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ABSTRACT 

Previous works in computer architecture have mostly neglected 

revenue and/or profit, key factors driving any design decision. In 

this paper, we evaluate architectural techniques to optimize for 

revenue/profit. The continual trend of technology scaling and sub-

wavelength lithography has caused transistor feature sizes to 

shrink into the nanoscale range. As a result, the effects of process 

variations on critical path delay and chip yields have amplified. A 

common concept to remedy the effects of variations is speed-

binning, by which chips from a single batch are rated by a 

discrete range of frequencies and sold at different prices. An 

efficient binning distribution thus decides the profitability of the 

chip manufacturer. We propose and evaluate a cache-redundancy 

scheme called substitute cache, which allows the chip 

manufacturers to modify the number of chips in different bins. 

Particularly, this technique introduces a small fully associative 

array associated with each cache way to replicate the data 

elements that will be stored in the high latency lines, and hence 

can be effectively used to boost up the overall chip yield and also 

shift the chip binning distribution towards higher frequencies. We 

also develop models based on linear regression and neural 

networks to accurately estimate the chip prices from their 

architectural configurations. Using these estimation models, we 

find that our substitute cache scheme can potentially increase the 

revenue for the batch of chips by as much as 13.1%.* 

Keywords: Device Variability, Process Variations, Cache 

Architecture, Profit and Revenue, Fault-tolerance.  

1. I'TRODUCTIO' 

The research literature is filled with architectural 
optimizations that seek to improve various design goals 
such as performance, power consumption, reliability, and 
security. However, the evaluation of these concepts tends to 
neglect one of the key factors driving any chip 
manufacturing decision: a company's bottom-line of 
revenue or profit. This shortcoming is understandable, as 
the relationship between any design metric and profit is 
hard to measure. For example, an optimization that 
improves performance by 10% will increase profit if a) this 
increase is valuable/desirable to the consumers, b) the cost 
of re-engineering can be amortized over the lifespan of the 
chip, and c) consequent changes in other design factors do 
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not decrease the value to the consumers. Therefore, it may 
not be possible to estimate the impact of an architectural 
optimization on revenue precisely. However, in this paper 
we will show that we can make accurate estimations on 
relative impact of different architectural configurations on 
revenue, and argue that these estimations should be 
considered during the design of the processor architectures. 

 There are two important aspects of profitability: cost 
and revenue. To increase profit, one could reduce the cost. 
Chip yield is one obvious scope for optimization in 
nanoscale processors [30], as the continuing downward 
scaling of transistor feature sizes has made fabrication 
considerably more difficult and expensive [26, 28, 50]. 
However, to get a better understanding of the impact of an 
architectural scheme, one needs to understand the effects on 
revenue as well. For example, an approach that optimizes 
solely for yield would not take into account the fact that 
CPUs concurrently manufactured using a single process are 
routinely sold at different speed ratings and prices. This 
practice of speed-binning (Figure 1a) is usually performed 
by testing each manufactured chip separately over a range 
of frequency levels until it fails. As a result of the inherent 
process variations, different processors fall into separate 
speed bins, where they are rated and marketed differently. 
Speed-binning thus helps the chip manufacturer create a 
complete product line from a single design. Figure 1b 
shows an example price distribution representing the Intel 
Core Duo processor family [16]. Assuming a simplified 
supply and demand model, the total chip revenue would be 
the sum of the segmented areas under the yield curve. 
Consequently, one way of increasing revenue would be to 
shift the binning distribution in such a way that more 
processors are able to fall into higher-priced bins. 

Previous studies have shown that as transistors are 
reduced in size, it becomes harder to control variations in 
device parameters such as channel length, gate width, oxide 
thickness, and device threshold voltage. Even in a relatively 
mature technology like 90nm, these variations are known to 
result in as much as a 30% change in chip frequency and 
20x change in leakage power [5]. For sub 45nm 
technologies, parameter variations are expected to be even 
higher [49]. An expected continuation of this trend will 
increase the impact of speed-binning on a manufacturer's 
bottom-line. 



In this paper, we propose a cache architecture that aims 
to improve overall revenue and profit with post-fabrication 
modifications. Particularly, in this scheme, the level 1 (L1) 
cache is augmented with a small Substitute Cache (SC) 
storing the most critical cache words whose latencies may 
have been affected by process variations. With the help of 
minimal control logic, the processor can fetch data from SC 
instead of the main data array whenever a read/write access 
is made to these critical words. Hence, access latency is 
minimized with no extra cache misses.  
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   (b) 

Figure 1.  (a) Frequency binning in modern microprocessors. 
(b) Price vs. frequency of Intel Core Duo mobile family (as of 

January 2008). 

We concentrate on caches because they have been 
shown to be the critical component under process variations 
[15]. Also, our analysis (described in Section 4) reveals that 
the critical path lies on the cache in 58.9% of the chips we 
model. The reasons for this behavior are three-fold. First, 
caches consume a relatively large percentage of chip area. 
Second, L1 caches have a high frequency requirement and 
consequently tend to utilize low threshold voltages [4]. 
Finally, according to the “FMAX” model introduced by 
Bowman et al. [6], a unit which has a high ratio of 
independent critical paths (Ncp) to critical path logic depth 
(Lcp) will have a greater variance to mean ratio in its delay 
distribution, leading to an increased variability due to 
process effects. SRAM structures have a high number of 
critical paths with low logic depths in those paths, making 
them susceptible to process variations.  

