

Evaluating the Effects of Cache Redundancy on Profit

Abhishek Das+, Berkin Ozisikyilmaz+, Serkan Ozdemir+, Gokhan Memik+, Joseph Zambreno∗ and Alok Choudhary+

+Electrical Engineering and Computer Science Department
Northwestern University

Evanston, IL USA
{a-das, berkin, s-ozdemir, g-memik,

a-choudhary}@northwestern.edu

*Electrical and Computer Engineering Department
Iowa State University

Ames, IA USA
zambreno@iastate.edu

ABSTRACT

Previous works in computer architecture have mostly neglected

revenue and/or profit, key factors driving any design decision. In

this paper, we evaluate architectural techniques to optimize for

revenue/profit. The continual trend of technology scaling and sub-

wavelength lithography has caused transistor feature sizes to

shrink into the nanoscale range. As a result, the effects of process

variations on critical path delay and chip yields have amplified. A

common concept to remedy the effects of variations is speed-

binning, by which chips from a single batch are rated by a

discrete range of frequencies and sold at different prices. An

efficient binning distribution thus decides the profitability of the

chip manufacturer. We propose and evaluate a cache-redundancy

scheme called substitute cache, which allows the chip

manufacturers to modify the number of chips in different bins.

Particularly, this technique introduces a small fully associative

array associated with each cache way to replicate the data

elements that will be stored in the high latency lines, and hence

can be effectively used to boost up the overall chip yield and also

shift the chip binning distribution towards higher frequencies. We

also develop models based on linear regression and neural

networks to accurately estimate the chip prices from their

architectural configurations. Using these estimation models, we

find that our substitute cache scheme can potentially increase the

revenue for the batch of chips by as much as 13.1%.*

Keywords: Device Variability, Process Variations, Cache

Architecture, Profit and Revenue, Fault-tolerance.

1. I'TRODUCTIO'

The research literature is filled with architectural
optimizations that seek to improve various design goals
such as performance, power consumption, reliability, and
security. However, the evaluation of these concepts tends to
neglect one of the key factors driving any chip
manufacturing decision: a company's bottom-line of
revenue or profit. This shortcoming is understandable, as
the relationship between any design metric and profit is
hard to measure. For example, an optimization that
improves performance by 10% will increase profit if a) this
increase is valuable/desirable to the consumers, b) the cost
of re-engineering can be amortized over the lifespan of the
chip, and c) consequent changes in other design factors do

*
This work was supported in part by NSF grants CNS-0551639, IIS-
0536994, CCF-0747201, CCF-0541337, and OCI-0724599; DoE
CAREER Award DEFG02-05ER25691; and by Wissner-Slivka Chair
funds.

not decrease the value to the consumers. Therefore, it may
not be possible to estimate the impact of an architectural
optimization on revenue precisely. However, in this paper
we will show that we can make accurate estimations on
relative impact of different architectural configurations on
revenue, and argue that these estimations should be
considered during the design of the processor architectures.

 There are two important aspects of profitability: cost
and revenue. To increase profit, one could reduce the cost.
Chip yield is one obvious scope for optimization in
nanoscale processors [30], as the continuing downward
scaling of transistor feature sizes has made fabrication
considerably more difficult and expensive [26, 28, 50].
However, to get a better understanding of the impact of an
architectural scheme, one needs to understand the effects on
revenue as well. For example, an approach that optimizes
solely for yield would not take into account the fact that
CPUs concurrently manufactured using a single process are
routinely sold at different speed ratings and prices. This
practice of speed-binning (Figure 1a) is usually performed
by testing each manufactured chip separately over a range
of frequency levels until it fails. As a result of the inherent
process variations, different processors fall into separate
speed bins, where they are rated and marketed differently.
Speed-binning thus helps the chip manufacturer create a
complete product line from a single design. Figure 1b
shows an example price distribution representing the Intel
Core Duo processor family [16]. Assuming a simplified
supply and demand model, the total chip revenue would be
the sum of the segmented areas under the yield curve.
Consequently, one way of increasing revenue would be to
shift the binning distribution in such a way that more
processors are able to fall into higher-priced bins.

Previous studies have shown that as transistors are
reduced in size, it becomes harder to control variations in
device parameters such as channel length, gate width, oxide
thickness, and device threshold voltage. Even in a relatively
mature technology like 90nm, these variations are known to
result in as much as a 30% change in chip frequency and
20x change in leakage power [5]. For sub 45nm
technologies, parameter variations are expected to be even
higher [49]. An expected continuation of this trend will
increase the impact of speed-binning on a manufacturer's
bottom-line.

In this paper, we propose a cache architecture that aims
to improve overall revenue and profit with post-fabrication
modifications. Particularly, in this scheme, the level 1 (L1)
cache is augmented with a small Substitute Cache (SC)
storing the most critical cache words whose latencies may
have been affected by process variations. With the help of
minimal control logic, the processor can fetch data from SC
instead of the main data array whenever a read/write access
is made to these critical words. Hence, access latency is
minimized with no extra cache misses.

 (a)

 (b)

Figure 1. (a) Frequency binning in modern microprocessors.
(b) Price vs. frequency of Intel Core Duo mobile family (as of

January 2008).

We concentrate on caches because they have been
shown to be the critical component under process variations
[15]. Also, our analysis (described in Section 4) reveals that
the critical path lies on the cache in 58.9% of the chips we
model. The reasons for this behavior are three-fold. First,
caches consume a relatively large percentage of chip area.
Second, L1 caches have a high frequency requirement and
consequently tend to utilize low threshold voltages [4].
Finally, according to the “FMAX” model introduced by
Bowman et al. [6], a unit which has a high ratio of
independent critical paths (Ncp) to critical path logic depth
(Lcp) will have a greater variance to mean ratio in its delay
distribution, leading to an increased variability due to
process effects. SRAM structures have a high number of
critical paths with low logic depths in those paths, making
them susceptible to process variations.

