rithm. It explores the level-wise mining of the property that
all non-empty subsets of a frequent itemset must all be fre-
quent (the so-called “Apriori” property). Utility mining [29] is
another association rule-based mining technique where higher
“utility” itemsets are identified from a database by considering
different values of individual items. The goal of utility mining
is to restrict the size of the candidate set so as to simplify the
total number of computations required to calculate the value
of items.

Eclat [30] uses a vertical database format. It can determine
the support of any k-itemset by simply intersecting the id-
list of the first two (k-1)-length subsets that share a common



TABLE II

MINEBENCH EXECUTABLE PROFILES

Application
Instruction Count (billions)

Size (kB)
1 Processor 2 Processors 4 Processors 8 Processors

ScalParC 23.664 24.817 25.550 27.283 154
Naive Bayesian 23.981 N/A N/A N/A 207

K-means 53.776 54.269 59.243 77.026 154
Fuzzy K-means 447.039 450.930 477.659 564.280 154

HOP 30.297 26.920 26.007 26.902 211
BIRCH 15.180 N/A N/A N/A 609

Apriori 42.328 42.608 43.720 47.182 847
Eclat 15.643 N/A N/A N/A 2169

Utility 13.460 19.902 20.757 22.473 853
SNP 429.703 299.960 267.596 241.680 14016

GeneNet 2,244.470 2,263.410 2,307.663 2,415.428 13636
SEMPHY 2,344.533 2,396.901 1,966.273 2,049.658 7991
Rsearch 1,825.317 1,811.043 1,789.055 1,772.200 676
SVM-RFE 51.370 55.249 63.053 82.385 1336
PLSA 4,460.823 4,526.160 4,080.610 4,001.675 836

prefix. It breaks the search space into small, independent, and
manageable chunks. Efficient lattice traversal techniques are
used to identify all the true maximal frequent itemsets.

D. Optimization Workloads

Sequence alignment is an important tool in bioinformatics
used to identify the similar and diverged regions between two
sequences. PLSA [13] uses a dynamic programming approach
to solve this sequence matching problem. It is based on
the algorithm proposed by Smith and Waterman, which uses
the local alignment to find the longest common substring in
sequences.

IV. METHODOLOGY

In this section, we consider the applications in our
MineBench suite, and distinguish the characteristics that make
each application unique from both the algorithmic and the
system perspective. We chose an Intel IA-32 multiprocessor
platform for evaluation purposes. Our setup consists of an
Intel PIII Xeon 8-way Shared Memory Parallel (SMP) machine
running Red Hat Advanced Server 2.1. The system has 4 GB
of shared memory. Each processor has a 16 KB non-blocking,
integrated L1 data and instruction cache and a 1024 KB L2
cache.

For our experiments, we use the VTune Performance Ana-
lyzer [31] for profiling the functions within our applications,
and for measuring the execution times. Using the VTune
counters, we monitor a wide assortment of performance met-
rics: execution time, communication and synchronization com-
plexity, memory behavior, and Instructions per Cycle (IPC)
statistics. Each application was compiled with version 7.1 of
the Intel C++ compiler for Linux. The applications have been

parallelized using OpenMP, except Naive Bayesian, Birch and
Eclat which are single threaded workloads.

A. Input Datasets

Input data is an integral part of data mining applications.
The data used in our experiments are either real-world data
obtained from various fields or widely-accepted synthetic
data generated using existing tools that are used in scientific
simulations. During evaluation, multiple data sizes were used
to investigate the change of characteristics of the MineBench
applications. For the non-bioinformatics applications, the in-
put datasets were classified into three different sizes: Small,
Medium, and Large. For the ScalParC and Naive Bayesian
benchmarks, three synthetic datasets were generated by the
IBM Quest data generator [32]. Apriori and Eclat also use
three synthetic datasets from the IBM Quest data generator
with a varying number of transactions, average transaction
size, and average size of the maximal large itemsets. For
HOP and BIRCH, three sets of real data were extracted from
a cosmology application, ENZO [33], each having 61440
particles, 491520 particles and 3932160 particles, respectively.