Although our technique will affect various design 
stages, such changes remain minimal. Therefore, the 
proposed technique will have minimal impact on cost. 
Variable production costs will remain low, as the testing 

phase can be incorporated into current binning processes. 
On the other hand, the proposed scheme will have a 
significant impact on the binning distribution. As we 
describe in Section 7, we simulated the effects of process 
variations on yield and binning distribution using SPICE. 
We also develop models based on linear regression and 
neural networks that can be used to estimate the price of a 
chip using its architectural properties. Using the binning 
results and our price estimation models, we show that 
applying our SC scheme to current processor architectures 
could lead to a potential 13.1% increase in revenue in the 
most optimistic case. 

The remainder of this paper is organized as follows. In 
the following section, we perform a literature survey of the 
related works. The details of SC scheme are then described 
in Section 3. Section 4 talks about the methodology we 
used for modeling and measuring the effect of process 
variations on a representative processor architecture. 
Section 5 describes how we model the binning strategy, 
while Section 6 discusses the methodologies we developed 
for price estimation. Experimental results detailing the 
effect of our approach on binning distribution and revenue 
are presented in Section 7. Finally, Section 8 concludes the 
paper with a brief summary. 

2. BACKGROU'D A'D RELATED WORK 

Variability in process technologies has been extensively 
studied. In this section, we present brief overviews of the 
prior works that are proposed to mitigate effects of 
parameter variations, ranging from architectural to circuit-
level techniques.  
Cache Redundancy schemes:  

Several cache redundancy schemes have been proposed [7, 
18, 27, 39, 41]. These techniques have been/could be used 
to reduce the critical delay of a cache. Victim caches [18] 
are extra level of caches used to hold blocks evicted from a 
CPU cache due to a conflict or capacity miss. A substitute 
cache storing the slower blocks of the cache is orthogonal 
to a victim cache, which stores blocks evicted from the 
cache. Sohi [41] shows that cache redundancy can be used 
to prevent yield loss, using a similar concept to our 
proposed SC. Shivakumar et al. [39] introduce a new yield 
metric and propose the utilization of redundant structures to 
increase it. Similarly, techniques like sparing DRAMS and 
Chipkill are used in Sun’s UltraSPARC T1 processor [7]. 
Cache redundancy is also present in commercial processors 
like Itanium, which uses extra banks to improve fault 
tolerance [27]. Finally, Romanescu et al. [38] propose 
prefetching data into fast buffers to address Process 
Variations in L1 caches as well as prioritizing critical 
instructions to utilize fast registers/functional units. 
Compared to these alternatives, our SC scheme introduces 
considerably lower cost in terms of area and latency.  
Circuit level techniques: 

Previous works show that several circuit-level techniques 
could be adopted to counter the negative effects of process 
variations [5, 9, 12, 33, 36, 41]. The inter- and intra-die 

Yield

loss
Bin 0 Bin 1 Bin 2

Yield

loss

Frequency

Bin 3

#
 o
f 
c
h
ip
s

chips lost

for high

leakage

chips

lost for

high

delay

Bin 4

241 241

294

423

637

0

100

200

300

400

500

600

700

1.66 1.83 2 2.16 2.33

P
ri

ce
 (

$
)

Frequency (GHz)



process variations and their effects on circuit leakage is 
studied in detail by Rao et al. [35]. In another work, Rao et 
al. [34] analyze the impact of process variations on circuit 
leakage and propose methods to reduce them. Most of these 
techniques focus on analyzing the design statistically or by 
using static timing analysis, and then modifying the parts of 
the circuits that are most susceptible to variations. Liang et 
al. have proposed a variation-tolerant 3 transistor, 1 diode 
on-chip dynamic memory as a substitute for the traditional 
6 transistor SRAM [24]. Many gate-sizing strategies have 
been used on the critical or near-critical regions of the 
circuit in order to reduce the effective latency [10, 51]. 
Although these techniques increase the overall yield, no 
analysis of the impact on binning has been done. 

Performance binning has also been discussed as a means 
for increasing yield [5, 12, 36]. Datta et al. [12] propose a 
novel approach of changing the effective speed-binning by 
gate sizing, and thus increasing the profit. Unlike our 
schemes, most of their analyses are based on statistical 
estimations of yield, and the optimizations are for high-
level synthesis. Kim et al. [20] have studied the effects of 
cache size on leakage and analyzed the tradeoff on access 
time when multiple threshold voltages are used for L1 and 
L2 caches. In contrast, we perform the replication within 
the cache and also present a detailed implementation. 
Variation-tolerant architectural schemes: 

Ozdemir et al. [30] present microarchitectural schemes that 
improve the overall chip yield under process variations to 
as much as 97%. The authors have shown how powering 
down sections of the cache can increase the effective yield. 
Our work, on the other hand encompasses extra redundancy 
in L1 caches to facilitate efficient binning and profit 
maximization. Besides, our model includes the entire 
processor pipeline, as opposed to only L1 caches. 
Techniques for mitigating the effects of process variations 
by using variable latency register files and execution units 
have been proposed by Liang et al. [23]. In a recent work, 
Liang et al. [25] have studied the effectiveness of post 
fabrication techniques like voltage interpolations and 
variable latency in different pipeline loops. Besides, 
Agarwal et al. [1] propose a scheme that prevents yield loss 
due to failures in the SRAM cells of the cache. Their 
approach is mostly based on Built-In Self-Test (BIST) 
circuitry and the cache optimizations are concentrated 
towards yield maximization. Teodorescu et al. [46] use 
variation-aware instruction scheduling and power 
management to reduce the overall energy delay product and 
increase throughput of chip multiprocessors. Tiwari et al. 
[48], on the other hand, propose ReCycle to balance the 
delay variations between different pipeline stages due to 
process variations by utilizing a skewed clock. This way, 
they achieve a processor clock frequency that is equivalent 
to the average frequency of all pipeline stages instead of the 
lowest one. They also propose a method to convert the 
slack in faster stages into power savings. Lee et al. [22] 
discusses a new metric involving yield, area, and 
performance for evaluating the tradeoff between yield and 