Although our technique will affect various design
stages, such changes remain minimal. Therefore, the
proposed technique will have minimal impact on cost.
Variable production costs will remain low, as the testing

phase can be incorporated into current binning processes.
On the other hand, the proposed scheme will have a
significant impact on the binning distribution. As we
describe in Section 7, we simulated the effects of process
variations on yield and binning distribution using SPICE.
We also develop models based on linear regression and
neural networks that can be used to estimate the price of a
chip using its architectural properties. Using the binning
results and our price estimation models, we show that
applying our SC scheme to current processor architectures
could lead to a potential 13.1% increase in revenue in the
most optimistic case.

The remainder of this paper is organized as follows. In
the following section, we perform a literature survey of the
related works. The details of SC scheme are then described
in Section 3. Section 4 talks about the methodology we
used for modeling and measuring the effect of process
variations on a representative processor architecture.
Section 5 describes how we model the binning strategy,
while Section 6 discusses the methodologies we developed
for price estimation. Experimental results detailing the
effect of our approach on binning distribution and revenue
are presented in Section 7. Finally, Section 8 concludes the
paper with a brief summary.

2. BACKGROU'D A'D RELATED WORK

Variability in process technologies has been extensively
studied. In this section, we present brief overviews of the
prior works that are proposed to mitigate effects of
parameter variations, ranging from architectural to circuit-
level techniques.
Cache Redundancy schemes:

Several cache redundancy schemes have been proposed [7,
18, 27, 39, 41]. These techniques have been/could be used
to reduce the critical delay of a cache. Victim caches [18]
are extra level of caches used to hold blocks evicted from a
CPU cache due to a conflict or capacity miss. A substitute
cache storing the slower blocks of the cache is orthogonal
to a victim cache, which stores blocks evicted from the
cache. Sohi [41] shows that cache redundancy can be used
to prevent yield loss, using a similar concept to our
proposed SC. Shivakumar et al. [39] introduce a new yield
metric and propose the utilization of redundant structures to
increase it. Similarly, techniques like sparing DRAMS and
Chipkill are used in Sun’s UltraSPARC T1 processor [7].
Cache redundancy is also present in commercial processors
like Itanium, which uses extra banks to improve fault
tolerance [27]. Finally, Romanescu et al. [38] propose
prefetching data into fast buffers to address Process
Variations in L1 caches as well as prioritizing critical
instructions to utilize fast registers/functional units.
Compared to these alternatives, our SC scheme introduces
considerably lower cost in terms of area and latency.
Circuit level techniques:

Previous works show that several circuit-level techniques
could be adopted to counter the negative effects of process
variations [5, 9, 12, 33, 36, 41]. The inter- and intra-die

Yield

loss
Bin 0 Bin 1 Bin 2

Yield

loss

Frequency

Bin 3

#
 o
f
c
h
ip
s

chips lost

for high

leakage

chips

lost for

high

delay

Bin 4

241 241

294

423

637

0

100

200

300

400

500

600

700

1.66 1.83 2 2.16 2.33

P
ri

ce
 (

$
)

Frequency (GHz)

process variations and their effects on circuit leakage is
studied in detail by Rao et al. [35]. In another work, Rao et
al. [34] analyze the impact of process variations on circuit
leakage and propose methods to reduce them. Most of these
techniques focus on analyzing the design statistically or by
using static timing analysis, and then modifying the parts of
the circuits that are most susceptible to variations. Liang et
al. have proposed a variation-tolerant 3 transistor, 1 diode
on-chip dynamic memory as a substitute for the traditional
6 transistor SRAM [24]. Many gate-sizing strategies have
been used on the critical or near-critical regions of the
circuit in order to reduce the effective latency [10, 51].
Although these techniques increase the overall yield, no
analysis of the impact on binning has been done.

Performance binning has also been discussed as a means
for increasing yield [5, 12, 36]. Datta et al. [12] propose a
novel approach of changing the effective speed-binning by
gate sizing, and thus increasing the profit. Unlike our
schemes, most of their analyses are based on statistical
estimations of yield, and the optimizations are for high-
level synthesis. Kim et al. [20] have studied the effects of
cache size on leakage and analyzed the tradeoff on access
time when multiple threshold voltages are used for L1 and
L2 caches. In contrast, we perform the replication within
the cache and also present a detailed implementation.
Variation-tolerant architectural schemes:

Ozdemir et al. [30] present microarchitectural schemes that
improve the overall chip yield under process variations to
as much as 97%. The authors have shown how powering
down sections of the cache can increase the effective yield.
Our work, on the other hand encompasses extra redundancy
in L1 caches to facilitate efficient binning and profit
maximization. Besides, our model includes the entire
processor pipeline, as opposed to only L1 caches.
Techniques for mitigating the effects of process variations
by using variable latency register files and execution units
have been proposed by Liang et al. [23]. In a recent work,
Liang et al. [25] have studied the effectiveness of post
fabrication techniques like voltage interpolations and
variable latency in different pipeline loops. Besides,
Agarwal et al. [1] propose a scheme that prevents yield loss
due to failures in the SRAM cells of the cache. Their
approach is mostly based on Built-In Self-Test (BIST)
circuitry and the cache optimizations are concentrated
towards yield maximization. Teodorescu et al. [46] use
variation-aware instruction scheduling and power
management to reduce the overall energy delay product and
increase throughput of chip multiprocessors. Tiwari et al.
[48], on the other hand, propose ReCycle to balance the
delay variations between different pipeline stages due to
process variations by utilizing a skewed clock. This way,
they achieve a processor clock frequency that is equivalent
to the average frequency of all pipeline stages instead of the
lowest one. They also propose a method to convert the
slack in faster stages into power savings. Lee et al. [22]
discusses a new metric involving yield, area, and
performance for evaluating the tradeoff between yield and

performance in caches. In comparison to the
abovementioned works, our efforts are directed towards
efficient binning and revenue optimization for set
associative caches. In addition, most of the previous
techniques listed above have performance implications, i.e.,
different chips in a frequency bin may exhibit varying
performance levels (due to a variation in the IPC).
However, our SC scheme provides the same performance
(constant IPC) for all the chips in a frequency bin.
Other works:

There has been plethora of studies analyzing cache resizing
for different goals such as minimizing power consumption
or increasing performance. Selective Cache Ways by
Albonesi [2] is one of the first works in cache resizing and
optimizing energy dissipation of the cache. Flautner et al.
[13] have proposed a drowsy cache architecture, which
takes into account the state of a cache line and
correspondingly changes its mode. The concept of cache
decay, on the other hand, exploits the usage information of
each cache line in order to turn them off when they are not
in use to save leakage power [19]. Yang et al. [52] have
analyzed the effects of various cache resizing schemes on
reducing the energy-delay of deep submicron processors.
Powell et al. [32] have introduced the Gated-Vdd approach,
by which the supply voltage is turned off in the unused
SRAM cells to save leakage energy. Finally, Tadas and
Chakrabarti have developed a scheme in which the adjacent
micro-blocks of a cache are resized depending on the hit
and miss rate [44]. All these resizing schemes are very
effective in reducing the cache leakage and energy, but to
the best of our knowledge no resizing schemes have been
applied to alter speed-binning and profit.

3. THE SUBSTITUTE CACHE SCHEME

In this section, we describe our proposed cache
redundancy technique called Substitute Cache (SC), which
masks the effects of process variations by including extra
storage in the L1 cache. Particularly, in this scheme each
way of the L1 cache is augmented with a fully associative
data array, which stores the most critical lines as a result of
process variations. Once the SC holds high-delay words,
they are never accessed from the main array, allowing the
L1 cache to run at higher frequencies. In addition to shifting
more chips towards high-priced bins, this scheme also
reduces yield losses due to delay violations.

3.1 Architecture

The core idea behind the architecture of SC is to
augment each cache way with extra storage that will be
used if certain locations in the main cache exhibit long
latencies. In such cases, the data will be read from the SC,
and chips from the lower frequency bins can now be placed
in higher frequency bins, because the high latency lines are
not used. Moreover, some of the chips that would have
failed due to high access latencies will be added to the
overall yield.

The anatomy of the proposed cache architecture is
shown in Figure 2. SC is highlighted within the dashed
block. For the sake of clarity, we detail the use of SC on a
single cache way; however, each cache way has a similar
SC associated with it. SC is similar to a fully-associative
cache structure. In our study, its size is either 4 or 8 entries.
As opposed to the L1 cache, SC has smaller line sizes.
Particularly, it consists of only 64-bit entries, because it
stores words of the main data array. Instead of storing the
whole cache line, only the critical word in the line is stored
in the SC, because our study reveals that the words with
maximum access latency are always the ones that are
furthest from the decoder. As a result, by just storing these
words, we obtain the same improvement in cache frequency
while keeping the SC size small. However, if necessary,
words in other locations can also be placed into the SC. An
SC is divided into 2 components: an index table and a data
array. Note that the SC uses the column multiplexers and
output drivers of the main array. Whenever a cache word is
placed in the data array of the SC, index bits of its address,
which is equal to the sum of the row and column addresses
(10 bits in our architecture) are placed in the index table of
the SC. For example, if we decide to place the word with
index value 0x044 to the SC, we will have an entry in the
index table with value 0x044. Note that this word would
have resided in the row with index 0x8 in the main array
with the column address being equal to 0x4. In case of a
data access, the index table is checked with the index bits of
the address. A match implies that the data will be read from
the SC instead of the main array. Specifically, if the index
of the address is found in the SC index table, the contents of
the corresponding data array row are forwarded to the
column multiplexers of the main array. The additional
control logic shown in Figure 2 will then set the column
multiplexers correctly. If the index of the address does not
match any index table entries, the main array will be
accessed. Note that, even if there is a match in the index
table, the access can still miss in the cache if the
corresponding tag does not match. However, the tag
structure is not affected by the addition of the SC. If there is
a miss due to tag mismatch, we will still output the data,
which will be ignored because the tag will indicate the
miss. Overall, the tag match/mismatch is independent of the
SC design. We only care whether the corresponding parts of
the address match with the values stored in the index table
so that we can decide whether to supply the data from the
main array or the SC.

Now let us consider a typical read operation in the main
array. The row address part of the index field selects the
appropriate row in the data array through the row decoder.
The appropriate word is then chosen by the column
multiplexers with the help of the column address bits of the
index. One of the key observations is the difference
between the times taken by each of these steps. Particularly,
the inputs to the column multiplexers are available at the
same time the decoder is accessed. However, the signals
provided to the decoders will traverse through the decoder

logic, the word lines, the memory cell, the bit lines, and the
sense amplifiers before it will reach the column
multiplexers. We utilize this imbalance to operate our SC
structure. As soon as the address is available, we start
accessing the SC index table. If a hit is recorded, we change
the input to the column multiplexers to 0. In other words,
we forward the output of the SC as the output of the cache.
If, on the other hand, there is no match in the index table,
we will set the column multiplexer to the original position
indicated by the column address. If the time to check the
index table in the SC is less than the delay of the data array
(the sum of the delays of the decoder, word line, memory
cell, bit line, and sense amplifier), then, this operation does
not cause any delay overhead on the cache, because while
the data array is accessed, we would have already
determined the hit/miss in the SC index table. As we will
discuss in the next section, this is indeed the case. Hence,
the addition of the SC structure does not cause any
significant increase in the critical path latency of the cache.