A section of the real image database distributed by Corel
Corporation is used for K-means and Fuzzy K-means. This
database consists of 17695 scenery pictures. Each picture is
represented by two features: color and edge. The color feature
is a vector of 9 floating point values while the edge feature
is a vector of size 18. Both K-means implementations use
Euclidean distance as the similarity function and execute it
for the two features separately. Since the clustering quality
of K-means methods highly depends on the input parameter
k, both K-means and Fuzzy K-means were executed with 10
different k values ranging from 4 to 13.



Utility mining uses both real as well as synthetic datasets.
The synthetic data consists of two databases generated using
the IBM Quest data generator. The first synthetic dataset is a
dense database, where the average transaction size is 10; the
other is a relatively sparse database, where average transaction
size is 20. The average size of the potentially frequent itemsets
is 6 in both sets of databases. In both sets of databases,
the number of transactions varies from 1000K to 8000K and
the number of items varies from 1K to 8K. The real dataset
consists of only one database of size 73MB, where the average
transaction length is 7.2.

For the bioinformatics applications, the datasets were pro-
vided by Intel [13]. SNP uses the Human Genic Bi-Alletic
Sequences (HGBASE) database [34] containing 616,179 SNPs
sequences. For GeneNet, the microarray data used for this
study is assembled from [35]; they are the most popular cell
cycle data of Yeast. SEMPHY considers three datasets from
the Pfam database [36]. The software and the corresponding
dataset for Rsearch were obtained from [37]. The experi-
ments use the sequence mir-40.stk with the length of 97 to
search a part of database Yeastdb.fa with size of 100KB.
SVM-RFE uses a benchmark microarray dataset on ovarian
cancer [38]. This dataset contains 253 (tissue samples) x
15154(genes) expression values, including 91 control and 162
ovarian cancer tissues with early stage cancer samples. For
PLSA, nucleotides ranging in length from 30K to 900K are
chosen as test sequences. Since true sequences can seldom
satisfy this specific size, some artificial sequences were used
in the experiments [13]. To make the experiments more
comprehensive, several real DNA sequences were also chosen
from a test suite provided by the bioinformatics group at Penn
State University. The longest sequence pair used here is named
TCR where the human sequence is 319,030 bp long and the
mouse sequence is 305,636 bp long.

V. ARCHITECTURAL CHARACTERIZATION

The work in this section builds upon our previous workload
characterization of the MineBench applications [39] for 8
processors. Due to time and space constraints, only medium
sized datasets results have been presented in the following
sections.

A. Execution Time and Scalability

In Table II, we present the total number of instructions
executed across all processors along with the size of the
executables. We can see that these benchmarks execute from
tens of billions to thousands of billions of instructions. As the
number of processors increases, the number of instructions
executed is expected to increase due to the overhead of
parallelization (locks, communication, synchronization etc.).
However we observe that in some of the applications, instruc-
tions retired decreases as the number of processors increases.
This may happen when the convergence criteria is reached at
an earlier stage during execution of the parallel application. In

our study, the usage of Vtune Performance Analyzer enables
us to examine the characteristics of program execution across
all execution phases, something that would not be feasible
using simulation for applications of this size.

Figure 3 shows the benchmark application execution
speedups when running on multiple processors. The perfor-
mance numbers for the 2-processor case shows some trivial
performance improvement for clustering and ARM workloads,
while most of the remaining workloads perform slightly better
or worse than the serial case. On the other hand, several
benchmarks show good scalability with higher number of
processors. When running on 8 processors, ScalParC executes
4.84 and 5.64 times faster than the 1 processor case for the
small and large data sets, respectively. The best speedup, 7.55x
on 8 processors, is seen in Utility. In this algorithm, data
is uniformly distributed to the 8 processors, which are able
to work concurrently by accessing only its respective data
block in memory, synchronizing only occasionally. Rsearch
and K-means follow Utility in terms of achieved speedups.
In general, it can be observed that clustering algorithms show
better scalability than the remainder of the applications. The
underlying reason for this observation is the highly paralleliz-
able distance calculation routine, which is common to the
clustering algorithms.

The worst scalability is observed for SNP and SVM-
RFE. For SVM-RFE, the problem arises due to unnecessary
communication problems and locking of memory structures.
This redundant locking is done to ensure the code works on
distributed and shared memory machines.