performance in caches. In comparison to the 
abovementioned works, our efforts are directed towards 
efficient binning and revenue optimization for set 
associative caches. In addition, most of the previous 
techniques listed above have performance implications, i.e., 
different chips in a frequency bin may exhibit varying 
performance levels (due to a variation in the IPC). 
However, our SC scheme provides the same performance 
(constant IPC) for all the chips in a frequency bin. 
Other works: 

There has been plethora of studies analyzing cache resizing 
for different goals such as minimizing power consumption 
or increasing performance. Selective Cache Ways by 
Albonesi [2] is one of the first works in cache resizing and 
optimizing energy dissipation of the cache. Flautner et al. 
[13] have proposed a drowsy cache architecture, which 
takes into account the state of a cache line and 
correspondingly changes its mode. The concept of cache 
decay, on the other hand, exploits the usage information of 
each cache line in order to turn them off when they are not 
in use to save leakage power [19]. Yang et al. [52] have 
analyzed the effects of various cache resizing schemes on 
reducing the energy-delay of deep submicron processors. 
Powell et al. [32] have introduced the Gated-Vdd approach, 
by which the supply voltage is turned off in the unused 
SRAM cells to save leakage energy. Finally, Tadas and 
Chakrabarti have developed a scheme in which the adjacent 
micro-blocks of a cache are resized depending on the hit 
and miss rate [44]. All these resizing schemes are very 
effective in reducing the cache leakage and energy, but to 
the best of our knowledge no resizing schemes have been 
applied to alter speed-binning and profit. 

3. THE SUBSTITUTE CACHE SCHEME 

In this section, we describe our proposed cache 
redundancy technique called Substitute Cache (SC), which 
masks the effects of process variations by including extra 
storage in the L1 cache. Particularly, in this scheme each 
way of the L1 cache is augmented with a fully associative 
data array, which stores the most critical lines as a result of 
process variations. Once the SC holds high-delay words, 
they are never accessed from the main array, allowing the 
L1 cache to run at higher frequencies. In addition to shifting 
more chips towards high-priced bins, this scheme also 
reduces yield losses due to delay violations.   

3.1 Architecture 

The core idea behind the architecture of SC is to 
augment each cache way with extra storage that will be 
used if certain locations in the main cache exhibit long 
latencies. In such cases, the data will be read from the SC, 
and chips from the lower frequency bins can now be placed 
in higher frequency bins, because the high latency lines are 
not used. Moreover, some of the chips that would have 
failed due to high access latencies will be added to the 
overall yield.  



The anatomy of the proposed cache architecture is 
shown in Figure 2. SC is highlighted within the dashed 
block. For the sake of clarity, we detail the use of SC on a 
single cache way; however, each cache way has a similar 
SC associated with it. SC is similar to a fully-associative 
cache structure. In our study, its size is either 4 or 8 entries. 
As opposed to the L1 cache, SC has smaller line sizes. 
Particularly, it consists of only 64-bit entries, because it 
stores words of the main data array. Instead of storing the 
whole cache line, only the critical word in the line is stored 
in the SC, because our study reveals that the words with 
maximum access latency are always the ones that are 
furthest from the decoder. As a result, by just storing these 
words, we obtain the same improvement in cache frequency 
while keeping the SC size small. However, if necessary, 
words in other locations can also be placed into the SC. An 
SC is divided into 2 components: an index table and a data 
array. Note that the SC uses the column multiplexers and 
output drivers of the main array. Whenever a cache word is 
placed in the data array of the SC, index bits of its address, 
which is equal to the sum of the row and column addresses 
(10 bits in our architecture) are placed in the index table of 
the SC. For example, if we decide to place the word with 
index value 0x044 to the SC, we will have an entry in the 
index table with value 0x044. Note that this word would 
have resided in the row with index 0x8 in the main array 
with the column address being equal to 0x4. In case of a 
data access, the index table is checked with the index bits of 
the address. A match implies that the data will be read from 
the SC instead of the main array. Specifically, if the index 
of the address is found in the SC index table, the contents of 
the corresponding data array row are forwarded to the 
column multiplexers of the main array. The additional 
control logic shown in Figure 2 will then set the column 
multiplexers correctly. If the index of the address does not 
match any index table entries, the main array will be 
accessed. Note that, even if there is a match in the index 
table, the access can still miss in the cache if the 
corresponding tag does not match. However, the tag 
structure is not affected by the addition of the SC. If there is 
a miss due to tag mismatch, we will still output the data, 
which will be ignored because the tag will indicate the 
miss. Overall, the tag match/mismatch is independent of the 
SC design. We only care whether the corresponding parts of 
the address match with the values stored in the index table 
so that we can decide whether to supply the data from the 
main array or the SC. 