Figure 2. One cache way of a 32KB 4-way set associative L1
cache with Substitute Cache. Column muxes are shaded as

they select data from 9 inputs as opposed to 8 inputs

Similar to a read operation, a write access (either a store
operation or write operation during the replacement of a
cache line) selects the appropriate index using the row and
column addresses and updates the selected word in the
cache way selected by the way-select logic. For L1 caches
augmented with SC, the index of the data word to be
written is searched within the SC index table. If there is a
match, the new data word is loaded in the data array of the
SC. We must also note that the addition of the SC does not
impact the tag (and any related operation including snoop
requests).

3.2 Design Issues

Using CACTI 3.2 [40], we found the total access
latency for a 8-entry SC to be 0.28 nanoseconds; whereas
the latency for the main array (one set of the 32KB 4-way
set associative cache) is 0.40 nanoseconds. Therefore, the
SC access can be completely overlapped with the main
array access and will not cause an increase in the cache

R
o
w
 D
e
c
o
d
e
r

Tag Index Off

Substitute

Cache L1 Data Banks

64-bit Data Word

DataSelect

(Index match)

Row

Address

Column
Address

0

10

Data
Select
Mux

7

3

1019 3

Data array

128 x

128 b

16

128

64

16 b 16 b 16 b 16 b

Index
Table

10

4

access latency. The only change in the latency of the main
array is due to the changes in the column multiplexers.
Because of the data forwarding from the SC, the column
multiplexers (straddled in Figure 2) have an additional input
coming from the SC data array. The analysis with our
SPICE model reveals that this overhead is 0.34% of the
overall cache access latency. We include this overhead
during our binning analysis in Section 7.1. Note that there is
no change of CPI for the SC scheme, as the effective cache
size remains unchanged. Another point that needs to be
mentioned in this context is the susceptibility of the SC to
process variations. For this work, we neglect any such
impact on the SC since it is much smaller than the L1 cache
and its latency is significantly lower, hence it is unlikely to
become the critical component.

One of the key components during the operation of SC
is the index table. After the chip is manufactured, a Built-
In-Self-Test (BIST) is performed where n most critical
cache indices are chosen and placed in the SC index table.
Note that these values are extracted only once during the
lifetime of the chip and never changed. Therefore, they can
be extracted by the BIST and become part of the booting
process, where they are read from a permanent location and
placed into the index table every time the processor boots.
It should be noted that the size of the SC dictates the area
and power overhead of this approach. With the help of
SPICE and CACTI, we found the total power overhead to
be 6.0% and 6.5% of the main array for a 4- and 8-entry
SC, respectively. These overheads are included during the
calculations of the yield losses. The area of the cache
increases by 3.7% and 4.1% for the 4- and 8-entry SC,
respectively.

4. PROCESS VARIATIO'S A'D ARCHITECTURE

MODELI'G

This section presents a description of the processor and
cache models we use in this paper and describes how we
model process variations.

4.1 Processor Model

To model a processor core, we have taken into account
the 7-stage pipeline in the Alpha-21264 (EV6) architecture.
The main critical components of our processor are the Fetch
Unit, the Rename Unit, the Issue Queue, the Integer
Execution Unit, the Register File, and the L1 Data cache.
All these components are modeled in SPICE using the
45nm BPTM technology models [8]. The fetch and rename
units are modeled as a combination of 16 fan-out of four
(FO4) gates. The issue queue is based on that of the Alpha
EV6 and has 20 entries. The register file is an 80-entry
structure with 4 read and 2 write ports. The integer
execution unit is modeled using the netlist generated after
synthesizing the corresponding component in the Sun
OpenSPARC code [43]. Our L1 cache is a 32 KB 4-way set
associative cache, the model of which is based on the
architecture described by Amrutur and Horowitz [3].

Figure 3 highlights a cache way for our base cache
model. Each of the 4 ways is divided into 4 banks. Each
bank has 128x128 cells or storage bits. Thus, each bank has
exactly 128 rows (i.e., lines) and can hold 2-KB of data.
The bitline delays are reduced by partitioning the bitline
into two. We must note that our SPICE models are based on
highly optimized circuit descriptions (e.g., the cache model
is based on CACTI 3.2). To account for the effects of
submicron technologies on circuit behavior, we added
coupling capacitances at three places in the cache: between
the lines in the address bus from the driver, between
parallel wires in the decoder, and between bit-line and bit-
line bar. Furthermore, these lines as well as global and local
word lines are replaced by distributed RC ladders
representing the local interconnect wires inside the cache.
Although the L2 cache is another SRAM structure within
the processor core where process variations can have a
significant impact according to the FMAX theory, we
omitted this component in our study because it doesn’t lie
on the processor critical path (and is not a part of the
processor pipeline) so other techniques like high-threshold
transistors or NUCA caches can be utilized to mitigate the
effects of process variations on them.

Figure 3. A single cache way for a 4-way set associative L1
cache

4.2 Simulating Process Variations

Process variations are statistical variations in circuit
parameters like gate-oxide thickness, channel length,
Random Doping Effects (RDE) etc., due to the shrinking
process geometries [5, 29]. They mainly consist of die-to-
die (D2D) and within-die (WID) variations. D2D variation
refers to the variation in process parameters across dies and
wafers, whereas WID variation is the variation in device
features within a single die, causing non-uniform
characteristics inside a chip. Independent of their type,
process variations generally fall into two categories:
spatially-correlated variations where devices close to each
other have a higher probability of observing a similar
variation level, and random variations causing random
differences between devices within a die.