For the Utility mining application, the small dataset repre-
sents real data collected from a grocery store. The large dataset
has been created by the IBM Quest data generator. Both of
the datasets contain a nearly equal number of transactions and
items. However, the speedups for these two datasets differ
widely. Particularly, the application achieves 7.55x speed-up
for the small and 2.23x speed-up for the large datasets when
executed on 8 processors. When the most time consuming
functions are examined, it is seen that the program spends
approximately 30% and 50% of the total execution time in
the serial database read function, respectively. The change in
the time of this serial segment causes the scalability problems
for the large dataset.

Intel researchers have done similar analysis for the perfor-
mance scalability of the bioinformatics workloads [13]. When
the above presented results are compared to their results,
Genenet, Semphy, Rsearch, and PLSA show very similar
scalability trends. However the results are very different for
SNP and SVM-RFE, where they are able to have close to
linear speedup until 8 processors and super-linear speedup
for 16 processors. The explanation given for this super-
linearity is that Intel’s system is composed of a 16-way shared
memory machine, which has a large L3 cache and Cell-
sharing L4 caches (4 processors grouped together) that are
interconnected with each other through the crossbar. Specific



SVM-RFE

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

M

PLSA

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S

M

L

Semphy

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p S

M

L

Rsearch

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p S

L

SNP

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p M

Genenet

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

M

k-Means

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p S
M
L

Fuzzy k-Means

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p S
M
L

HOP

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

pe
ed

up

S

M
L

Apriori

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors
R

el
at

iv
e 

S
p

ee
d

u
p S

M
L

ScalParC

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

pe
ed

up
S

M

L

Utility

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8

Number of Processors

R
el

at
iv

e 
S

p
ee

d
u

p

S
L

Fig. 3. Speedups for the MineBench applications

optimizations have been applied to these codes targeting their
system. However, other researchers from Intel have shown that
SVM-RFE reaches only 2.3x speed-up on their 4-way shared
memory machine [19]. This is a sign that architecture plays
an important role in the performance of these applications.

B. Memory Hierarchy Behavior

It is well known that memory hierarchy is a major perfor-
mance bottleneck in modern computing systems. It is therefore
necessary to understand the memory hierarchy behavior of
data mining applications before attempting to improve per-
formance. Figures 4 and 5 summarize the results obtained
for memory hierarchy behavior (level 1 data, and level 2
caches, respectively) over 1, 2, 4 and 8 processor runs on
medium sized datasets, wherever applicable. We notice several
interesting aspects of memory behavior from these results.
First, though L1 data cache miss rates are usually small,
applications are drastically different in their L1 data cache
behavior. We can separate the applications into two categories:
those that have very small L1 data miss rates (less than
1.5%), and those that have larger miss rates (2-14%). It is
also interesting to note that even in applications with low L1

data miss rates, in many cases, the 2-processor run yields
much higher cache misses than the other runs. In general,
we see that as the number of processors increase, L1 data
cache miss rates decrease. This is due to the fact that multiple
processors are working on a smaller chunk of data. Note that,
for some applications, the miss rates are independent of the
number of processors. In these applications, most misses are
caused by cold and invalidation misses, hence they are largely
unaffected by the number of processors. We also studied the
L1 instruction cache miss rates. In general the L1 instruction
cache miss rates are very low (on average 0.11%). This is due
to the fact that the applications are relatively small in size and
the instructions are able to fit into the L1 cache easily. More
importantly, most of the execution in these applications are in
the relatively small number of frequently executed kernels.
Since the miss rates during the execution of these kernels
are low, the overall instruction cache misses remain low. We
have not observed much variance of instruction miss rate
while going from 1 processors to 8 processors, because these
applications, in general, use data parallelization concepts.