Now let us consider a typical read operation in the main 
array. The row address part of the index field selects the 
appropriate row in the data array through the row decoder. 
The appropriate word is then chosen by the column 
multiplexers with the help of the column address bits of the 
index. One of the key observations is the difference 
between the times taken by each of these steps. Particularly, 
the inputs to the column multiplexers are available at the 
same time the decoder is accessed. However, the signals 
provided to the decoders will traverse through the decoder 

logic, the word lines, the memory cell, the bit lines, and the 
sense amplifiers before it will reach the column 
multiplexers. We utilize this imbalance to operate our SC 
structure. As soon as the address is available, we start 
accessing the SC index table. If a hit is recorded, we change 
the input to the column multiplexers to 0. In other words, 
we forward the output of the SC as the output of the cache. 
If, on the other hand, there is no match in the index table, 
we will set the column multiplexer to the original position 
indicated by the column address. If the time to check the 
index table in the SC is less than the delay of the data array 
(the sum of the delays of the decoder, word line, memory 
cell, bit line, and sense amplifier), then, this operation does 
not cause any delay overhead on the cache, because while 
the data array is accessed, we would have already 
determined the hit/miss in the SC index table. As we will 
discuss in the next section, this is indeed the case. Hence, 
the addition of the SC structure does not cause any 
significant increase in the critical path latency of the cache.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. One cache way of a 32KB 4-way set associative L1 
cache with Substitute Cache. Column muxes are shaded as 

they select data from 9 inputs as opposed to 8 inputs  

Similar to a read operation, a write access (either a store 
operation or write operation during the replacement of a 
cache line) selects the appropriate index using the row and 
column addresses and updates the selected word in the 
cache way selected by the way-select logic. For L1 caches 
augmented with SC, the index of the data word to be 
written is searched within the SC index table. If there is a 
match, the new data word is loaded in the data array of the 
SC. We must also note that the addition of the SC does not 
impact the tag (and any related operation including snoop 
requests). 

3.2 Design Issues 

Using CACTI 3.2 [40], we found the total access 
latency for a 8-entry SC to be 0.28 nanoseconds; whereas 
the latency for the main array (one set of the 32KB 4-way 
set associative cache) is 0.40 nanoseconds. Therefore, the 
SC access can be completely overlapped with the main 
array access and will not cause an increase in the cache 
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access latency. The only change in the latency of the main 
array is due to the changes in the column multiplexers. 
Because of the data forwarding from the SC, the column 
multiplexers (straddled in Figure 2) have an additional input 
coming from the SC data array. The analysis with our 
SPICE model reveals that this overhead is 0.34% of the 
overall cache access latency. We include this overhead 
during our binning analysis in Section 7.1. Note that there is 
no change of CPI for the SC scheme, as the effective cache 
size remains unchanged. Another point that needs to be 
mentioned in this context is the susceptibility of the SC to 
process variations. For this work, we neglect any such 
impact on the SC since it is much smaller than the L1 cache 
and its latency is significantly lower, hence it is unlikely to 
become the critical component. 

One of the key components during the operation of SC 
is the index table. After the chip is manufactured, a Built-
In-Self-Test (BIST) is performed where n most critical 
cache indices are chosen and placed in the SC index table. 
Note that these values are extracted only once during the 
lifetime of the chip and never changed. Therefore, they can 
be extracted by the BIST and become part of the booting 
process, where they are read from a permanent location and 
placed into the index table every time the processor boots. 
It should be noted that the size of the SC dictates the area 
and power overhead of this approach. With the help of 
SPICE and CACTI, we found the total power overhead to 
be 6.0% and 6.5% of the main array for a 4- and 8-entry 
SC, respectively. These overheads are included during the 
calculations of the yield losses. The area of the cache 
increases by 3.7% and 4.1% for the 4- and 8-entry SC, 
respectively.  

 

4. PROCESS VARIATIO'S A'D ARCHITECTURE 

MODELI'G 

This section presents a description of the processor and 
cache models we use in this paper and describes how we 
model process variations. 

4.1 Processor Model 

To model a processor core, we have taken into account 
the 7-stage pipeline in the Alpha-21264 (EV6) architecture. 
The main critical components of our processor are the Fetch 
Unit, the Rename Unit, the Issue Queue, the Integer 
Execution Unit, the Register File, and the L1 Data cache. 
All these components are modeled in SPICE using the 
45nm BPTM technology models [8]. The fetch and rename 
units are modeled as a combination of 16 fan-out of four 
(FO4) gates. The issue queue is based on that of the Alpha 
EV6 and has 20 entries. The register file is an 80-entry 
structure with 4 read and 2 write ports. The integer 
execution unit is modeled using the netlist generated after 
synthesizing the corresponding component in the Sun 
OpenSPARC code [43]. Our L1 cache is a 32 KB 4-way set 
associative cache, the model of which is based on the 
architecture described by Amrutur and Horowitz [3]. 

Figure 3 highlights a cache way for our base cache 
model. Each of the 4 ways is divided into 4 banks. Each 
bank has 128x128 cells or storage bits. Thus, each bank has 
exactly 128 rows (i.e., lines) and can hold 2-KB of data. 
The bitline delays are reduced by partitioning the bitline 
into two. We must note that our SPICE models are based on 
highly optimized circuit descriptions (e.g., the cache model 
is based on CACTI 3.2). To account for the effects of 
submicron technologies on circuit behavior, we added 
coupling capacitances at three places in the cache: between 
the lines in the address bus from the driver, between 
parallel wires in the decoder, and between bit-line and bit-
line bar. Furthermore, these lines as well as global and local 
word lines are replaced by distributed RC ladders 
representing the local interconnect wires inside the cache. 
Although the L2 cache is another SRAM structure within 
the processor core where process variations can have a 
significant impact according to the FMAX theory, we 
omitted this component in our study because it doesn’t lie 
on the processor critical path (and is not a part of the 
processor pipeline) so other techniques like high-threshold 
transistors or NUCA caches can be utilized to mitigate the 
effects of process variations on them. 