To measure the impact of process variations on the
delay and leakage of our cache model, we considered 5
most important variation parameters. These are metal
thickness (T), inter-layer dielectric thickness (ILD or H),
line-width (W) on interconnects, gate length (Lgate) and
threshold voltage (Vt) for the MOS devices. The statistical

d
e
c
o
d
e
r

address

16

64

global word linelocal word line

64 cells

128
cells bitline partition

64 cells

128 cells

distributions of these parameters are based on limits given
by Nassif [28] and their statistical distribution (mean and
variation) are listed in Table 1.

Table 1. 'ominal and 3σ variation values for each source

of process variations modeled

Gate Length

(Lgate)
Threshold

Voltage (Vt)
Metal

Width (W)
Metal

Thickness (T)
ILD

Thickness (H)

'ominal

 Value
45 nm 220 mV 0.25µm 0.55µm 0.15µm

3σ -

Variation [%]
±10 ±18 ±33 ±33 ±35

Figure 4. Monte Carlo SPICE simulation framework

We model both systematic and random process
variations for our processor model. To take into account the
spatial correlation we use a range factor (φ) in the two
dimensional layout of the chip. Thus, each process
parameter can be expressed as a function of its mean (µ),
variation (σ), and the range (φ) values. For the sake of
simplicity we use the following inverse linear function to
minimize computational time.

Ci = 1 - di/ϕ (1)

Equation 1 describes the spatial correlation function we
used for our framework. If two points xi and yi on a 2D
plane are separated by a distance di, then the spatial
correlation factor Ci between them can be thought of as an
inverse linear function involving φ and di. Note that there is
no correlation between two spatial points, which are φ units
or more apart.

With this background, we have generated a spatial map
of various parameter values using the R statistical tool [47].
This spatial map indicates that φ is a measure of
randomness; a higher φ will mean higher correlation and
vice versa. To extract the parameter values corresponding
to the different functional units, we use the floorplan of
Alpha EV6 processor. In other words, the process variation
values for the chip were generated first, followed by the
extraction of the values that correspond to the particular
positions of the studied components from this modeled
chip. Note that all our components consist of other smaller
components. For example, to model the cache, we pick
different process variation values for the decoder, each
cache line, pre-charge logic, etc. In addition to the spatial
variation, we also model random variations in the process
parameters. To model them, we chose process parameters

randomly from a uniform distribution. Since spatially
correlated process variations is found to be the dominating
factor [14], our framework assumes a higher percentage of
spatially correlated variation compared to random
variations. We set this ratio as 70% to 30% for correlated
and random variation, respectively.

Figure 5. Distribution of processor critical paths to modeled
architectural units.

Figure 4 shows the Monte Carlo simulation framework
used in our parameter generation and extraction
experiments. The effects of the process variations on the
critical path distribution of the modeled processors are
shown in Figure 5. Note that the expected critical path
latency of each component was identical before introducing
the variations. The results reveal that 58.9% of the critical
paths lie on the L1 data cache. This also validates our
decision of focusing on the L1 cache.

5. MODELI'G SPEED BI''I'G
In order to estimate the total revenue from a set of chips,

we need to know the output of the speed-binning process.
This section describes our methodology for estimating the
binning outcome. In the next section, we describe how the
binning outcome can be used to calculate the revenues.

Figure 6. 'ormalized leakage and delay distribution scatter
plot for simulated chips showing the binning for 5-bin

strategy. B0 through B4 represent the bin numbers from

lowest to highest frequency

In order to effectively estimate the binning distribution
and demonstrate the effect the process variations on it, we
chose a set of 1000 chips for our analysis. Using the process
parameters described in Section 4, their delay and leakage
current values are obtained from SPICE simulations for the
cases when φ=0.3 and φ=0.5, which in turn are used to

Parameter
Generation

HSPICEFrequency
Binning

Parameter
Extraction

Floorplan

R-tool

Scripts

1000 Chips

45nm tech

Architecture
Models

Profit

Analysis

0

2

4

6

8

10

12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Sigma variation in delay

N
o
rm

a
li
z
e
d
 l
e
a
k
a
g
e

Binning Range

B 4 B 3 B 2 B 1 B 0

Leakage Loss

Delay Loss

RegFile

18%

IsQ

11%

Alu

12%

Cache

59%

Distribution of Critical Paths

determine the binning and yield loss. The cut-off for delay
has been set to be the sum of the mean (µ) and standard
deviation (σ) of the delay of the simulated chips (i.e., µ +
σ), whereas the leakage cut-off has been set to be three
times the mean leakage value. These cut-off limits are
based on previous studies [34].