An analysis of the L2 cache behavior was also carried out



0

2

4

6

8

10

12

14

16

sc
alp

ar
c

k-
m

ea
ns

fu
zz

y
ho

p

ap
rio

ri
ut
ilit

y
sn

p

ge
ne

ne
t

se
m
ph

y

rs
ea

rc
h

sv
m
-rf

e
pls

a

ba
ye

sia
n

bir
ch

ec
lat

M
is

s
 R

a
te

(%
)

p=1

p=2

p=4

p=8

Fig. 4. L1 Data Miss Rates

0
10
20
30
40
50
60
70
80
90

100

sc
alp

ar
c

k-
m

ea
ns

fu
zz

y
ho

p

ap
rio

ri
ut
ilit

y
sn

p

ge
ne

ne
t

se
m
ph

y

rs
ea

rc
h

sv
m
-rf

e
pls

a

ba
ye

sia
n

bir
ch

ec
lat

M
is

s
 R

a
te

(%
)

p=1

p=2

p=4

p=8

Fig. 5. L2 Cache Miss Rates

and yielded several unique characteristics. It is seen that L2
cache miss rates are many times greater than their corre-
sponding L1 counterparts. Generally, there are two reasons
for such high L2 miss rates. First, for some applications the
L1 miss rates are extremely small, as a result most of the L2
accesses result in cold misses. Second, several applications
work on very large datasets in a streaming fashion. Overall,
the SVM-RFE benchmark had the worst L2 cache miss rates.
Combined with its low L1 efficiency, approximately 8.44%
of all data references incur costly off-chip memory access,
thus yielding a very low IPC for this application. Another
interesting observation is that in majority of the applications,
the L2 miss rate for the 2 processor case is highest. One
reason for this kind of behavior is that the data distribution is
random as dynamic scheduling is used for parallelization in
some of the applications. In dynamic schemes, the processor
gets assigned a new block of data in a random fashion as it
becomes available. Hence the data gets distributed to multiple
caches in a random fashion, which increases the likelihood of
not exploiting temporal or spatial data locality.

C. Instruction Efficiency

We also studied the instruction efficiency using the coun-
ters profiled by VTune. Particularly, we measure the branch
misprediction rates, the fraction of floating-point instructions,
resource related stalls (stalls caused by register renaming
buffer entries, memory buffer entries, and branch mispredic-
tion recovery), and the Instructions per Cycle (IPC) values
observed. These results are summarized in Figures 6, 7, 8,
and 9, respectively.

In general, the branch prediction performs very well, with
an average misprediction rate of 3.27% for the 15 applications.
This is mostly due to the fact that the applications have small
kernels which consist of loops that execute for very large
number of iterations. Also, the applications are parallelized
using OpenMP, which is good at analyzing large loops to
extract data parallelism in an efficient way. The highest
branch misprediction rate is observed for the HOP and Apriori
applications. In both cases, this is partly due to the paradigm

applied to parallelize the algorithms. In these two applications,
the dataset is read in parallel and each processor works on
local data for the most part, only synchronizing occasionally.
The application does not have a concise kernel that is executed
repeatedly, hence the branch misprediction increases. It is also
seen that, in most applications, the branch misprediction rate
decreases as the degree of parallelism increases.

We also looked at the percentage of floating point operations
performed by the applications. The results are presented in
Figure 7. Several of the MineBench applications are floating
point intensive. As the degree of parallelism increases, it is
seen that the percentage of floating point operations decreases
(the number of floating point operations are usually about the
same across different number of processors, but the number
of instructions retired increases, thereby reducing the fraction
of FP operations). Note that Apriori, GeneNet and PLSA are
integer applications and do not contain any floating point
operations.

Figure 8 presents the resource related stall rates for each
application. It is seen that most applications suffer from high
stall rates. Particularly, the SVM-RFE application spends 92%
of its execution time on stalls. Since this application exhibits
high L1 data and L2 cache miss rates, the instructions spend
more time in the pipeline, which causes an increase in the
resource related stalls. In general, we also observe a correlation
between the number of floating point instructions and resource
related stalls. As the fraction of floating point operations
increase, the processor is able to utilize its resources better
and stalls less. However, this is not true for applications like
Utility mining and SVM-RFE, where other effects like large
cache miss rates result in higher stall rates. As the number
of processors increase, in general, the resource related stalls
increase. For some applications, this causes the limitation of
the scalability we observe, which is described in Section 5.1.