 
 
 
 
 
 
 
 
 
 

Figure 3. A single cache way for a 4-way set associative L1 
cache 

4.2 Simulating Process Variations 

Process variations are statistical variations in circuit 
parameters like gate-oxide thickness, channel length, 
Random Doping Effects (RDE) etc., due to the shrinking 
process geometries [5, 29]. They mainly consist of die-to-
die (D2D) and within-die (WID) variations. D2D variation 
refers to the variation in process parameters across dies and 
wafers, whereas WID variation is the variation in device 
features within a single die, causing non-uniform 
characteristics inside a chip. Independent of their type, 
process variations generally fall into two categories: 
spatially-correlated variations where devices close to each 
other have a higher probability of observing a similar 
variation level, and random variations causing random 
differences between devices within a die. 

To measure the impact of process variations on the 
delay and leakage of our cache model, we considered 5 
most important variation parameters. These are metal 
thickness (T), inter-layer dielectric thickness (ILD or H), 
line-width (W) on interconnects, gate length (Lgate) and 
threshold voltage (Vt) for the MOS devices. The statistical 

  

d
e
c
o
d
e
r

address

16

64

global word linelocal word line

64 cells

128
cells bitline partition

64 cells

128 cells



distributions of these parameters are based on limits given 
by Nassif [28] and their statistical distribution (mean and 
variation) are listed in Table 1.  

Table 1. 'ominal and 3σ variation values for each source 

of process variations modeled 
 

 
Gate Length 

(Lgate) 
Threshold 

Voltage (Vt) 
Metal 

Width (W) 
Metal 

Thickness (T) 
ILD 

Thickness (H) 

'ominal 

 Value 
45 nm 220 mV 0.25µm 0.55µm 0.15µm 

3σ -  

Variation [%] 
±10 ±18 ±33 ±33 ±35 

 

 

 

 

 

 

 

 

 

Figure 4. Monte Carlo SPICE simulation framework 

We model both systematic and random process 
variations for our processor model. To take into account the 
spatial correlation we use a range factor (φ) in the two 
dimensional layout of the chip. Thus, each process 
parameter can be expressed as a function of its mean (µ), 
variation (σ), and the range (φ) values. For the sake of 
simplicity we use the following inverse linear function to 
minimize computational time. 

Ci = 1 - di/ϕ (1) 

Equation 1 describes the spatial correlation function we 
used for our framework. If two points xi and yi on a 2D 
plane are separated by a distance di, then the spatial 
correlation factor Ci between them can be thought of as an 
inverse linear function involving φ and di. Note that there is 
no correlation between two spatial points, which are φ units 
or more apart. 

With this background, we have generated a spatial map 
of various parameter values using the R statistical tool [47]. 
This spatial map indicates that φ is a measure of 
randomness; a higher φ will mean higher correlation and 
vice versa. To extract the parameter values corresponding 
to the different functional units, we use the floorplan of 
Alpha EV6 processor. In other words, the process variation 
values for the chip were generated first, followed by the 
extraction of the values that correspond to the particular 
positions of the studied components from this modeled 
chip. Note that all our components consist of other smaller 
components. For example, to model the cache, we pick 
different process variation values for the decoder, each 
cache line, pre-charge logic, etc. In addition to the spatial 
variation, we also model random variations in the process 
parameters. To model them, we chose process parameters 

randomly from a uniform distribution. Since spatially 
correlated process variations is found to be the dominating 
factor [14], our framework assumes a higher percentage of 
spatially correlated variation compared to random 
variations. We set this ratio as 70% to 30% for correlated 
and random variation, respectively. 

 
 
 
 
 
 
 
 
 

Figure 5. Distribution of processor critical paths to modeled 
architectural units. 

Figure 4 shows the Monte Carlo simulation framework 
used in our parameter generation and extraction 
experiments. The effects of the process variations on the 
critical path distribution of the modeled processors are 
shown in Figure 5. Note that the expected critical path 
latency of each component was identical before introducing 
the variations. The results reveal that 58.9% of the critical 
paths lie on the L1 data cache. This also validates our 
decision of focusing on the L1 cache. 

5. MODELI'G SPEED BI''I'G  
In order to estimate the total revenue from a set of chips, 

we need to know the output of the speed-binning process. 
This section describes our methodology for estimating the 
binning outcome. In the next section, we describe how the 
binning outcome can be used to calculate the revenues.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. 'ormalized leakage and delay distribution scatter 
plot for simulated chips showing the binning for 5-bin 

strategy. B0 through B4 represent the bin numbers from 

lowest to highest frequency 

In order to effectively estimate the binning distribution 
and demonstrate the effect the process variations on it, we 
chose a set of 1000 chips for our analysis. Using the process 
parameters described in Section 4, their delay and leakage 
current values are obtained from SPICE simulations for the 
cases when φ=0.3 and φ=0.5, which in turn are used to 
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determine the binning and yield loss. The cut-off for delay 
has been set to be the sum of the mean (µ) and standard 
deviation (σ) of the delay of the simulated chips (i.e., µ + 
σ), whereas the leakage cut-off has been set to be three 
times the mean leakage value. These cut-off limits are 
based on previous studies [34].   