Most processor families are available in discrete
frequency intervals. For example, the frequency for the
Intel Pentium 4 processor family starts with 3.0 GHz and
reaches 3.8 GHz with equal intervals of 0.2 GHz [16].
Moreover, most commercial processors are marketed with 5
or 6 different frequency ratings. Similarly, our binning
methodology assumes equal binning intervals. This interval
is chosen depending on the number of bins to be generated.
Regardless of the number of bins, any chip that has a delay
greater than the ‘µ + σ’ limit is referred to as a delay loss.
Chips that satisfy this criterion are used for binning into
discrete bins starting from the slowest to the fastest bin.
Within each bin, the chips that are lost due to excessive
leakage (exceeding the limit of 3x mean leakage) are
referred to as the leakage loss. Figure 6 shows the
distribution of the normalized leakage power consumption
versus the distribution of processor latencies for the base
case (i.e., without any architectural optimizations) for the
1000 simulated chips for φ value of 0.5. It also shows the
binning for a strategy that generates 5 distinct bins. In this
case, the chips that lie within ‘µ + σ’ and ‘µ + 0.5σ’ delay
values are put into Bin0 (denoted by B0 in Figure 6). These
correspond to the slowest chips. Similarly, chips with
latencies within ‘µ + 0.5σ’ and ‘µ’ are assigned to Bin1.
The intervals for the remaining bins are set following the
same ‘0.5σ’ interval. Note that the highest bin consists of
the chips with delay values less than ‘µ – σ’. Using a
similar methodology, we model a strategy that generates 6
bins. In this case, we reduce the binning interval to ‘0.4σ’.
Hence, Bin0 consists of chips that fall between ‘µ + σ’ and
‘µ + 0.6σ’, Bin1 consists of chips that fall between ‘µ +
0.6σ’ and ‘µ + 0.2σ’, and likewise.

6. PRICE MODELI'G
The second important step in our analysis is to calculate

the revenue from a set of chips once the number of chips in
a given bin distribution is known. To achieve this, we have
to know the price of the chips for any given bin. Then, once
the price of a chip in a particular bin is known, we can
calculate the total revenue by multiplying the number of
chips in that bin with the corresponding price level.

Our goal in this section is to develop a model that can
predict the price of a chip given its architectural
configuration (including its frequency). However, we must
note that we do not need absolute prices. Particularly, we
are interested in the change in the revenue for a bin
distribution change rather than estimating the gross
revenue. Thus, a model that provides the relative prices of
chips is sufficient to understand the impact of architectural
configurations on revenue.

To develop our models, we used historical pricing
information of different Intel processor families [16].
Specifically, we first generate our input data, which
includes a record for each of the 114 available processors.
These records include information about the L1 data and
instruction cache sizes, L2 cache size, L2 cache being
shared or not, L3 cache size, processor frequency, front side
bus frequency, release date, process generation, address
space, socket type, wattage, number of cores, and threads
per core. Then, a subset of this input data is used to train
regression and neural network models. The remaining
elements are used to estimate the accuracy of the models
(i.e., validation). Then, based on this estimation, we choose
a specific model to predict the prices of a new architecture.

Regression analysis is a statistical technique for
investigating and modeling the relationship between
variables [45]. We have n observations; y=y1,…,yn called
the response variables, and xi=xi,1,…,xi,p for i=1..n that are
predictor or regressor variables. The simplest linear
regression is of the form y=β0+β1x+ε. In this formula β
represents the coefficients used in describing the response
as a linear function of predictors plus a random error ε. In
our input data set we have multiple predictor variables,
causing the response y to be related to p regressor/predictor
variables. The model then becomes y=β0+
β1x+β2x+…+βpx+ ε, where y, and x are vectors of n
numbers (observations), and is called multiple linear
regression model. This model describes a hyperplane in the
p-dimensional space of the regressor variables xi. We used
the linear regression model inside the SPSS Clementine tool
[42]. In Clementine, there are four available methods for
creating the linear regression models: Enter (LR-E),
Stepwise (LR-S), Backwards (LR-B), and Forwards (LR-
F).

Neural networks or more accurately, Artificial Neural
Networks (ANN), have been motivated by the recognition
that the human brain processes information in a way that is
fundamentally different from the typical digital computer.
A neural network, sometimes called multilayer perceptron,
is basically a simplified model of the way the human brain
processes information. It works by simulating a large
number of interconnected simple processing units that
resemble abstract versions of neurons. The multilayer
perceptron (feedforward ANN) are multivariate statistical
models used to relate p predictor variables x1,…,xp to q
response variables y1,…,yq. The model has several layers,
each consisting of either the original or some constructed
variables. The most common structure contains three layers:
the inputs which are the original predictors, the hidden layer
comprised of a set of constructed variables, and the output
layer made up of the responses. A hidden unit has an
activation function that can be linear, hard limit, sigmoid, or
tan-sigmoid function. The model is very flexible containing
many parameters and it is this feature that gives a neural
network a nearly universal approximation property. The
usual approach to estimate the parameters is to estimate
them by minimizing the overall residual sum of squares

taken over all responses and all observations. This is a
nonlinear least-squares problem. Often back-propagation
procedure, which is a variation of steepest descent, is used.

We used the SPSS Clementine tool to build the NN
models. The neural network node provides six different
training methods: Quick (''-Q), Single (''-S) (modified
version of Quick), Dynamic (''-D), Multiple (''-M),
Prune (''-P) and Exhaustive prune (''-E) method, which
is related to the NN-P method.1‡

During our analysis we have grouped the list of
processors into three different categories: desktop, mobile,
and server. Due to space limitations we only present results
for desktop processors; the remaining processor types
provide similar results. Rather than using the raw input data
directly, we divide our database into ten groups. We
randomly leave one group out (test data), and then use the
remaining nine groups for model creation and validation,
i.e., groups 1 through 8 are used for model creation and
group 9 (validation data) is used to estimate the error of the
created model; groups 2 through 9 is used for model
creation and group 1 (validation data) used for error
estimation and so on. Using these nine models, we
approximate the error rate by finding the error during the
prediction of the test and validation groups. The model with
the lowest error is used for estimating the prices. For our
input set, the minimum error rate is achieved with the NN-
Q method, which provides 1.9% average error rate for the
processors in the test data. NN-Q includes 11 out of the 14
predictor variables. The important factors used in the neural
network model (with their relative importance presented in
parenthesis) are front side bus frequency (0.34), clock
frequency (0.30), number of cores (0.22), threads per core
(0.14), L2 cache size (0.09) and the release date (0.07),
where a relative importance of 0 denotes that the field has
no effect on prediction and relative importance of 1.0
denoting that the field completely determines the
prediction. We have to note that these importance factors do
not need to add up to 1, i.e., the sum can be greater than 1.
In our analysis, we generally observe that neural networks
outperform the regression methods. One of the reasons is
that the price curves are usually sublinear in lower
frequency bins and there are rapid increases as we move to
higher processor frequencies. The neural network models
capture these non-linearities effectively.