To express the efficiency of data mining applications, the
number of Instructions per Cycle (IPC) has been studied. It can
be seen that some applications suffer from very low IPCs. For
example, the SVM-RFE application sees an IPC value of 0.09
with 8 processors. The reason for such low IPCs are different:



0

2

4

6

8

10

12

14

16

sc
alp

ar
c

k-
m

ea
ns

fu
zz

y
ho

p

ap
rio

ri
ut
ilit

y
sn

p

ge
ne

ne
t

se
m
ph

y

rs
ea

rc
h

sv
m
-rf

e
pls

a

ba
ye

sia
n

bir
ch

ec
lat

M
is

s
 R

a
te

(%
) p=1

p=2

p=4

p=8

Fig. 6. Branch Misprediction Rate

0

5

10

15

20

25

30

35

sc
alp

ar
c

k-
m

ea
ns

fu
zz

y
ho

p

ap
rio

ri
ut
ilit

y
sn

p

ge
ne

ne
t

se
m
ph

y

rs
ea

rc
h

sv
m
-rf

e
pls

a

ba
ye

sia
n

bir
ch

ec
lat

F
P

 O
p

s
(%

) p=1

p=2

p=4

p=8

Fig. 7. Fraction of Floating Point Instructions

0
10
20
30
40
50
60
70
80
90

100

sc
alp

ar
c

k-
m

ea
ns

fu
zz

y
ho

p

ap
rio

ri
ut
ilit

y
sn

p

ge
ne

ne
t

se
m
ph

y

rs
ea

rc
h

sv
m
-rf

e
pls

a

ba
ye

sia
n

bir
ch

ec
lat

R
R

 S
ta

lls
(%

) p=1

p=2

p=4

p=8

Fig. 8. Resource Related Stalls

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sc
alp

ar
c

k-
m

ea
ns

fu
zz

y
ho

p

ap
rio

ri
ut
ilit

y
sn

p

ge
ne

ne
t

se
m
ph

y

rs
ea

rc
h

sv
m
-rf

e
pls

a

ba
ye

sia
n

bir
ch

ec
lat

A
v

g
 IP

C

p=1

p=2

p=4

p=8

Fig. 9. Instructions Per Cycle

SVM-RFE and SNP’s low IPCs are related to the high resource
related stall percentages, 92% and 72% respectively; SVM-
RFE, ScalparC and Utility are affected by high L1 data cache
miss rates; Hop and Apriori, on the other hand, suffer from
high branch mispredictions. Also, in almost all applications,
as the degree of parallelism increases, the IPC decreases. In
many applications, the 2-processor case experiences the worst
IPC results. These results indicate that there is significant room
to improve the performance of the applications by increasing
their efficiencies. The parallelization of these applications also
needs to be looked into, since the applications suffer from
various drawbacks as the degree of parallelism increases.

VI. CONCLUSIONS

In this paper, we presented Minebench, a diverse benchmark
suite of data mining applications, to enable development of
superior algorithms and systems for data mining applications.
Using MineBench, we establish the fact that data mining ap-
plications form a unique workload. We have studied important
characteristics of the applications when executed on an 8-way
SMP machine. Overall, our results indicate that there is ample
scope for improvement in the performance of both data mining
algorithms and systems.

To gain further insight, we have done some initial architec-
tural simulations using an cycle-accurate x86 simulator [40].

In future, we plan to examine the workloads phase behavior
to gain further insight. Also we would like to expand our
benchmark with serial and parallel implimentations of simi-
larity search, text mining and other categories that could not
been included in our current version of MineBench.

MineBench is intended for use in computer architecture
research, systems research, performance evaluation, and high-
performance computing. MineBench is completely open and
freely available for download from our Center’s website [41].

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation (NSF) under grants NGS CNS-0406341, IIS-
0536994/002, CNS-0551639, CCF-0621443, CCF-0546278,
and NSF/CARP ST-HEC program under grant CCF-0444405,
and in part by the Department of Energy’s (DOE) SCiDAC
program (Scientific Data Management Center), number DE-
FC02-01ER25485, DOE grants DE-FG02-05ER25683, and
DE-FG02-05ER25691, and in part by Intel Corporation.

REFERENCES

[1] Intel Corporation, “Architecting the era of tera - technical white paper,”
Available at http://www.intel.com, 2005.