Most processor families are available in discrete 
frequency intervals. For example, the frequency for the 
Intel Pentium 4 processor family starts with 3.0 GHz and 
reaches 3.8 GHz with equal intervals of 0.2 GHz [16]. 
Moreover, most commercial processors are marketed with 5 
or 6 different frequency ratings. Similarly, our binning 
methodology assumes equal binning intervals. This interval 
is chosen depending on the number of bins to be generated. 
Regardless of the number of bins, any chip that has a delay 
greater than the ‘µ + σ’ limit is referred to as a delay loss. 
Chips that satisfy this criterion are used for binning into 
discrete bins starting from the slowest to the fastest bin. 
Within each bin, the chips that are lost due to excessive 
leakage (exceeding the limit of 3x mean leakage) are 
referred to as the leakage loss. Figure 6 shows the 
distribution of the normalized leakage power consumption 
versus the distribution of processor latencies for the base 
case (i.e., without any architectural optimizations) for the 
1000 simulated chips for φ value of 0.5. It also shows the 
binning for a strategy that generates 5 distinct bins. In this 
case, the chips that lie within ‘µ + σ’ and ‘µ + 0.5σ’ delay 
values are put into Bin0 (denoted by B0 in Figure 6). These 
correspond to the slowest chips. Similarly, chips with 
latencies within ‘µ + 0.5σ’ and ‘µ’ are assigned to Bin1. 
The intervals for the remaining bins are set following the 
same ‘0.5σ’ interval. Note that the highest bin consists of 
the chips with delay values less than ‘µ – σ’. Using a 
similar methodology, we model a strategy that generates 6 
bins. In this case, we reduce the binning interval to ‘0.4σ’. 
Hence, Bin0 consists of chips that fall between ‘µ + σ’ and 
‘µ + 0.6σ’, Bin1 consists of chips that fall between ‘µ + 
0.6σ’ and ‘µ + 0.2σ’, and likewise. 

6. PRICE MODELI'G 
The second important step in our analysis is to calculate 

the revenue from a set of chips once the number of chips in 
a given bin distribution is known. To achieve this, we have 
to know the price of the chips for any given bin. Then, once 
the price of a chip in a particular bin is known, we can 
calculate the total revenue by multiplying the number of 
chips in that bin with the corresponding price level. 

Our goal in this section is to develop a model that can 
predict the price of a chip given its architectural 
configuration (including its frequency). However, we must 
note that we do not need absolute prices. Particularly, we 
are interested in the change in the revenue for a bin 
distribution change rather than estimating the gross 
revenue. Thus, a model that provides the relative prices of 
chips is sufficient to understand the impact of architectural 
configurations on revenue.  

To develop our models, we used historical pricing 
information of different Intel processor families [16]. 
Specifically, we first generate our input data, which 
includes a record for each of the 114 available processors. 
These records include information about the L1 data and 
instruction cache sizes, L2 cache size, L2 cache being 
shared or not, L3 cache size, processor frequency, front side 
bus frequency, release date, process generation, address 
space, socket type, wattage, number of cores, and threads 
per core. Then, a subset of this input data is used to train 
regression and neural network models. The remaining 
elements are used to estimate the accuracy of the models 
(i.e., validation). Then, based on this estimation, we choose 
a specific model to predict the prices of a new architecture.  

Regression analysis is a statistical technique for 
investigating and modeling the relationship between 
variables [45]. We have n observations; y=y1,…,yn called 
the response variables, and xi=xi,1,…,xi,p for i=1..n that are 
predictor or regressor variables. The simplest linear 
regression is of the form y=β0+β1x+ε. In this formula β 
represents the coefficients used in describing the response 
as a linear function of predictors plus a random error ε. In 
our input data set we have multiple predictor variables, 
causing the response y to be related to p regressor/predictor 
variables. The model then becomes y=β0+ 
β1x+β2x+…+βpx+ ε, where y, and x are vectors of n 
numbers (observations), and is called multiple linear 
regression model. This model describes a hyperplane in the 
p-dimensional space of the regressor variables xi. We used 
the linear regression model inside the SPSS Clementine tool 
[42]. In Clementine, there are four available methods for 
creating the linear regression models: Enter (LR-E), 
Stepwise (LR-S), Backwards (LR-B), and Forwards (LR-
F). 

Neural networks or more accurately, Artificial Neural 
Networks (ANN), have been motivated by the recognition 
that the human brain processes information in a way that is 
fundamentally different from the typical digital computer. 
A neural network, sometimes called multilayer perceptron, 
is basically a simplified model of the way the human brain 
processes information. It works by simulating a large 
number of interconnected simple processing units that 
resemble abstract versions of neurons. The multilayer 
perceptron (feedforward ANN) are multivariate statistical 
models used to relate p predictor variables x1,…,xp to q 
response variables y1,…,yq. The model has several layers, 
each consisting of either the original or some constructed 
variables. The most common structure contains three layers: 
the inputs which are the original predictors, the hidden layer 
comprised of a set of constructed variables, and the output 
layer made up of the responses. A hidden unit has an 
activation function that can be linear, hard limit, sigmoid, or 
tan-sigmoid function. The model is very flexible containing 
many parameters and it is this feature that gives a neural 
network a nearly universal approximation property. The 
usual approach to estimate the parameters is to estimate 
them by minimizing the overall residual sum of squares 



taken over all responses and all observations. This is a 
nonlinear least-squares problem. Often back-propagation 
procedure, which is a variation of steepest descent, is used. 