These results show that using the subset of the
processors available, we can create a very accurate model
presenting the relation between the processor properties and
its price. In other words, they show that there is a
significant correlation between the price of the processor
and its configuration, even though markets are also
influenced by the preferences of the consumers interacting
in it. The existence of such a relation is not surprising,
though, as prices of chips are largely determined by their
value to the consumers. This value, in turn, depends highly

‡1 Note that we have made our prediction models available for public use
[31].

on the performance of the chip, which is strongly tied to its
configuration/properties (e.g., performance of a processor
can be accurately predicted from its configuration [17, 21]).
This forms a link between the configuration of a processor
and its price/value. Our models can unveil this relation and
accurately estimate the price of a processor from its
architectural configuration. We use these models to
calculate the revenue results presented in the next section.

7. EXPERIME'TAL RESULTS
In this section, we describe the analysis of our proposed

schemes. Section 7.1 describes how our schemes change the
outcome of the speed-binning, while Section 7.2 analyzes
the impact of these changes on the revenue.

 (a)

 (b)

Figure 7. Binning with (a) 5-bin and (b) 6-bin strategy for SC-
4 and SC-8 schemes.

7.1 Binning Results

This section presents the binning results based on the
binning methodology described in Section 5. The effects of
the SC scheme are summarized in the next subsection. To
find how the chips are placed into different bins, we first
analyze the base architecture and find the mean and

0

50

100

150

200

250

300

bin0 bin1 bin2 bin3 bin4

BASE SC-4 SC-8

0

50

100

150

200

250

300

bin0 bin1 bin2 bin3 bin4 bin5

BASE SC-4 SC-8

standard deviation of the 1000 chip delays. Then, based on
these values, the boundaries for each bin are set. We then
apply the proposed SC technique to find a new binning
distribution; the resulting changes are used to calculate the
revenue.

Figure 7a and Figure 7b show the binning results for the
base, SC-4, and SC-8 schemes for 5-bin and 6-bin
strategies, respectively. To understand these figures,
consider the leftmost bar for each bin. This bar corresponds
to the number of chips in that bin for the base cache
architecture. The bars next to it (i.e., the one in the middle)
represent the number of chips in that bin when SC-4
scheme is applied. The bars on the right represent the
number of chips in the corresponding bin for the SC-8
scheme. In general, we see that cache redundancy can
successfully increase the number of chips in the higher bins.
For example, the number of chips in the highest bin (Bin4)
is increased by 23.2% using SC-8.

It is misleading to draw any conclusion about high-
frequency chip yield by simply considering the chips in the
highest bin. The gain in the highest bins for all the SC
schemes are accompanied by a reduction in the number of
chips in the lower bins. However, we must note that the
total yield is increased using these schemes. Specifically,
the total yield increases by 9.0% using SC-8 schemes (for
φ=0.5). However, since the SC is associated with a power
overhead there is yield loss due to power dissipation of the
extra data arrays. The SC-8 scheme causes an additional
10.3% loss of chips in the category of power-related
losses. In spite of this loss, the total yield increases for SC,
because it converts a high number of delay loss chips into
yield. Even though the total number of chips increases, the
schemes tend to move a larger number of chips towards
the higher bins. As a result, the chip counts in the lower
bins tend to decrease.

7.2 Revenue Estimation

This section describes the analysis of the total revenue
and the implications on profit. It is important to note that, in
all the following studies a simplistic market supply/demand
model is assumed where all fabricated chips can be sold at
predicted/predetermined price levels according to their
clock frequencies. Since a real-life demand model would
depend on various other factors, the resulting numbers
given in this section should be considered as potential
increase in revenue or profit. The binning data obtained in
the previous section is used in revenue calculation. The
chips that fall in the higher/faster bins after testing are sold
with higher prices than those lying in the lower/slower bins.
To have an estimate of this increased revenue, we use the
model that provides the highest accuracy among the models
studied in Section 6. Our architectural configuration is fed
into our price models to find the relative prices of the chips
in each bin. These relative prices are found to be 1, 1.03,
1.13, 1.39, and 2.84, for the Bin0 through Bin4 for the 5-bin
strategy and 1, 1.02, 1.09, 1.23, 1.63, and 4.00, for the Bin0
through Bin5 for the 6-bin strategy. Then, the number of

chips in different bins for the base case is multiplied with
their respective prices to calculate the revenue for the base
case. Using the same methodology, the revenue for SC-4
and SC-8 schemes are calculated based on their new
binning distributions. The relative change in revenue is then
calculated with respect to the revenue of the base case.

Table 2 presents the increase in revenue obtained using
different microarchitectural schemes. For φ=0.5, the SC-8
scheme increases the revenue by up to 12.60% and 13.14%
for the 5-bin and 6-bin strategies, respectively. Note that,
the SC scheme has a power consumption overhead and
hence causes some power-related yield losses. However,
despite the increase in the power consumption, we are
observing that the SC scheme tends to provide better
revenues because it is able to generate an elevated number
of chips in higher bins. We must note that the increase in
revenue is smaller compared to the increase in the number
of chips in the highest bin. Take for example the 6-bin case.
For SC-8, a 15.0% increase in the number of chips in the
highest (i.e., highest-priced) bin results in an increase of the
total revenue by only 11.4%. The main reason behind this
can be explained as follows. Due to the normal distribution
nature of the binning curve, the yield in the next-highest bin
is higher. This bin also has a high price gradient and hence
it constitutes a large fraction of the overall revenue. We
observe that the number of chips in this bin either reduces
or stays roughly constant. As a result, the increase in total
revenue is limited by a moderate percentage.