[2] Standard Performance Evaluation Corporation, “SPEC CPU2000 V1.2,
CPU Benchmarks,” Available at http://www.spec.org, 2001.



[3] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in Proceedings of 30th Annual International Symposium on
Microarchitecture (MICRO), Dec. 1997, pp. 330–335.

[4] Transaction Processing Performance Council, “TPC-H Benchmark Re-
vision 2.0.0,” 2004.

[5] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere, “Quantifying the
impact of input data sets on program behavior and its applications,” The
Journal of Instruction-Level Parallelism, vol. 5, pp. 1–33, Feb. 2003.

[6] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2
programs: Characterization and methodological considerations,” in Pro-
ceedings of the 22nd International Symposium on Computer Architecture
(ISCA), June 1995, pp. 24–36.

[7] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eric, H. Nueckel,
and J. Shen, “Scaling and characterizing database workloads: Bridging
the gap between research and practice,” in Proceedings of the 36th
International Symposium on Microarchitecture, Dec. 2003, pp. 76–87.

[8] K. Keeton, D. Patterson, Y. Q. He, R. Raphael, and W. Baker, “Per-
formance characterization of a quad Pentium Pro SMP using OLTP
workloads,” in Proceedings of the 25th International Symposium on
Computer Architecture (ISCA), June 1998, pp. 15–26.

[9] P. Ranganathan, K. Gharachorloo, S. Adve, and L. Barroso, “Perfor-
mance of database workloads on shared-memory systems with out-of-
order processors,” in Proceedings of the 8th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII), Oct. 1998, pp. 307–318.

[10] P. Trancoso, J. Larriba-Pey, Z. Zhang, and J. Torrelas, “The memory
performance of DSS commercial workloads in shared-memory multipro-
cessors,” in Proceedings of the 3rd International Symposium on High-
Performance Computer Architecture (HPCA), Feb. 1997, pp. 250–261.

[11] J. Bradford and J. Fortes, “Performance and memory-access charac-
terization of data mining applications,” in Workload Characterization:
Methodology and Case Studies, Nov. 1998, pp. 49–59.

[12] J. Kim, X. Qin, and Y. Hsu, “Memory characterization of a parallel
data mining workload,” in Workload Characterization: Methodology and
Case Studies, Nov. 1998, pp. 60–70.

[13] Y. Chen, Q. Diao, C. Dulong, W. Hu, C. Lai, E. Li, W. Li, T. Wang,
and Y. Zhang, “Performance scalability of data-mining workloads in
bioinformatics,” Intel Technology Journal, vol. 09, no. 12, pp. 131–142,
May 2005.

[14] A. Jaleel, M. Mattina, and B. Jacob, “Last Level Cache (LLC) perfor-
mance of data mining workloads on a CMP – a case study of parallel
bioinformatics workloads,” in Proceedings of the 12th International
Symposium on High Performance Computer Architecture (HPCA), Feb.
2006.

[15] Y. Li, T. Li, T. Kahveci, and J. Fortes, “Workload characterization of
bioinformatics applications,” in Proceedings of the 13th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), Sept. 2005, pp. 15–22.

[16] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C. Tseng,
and D. Yeung, “BioBench: A benchmark suite of bioinformatics ap-
plications,” in Proceedings of The 5th International Symposium on
Performance Analysis of Systems and Software (ISPASS), Mar. 2005.

[17] D. Bader, V. Sachdeva, V. Agarwal, G. Goel, and A. Singh, “BioS-
PLASH: A sample workload for bioinformatics and computational
biology for optimizing next-generation performance computer systems,”
University of New Mexico, Tech. Rep., May 2005.

[18] D. Bader, Y. Li, T. Li, and V. Sachdeva, “BioPerf: A benchmark suite
to evaluate high-performance computer architecture on bioinformatics
applications,” in Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), Oct. 2005.

[19] U. Srinivasan, P. Chen, Q. Diao, C. Lim, E. Li, Y. Chen, R.Ju,
and Y. Zhang, “Characterization and analysis of HMMER and SVM-
RFE parallel bioinformatics applications,” in Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC), Oct.
2005.

[20] F. Sanchez, E. Salami, A. Ramirez, and M. Valero, “Parallel processing
in biological sequence comparison using general purpose processors,”
in Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), Oct. 2005.