We used the SPSS Clementine tool to build the NN 
models. The neural network node provides six different 
training methods: Quick (''-Q), Single (''-S) (modified 
version of Quick), Dynamic (''-D), Multiple (''-M), 
Prune (''-P) and Exhaustive prune (''-E) method, which 
is related to the NN-P method.1‡ 

During our analysis we have grouped the list of 
processors into three different categories: desktop, mobile, 
and server. Due to space limitations we only present results 
for desktop processors; the remaining processor types 
provide similar results. Rather than using the raw input data 
directly, we divide our database into ten groups. We 
randomly leave one group out (test data), and then use the 
remaining nine groups for model creation and validation, 
i.e., groups 1 through 8 are used for model creation and 
group 9 (validation data) is used to estimate the error of the 
created model; groups 2 through 9 is used for model 
creation and group 1 (validation data) used for error 
estimation and so on. Using these nine models, we 
approximate the error rate by finding the error during the 
prediction of the test and validation groups. The model with 
the lowest error is used for estimating the prices. For our 
input set, the minimum error rate is achieved with the NN-
Q method, which provides 1.9% average error rate for the 
processors in the test data. NN-Q includes 11 out of the 14 
predictor variables. The important factors used in the neural 
network model (with their relative importance presented in 
parenthesis) are front side bus frequency (0.34), clock 
frequency (0.30), number of cores (0.22), threads per core 
(0.14), L2 cache size (0.09) and the release date (0.07), 
where a relative importance of 0 denotes that the field has 
no effect on prediction and relative importance of 1.0 
denoting that the field completely determines the 
prediction. We have to note that these importance factors do 
not need to add up to 1, i.e., the sum can be greater than 1. 
In our analysis, we generally observe that neural networks 
outperform the regression methods. One of the reasons is 
that the price curves are usually sublinear in lower 
frequency bins and there are rapid increases as we move to 
higher processor frequencies. The neural network models 
capture these non-linearities effectively.  

These results show that using the subset of the 
processors available, we can create a very accurate model 
presenting the relation between the processor properties and 
its price. In other words, they show that there is a 
significant correlation between the price of the processor 
and its configuration, even though markets are also 
influenced by the preferences of the consumers interacting 
in it. The existence of such a relation is not surprising, 
though, as prices of chips are largely determined by their 
value to the consumers. This value, in turn, depends highly 

                                                           

‡1 Note that we have made our prediction models available for public use 
[31]. 

on the performance of the chip, which is strongly tied to its 
configuration/properties (e.g., performance of a processor 
can be accurately predicted from its configuration [17, 21]). 
This forms a link between the configuration of a processor 
and its price/value. Our models can unveil this relation and 
accurately estimate the price of a processor from its 
architectural configuration. We use these models to 
calculate the revenue results presented in the next section.  

7. EXPERIME'TAL RESULTS 
In this section, we describe the analysis of our proposed 

schemes. Section 7.1 describes how our schemes change the 
outcome of the speed-binning, while Section 7.2 analyzes 
the impact of these changes on the revenue. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (b) 

Figure 7. Binning with (a) 5-bin and (b) 6-bin strategy for SC-
4 and SC-8 schemes. 

7.1 Binning Results 

This section presents the binning results based on the 
binning methodology described in Section 5. The effects of 
the SC scheme are summarized in the next subsection. To 
find how the chips are placed into different bins, we first 
analyze the base architecture and find the mean and 
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standard deviation of the 1000 chip delays. Then, based on 
these values, the boundaries for each bin are set. We then 
apply the proposed SC technique to find a new binning 
distribution; the resulting changes are used to calculate the 
revenue. 

Figure 7a and Figure 7b show the binning results for the 
base, SC-4, and SC-8 schemes for 5-bin and 6-bin 
strategies, respectively. To understand these figures, 
consider the leftmost bar for each bin. This bar corresponds 
to the number of chips in that bin for the base cache 
architecture. The bars next to it (i.e., the one in the middle) 
represent the number of chips in that bin when SC-4 
scheme is applied. The bars on the right represent the 
number of chips in the corresponding bin for the SC-8 
scheme. In general, we see that cache redundancy can 
successfully increase the number of chips in the higher bins. 
For example, the number of chips in the highest bin (Bin4) 
is increased by 23.2% using SC-8. 

It is misleading to draw any conclusion about high-
frequency chip yield by simply considering the chips in the 
highest bin. The gain in the highest bins for all the SC 
schemes are accompanied by a reduction in the number of 
chips in the lower bins. However, we must note that the 
total yield is increased using these schemes. Specifically, 
the total yield increases by 9.0% using SC-8 schemes (for 
φ=0.5). However, since the SC is associated with a power 
overhead there is yield loss due to power dissipation of the 
extra data arrays. The SC-8 scheme causes an additional 
10.3% loss of chips in the category of power-related 
losses. In spite of this loss, the total yield increases for SC, 
because it converts a high number of delay loss chips into 
yield. Even though the total number of chips increases, the 
schemes tend to move a larger number of chips towards 
the higher bins. As a result, the chip counts in the lower 
bins tend to decrease.    

7.2 Revenue Estimation 

This section describes the analysis of the total revenue 
and the implications on profit. It is important to note that, in 
all the following studies a simplistic market supply/demand 
model is assumed where all fabricated chips can be sold at 
predicted/predetermined price levels according to their 
clock frequencies. Since a real-life demand model would 
depend on various other factors, the resulting numbers 
given in this section should be considered as potential 
increase in revenue or profit. The binning data obtained in 
the previous section is used in revenue calculation. The 
chips that fall in the higher/faster bins after testing are sold 
with higher prices than those lying in the lower/slower bins. 
To have an estimate of this increased revenue, we use the 
model that provides the highest accuracy among the models 
studied in Section 6. Our architectural configuration is fed 
into our price models to find the relative prices of the chips 
in each bin. These relative prices are found to be 1, 1.03, 
1.13, 1.39, and 2.84, for the Bin0 through Bin4 for the 5-bin 
strategy and 1, 1.02, 1.09, 1.23, 1.63, and 4.00, for the Bin0 
through Bin5 for the 6-bin strategy. Then, the number of 

chips in different bins for the base case is multiplied with 
their respective prices to calculate the revenue for the base 
case. Using the same methodology, the revenue for SC-4 
and SC-8 schemes are calculated based on their new 
binning distributions. The relative change in revenue is then 
calculated with respect to the revenue of the base case. 

Table 2 presents the increase in revenue obtained using 
different microarchitectural schemes. For φ=0.5, the SC-8 
scheme increases the revenue by up to 12.60% and 13.14% 
for the 5-bin and 6-bin strategies, respectively. Note that, 
the SC scheme has a power consumption overhead and 
hence causes some power-related yield losses. However, 
despite the increase in the power consumption, we are 
observing that the SC scheme tends to provide better 
revenues because it is able to generate an elevated number 
of chips in higher bins. We must note that the increase in 
revenue is smaller compared to the increase in the number 
of chips in the highest bin. Take for example the 6-bin case. 
For SC-8, a 15.0% increase in the number of chips in the 
highest (i.e., highest-priced) bin results in an increase of the 
total revenue by only 11.4%. The main reason behind this 
can be explained as follows. Due to the normal distribution 
nature of the binning curve, the yield in the next-highest bin 
is higher. This bin also has a high price gradient and hence 
it constitutes a large fraction of the overall revenue. We 
observe that the number of chips in this bin either reduces 
or stays roughly constant. As a result, the increase in total 
revenue is limited by a moderate percentage. 

Table 2. Increase in revenue for various SC 

configurations  

 
Using the same revenue results, we can also estimate 

profit. Let's assume that the cost per chip is identical, which 
equals to 80% of the selling price of the lowest frequency 
chip. This means, the cost of each chip is 0.8 in terms of our 
relative price. Therefore, the total cost for 1000 chips (note 
that even the chips that do not meet delay or leakage 
constraints contributes to cost) is 800. We can then subtract 
this amount from the total revenues and find the profit. If 
we apply this methodology, we find that the SC-8 increases 
the profit in the 5-bin strategy by 46.6%. For a chip 
company, which invests billions of dollars in the 
manufacturing process, this extra revenue can prove to be a 
considerable margin. It should be noted we are neglecting 
the extra testing costs needed for the new cache design. 

Comparison with Performance: To compare the 
effects of our architectural scheme on profit and 
performance of the whole batch of chips, we use another 
metric called batch performance (BP) [11]. Batch 

Range 

factor (ϕϕϕϕ) 

Binning 

strategy 

Increase in revenue with respect 

to the base architecture [%] 

SC-4 SC-8 

0.5 
5-bin 5.03 12.60 

6-bin 3.90 11.41 

0.3 
5-bin 6.98 12.00 

6-bin 5.54 13.14 



performance is calculated using the frequency of each 
speed-bin and the chip yield (number of chips) in that bin. 
Thus, batch performance corresponds to the overall 
performance of the chips obtained from a single batch of 
microprocessors. The BP metric is similar to utility metric 
defined by Romanescu et al. [37]. If there are k different 
frequency bins having frequency ratings f1, f2, …, fk with 
each of them having yields n1, n2,…,nk; the total batch-
performance is given by: 

BP = Σk (fk  x nk) (2) 

This BP formula can be extended in two ways. First, if 
an architectural scheme has an impact on the CPI, the 
change can be captured by incorporating it into the 
equation. Specifically, if a scheme achieves an IPC of i1, i2, 
…, ik for each bin, the new batch performance will be 
calculated by: 

BP = Σk (fk  x nk x ik) (3) 

Finally, to find the average performance, this sum is 
divided to the number of manufactured chips. We have 
calculated the average BP for the base cache architecture 
and our proposed schemes based on Equation 3. Table 3 
presents the increase in BP with our architectural schemes. 

Table 3. Increase in batch performance for various 

cache-architectures 

 
A close look at Table 3 implies that the increase in 

batch performance is roughly linear with respect to the size 
of the SC. However, when the SC-4 and SC-8 architectures 
are compared, we see that the percentage improvement in 
revenue can increase by over 2.9x (Table 2). These results 
show that optimizing for performance alone may lead to 
different conclusions when compared to optimizing for 
revenue/profit along with performance. Hence, these results 
motivate the use of revenue/profit when making 
architectural decisions. 

8. CO'CLUSIO'S 
Efficient binning under process variations has become a 

significant challenge for chip manufacturers. A 
considerable amount of effort is being made to save chips 
from excessive delay and market them properly to increase 
the profit margin. In this paper, we introduced a new cache 
architecture called the Substitute Cache (SC), which is 
aimed at maximizing the revenue obtained from a particular 
line of chips with the same process technology. Our scheme 
has no performance overhead and works by storing critical 
words of the data array in a separate structure. Extra 
circuitry needed for this technique is minimal and the 

modified L1 cache augmented with SC has no impact on 
the system performance. Moreover, to evaluate our 
architectural technique in the context of profit, we 
introduced models for estimating the price of processors 
from their architectural configurations and showed that the 
estimation error rates are below 2% on average. Based on 
these models, we showed that the most aggressive SC 
scheme increases chip revenue by 13.1%. 
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