[21] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers, Aug. 2000.

[22] M. Joshi, G. Karypis, and V. Kumar, “ScalParC: A new scalable and
efficient parallel classification algorithm for mining large datasets,” in
Proceedings of the 11th International Parallel Processing Symposium
(IPPS), 1998.

[23] P. Domingos and M. Pazzani, “Beyond independence: Conditions for
optimality of the simple bayesian classifier,” in Proceedings of the
International Conference on Machine Learning, 1996.

[24] J. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” in Proceedings of the Berkeley Symposium on
Mathematical Statistics and Probability, 1967.

[25] J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Kluwer Academic Publishers, 1981.

[26] D. Eisenstein and P. Hut, “Hop: A new group finding algorithm for
N-body simulations,” Journal of Astrophysics, no. 498, pp. 137–142,
1998.

[27] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data
clustering method for very large databases,” in SIGMOD, 1996.

[28] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo, “Fast
discovery of association rules,” Advances in Knowledge Discovery and
Data Mining, pp. 307–328, 1996.

[29] Y. Liu, W. Liao, and A. Choudhary, “A two-phase algorithm for fast
discovery of high utility itemsets,” in Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), May
2005.

[30] M. Zaki, “Parallel and distributed association mining: A survey,” IEEE
Concurrency, Special Issue on Parallel Mechanisms for Data Mining,
vol. 7, no. 4, pp. 14–25, Dec. 1999.

[31] Intel Corporation, “Intel VTune performance analyzer 7.2,” Available at
http://www.intel.com, 2005.

[32] R. Agrawal, A. Arning, T. Bollinger, M. Mehta, J. Shafer, and R. Srikant,
“The Quest data mining system,” in Proceedings of the 2nd International
Conference on Knowledge Discovery in Databases and Data Mining,
Aug. 1996.

[33] M. Norman, J. Shalf, S. Levy, and G. Daues, “Diving deep: Data
management and visualization strategies for adaptive mesh refinement
simulations,” Computing in Science and Engineering, vol. 1, no. 4, pp.
36–47, 1999.

[34] A. Brookes, H. Lehvaslaiho, M. Siegfried, J. Boehm, Y. Yuan, C. Sarkar,
P. Bork, and F. Ortigao, “HGBASE: a database of SNPs and other
variations in and around human genes,” Nucleic Acids Research, vol. 28,
no. 1, pp. 356–360, Jan. 2000.

[35] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen,
P. Brown, D. Botstein, and B. Futcher, “Comprehensive identification
of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by
microarray hybridization,” Molecular Biology of the Cell, vol. 9, no. 12,
pp. 3273–3297, 1998.

[36] A. Bateman, L. Coin, R. Durbin, R. Finn, V. Hollich, S. Griffiths-Jones,
A. Khanna, M. Marshall, S. Moxon, E. Sonnhammer, D. Studholme,
C. Yeats, and S. Eddy., “The Pfam protein families database,” Nucleic
Acids Research, vol. 32, no. Database, pp. D138–D141, 2004.

[37] Sean Eddy’s Lab, “Rsearch software repository,” Available at
http://www.genetics.wustl.edu/eddy, 2005.

[38] C. Ambroise and G. J. McLachlan, “Selection bias in gene extraction
on the basis of microarray gene-expression data,” Proceedings of the
National Academy of Sciences, vol. 99, no. 10, pp. 6562–6566, 2002.

[39] J. Zambreno, B. Ozisikyilmaz, J. Pisharath, G. Memik, and A. Choud-
hary, “Performance characterization of data mining applications using
MineBench,” in 9th Workshop on Computer Architecture Evaluation
using Commercial Workloads (CAECW), Feb. 2006.

[40] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choud-
hary, “MineBench: A benchmark suite for data miningworkloads,” in To
Appear in Proceedings of the International Symposium on Workload
Characterization (IISWC) (Benchmark Submission), Oct. 2006.

[41] The Center for Ultra-scale Computing and Information Security (CU-
CIS) at Northwestern University, “NU-Minebench version 2.0,” Avail-
able at http://cucis.ece.northwestern.edu, 2006.