Table 2. Increase in revenue for various SC

configurations

Using the same revenue results, we can also estimate

profit. Let's assume that the cost per chip is identical, which
equals to 80% of the selling price of the lowest frequency
chip. This means, the cost of each chip is 0.8 in terms of our
relative price. Therefore, the total cost for 1000 chips (note
that even the chips that do not meet delay or leakage
constraints contributes to cost) is 800. We can then subtract
this amount from the total revenues and find the profit. If
we apply this methodology, we find that the SC-8 increases
the profit in the 5-bin strategy by 46.6%. For a chip
company, which invests billions of dollars in the
manufacturing process, this extra revenue can prove to be a
considerable margin. It should be noted we are neglecting
the extra testing costs needed for the new cache design.

Comparison with Performance: To compare the
effects of our architectural scheme on profit and
performance of the whole batch of chips, we use another
metric called batch performance (BP) [11]. Batch

Range

factor (ϕϕϕϕ)

Binning

strategy

Increase in revenue with respect

to the base architecture [%]

SC-4 SC-8

0.5
5-bin 5.03 12.60

6-bin 3.90 11.41

0.3
5-bin 6.98 12.00

6-bin 5.54 13.14

performance is calculated using the frequency of each
speed-bin and the chip yield (number of chips) in that bin.
Thus, batch performance corresponds to the overall
performance of the chips obtained from a single batch of
microprocessors. The BP metric is similar to utility metric
defined by Romanescu et al. [37]. If there are k different
frequency bins having frequency ratings f1, f2, …, fk with
each of them having yields n1, n2,…,nk; the total batch-
performance is given by:

BP = Σk (fk x nk) (2)

This BP formula can be extended in two ways. First, if
an architectural scheme has an impact on the CPI, the
change can be captured by incorporating it into the
equation. Specifically, if a scheme achieves an IPC of i1, i2,
…, ik for each bin, the new batch performance will be
calculated by:

BP = Σk (fk x nk x ik) (3)

Finally, to find the average performance, this sum is
divided to the number of manufactured chips. We have
calculated the average BP for the base cache architecture
and our proposed schemes based on Equation 3. Table 3
presents the increase in BP with our architectural schemes.

Table 3. Increase in batch performance for various

cache-architectures

A close look at Table 3 implies that the increase in

batch performance is roughly linear with respect to the size
of the SC. However, when the SC-4 and SC-8 architectures
are compared, we see that the percentage improvement in
revenue can increase by over 2.9x (Table 2). These results
show that optimizing for performance alone may lead to
different conclusions when compared to optimizing for
revenue/profit along with performance. Hence, these results
motivate the use of revenue/profit when making
architectural decisions.

8. CO'CLUSIO'S
Efficient binning under process variations has become a

significant challenge for chip manufacturers. A
considerable amount of effort is being made to save chips
from excessive delay and market them properly to increase
the profit margin. In this paper, we introduced a new cache
architecture called the Substitute Cache (SC), which is
aimed at maximizing the revenue obtained from a particular
line of chips with the same process technology. Our scheme
has no performance overhead and works by storing critical
words of the data array in a separate structure. Extra
circuitry needed for this technique is minimal and the

modified L1 cache augmented with SC has no impact on
the system performance. Moreover, to evaluate our
architectural technique in the context of profit, we
introduced models for estimating the price of processors
from their architectural configurations and showed that the
estimation error rates are below 2% on average. Based on
these models, we showed that the most aggressive SC
scheme increases chip revenue by 13.1%.

REFERE'CES
[1] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy, "A

Process-Tolerant Cache Architecture for Improved Yield in
Nanoscale Technologies," IEEE Trans. Very Large Scale Integrated

Systems, vol. 13, pp. 27-38, 2005.
[2] D. Albonesi, "Selective Cache Ways: On-demand Cache Resource

Allocation," in Intl. Symposium on Microarchitecture, Haifa, Israel,
pp. 248 - 259, Nov. 1999.

[3] B. S. Amrutur and M. A. Horowitz, "Speed and Power Scaling of
SRAM's," IEEE Trans. on Solid-State Circuits, vol. 35, pp. 175-185,
Feb. 2000.

[4] R. Bai, N.-S. Kim, D. Sylvester, and T. Mudge, "Total leakage
optimization strategies for multi-level caches," in ACM Great Lakes

symposium on VLSI, Chicago, Illinois, 2005.
[5] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V.

De, "Parameter Variations and Impact on Circuits and
Microarchitectures," in Proc. of the Design Automation Conference,
Anaheim, CA, pp. 338-342, 2003.

[6] K. A. Bowman and J. D. Meindl, "Impact of die-to-die and within-
die parameter fluctuations on the maximum clock frequency
distribution for gigascale integration," IEEE Journal of Solid State

Electronics, vol. 37(2), Feb. 2002.
[7] W. Bryg and J. Alabado, "The UltraSPARC T1 Processor -

Reliability, Availability, and Serviceability."
[8] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, "New

Paradigm of Predictive MOSFET and Interconnect Modeling for
Early Circuit Design," in Custom Integrated Circuits Conference,
Orlando, FL, pp. 201-204, 2000.

[9] S. H. Choi, B. C. Paul, and K. Roy, "Novel Sizing Algorithm for
Yield Improvement Under Process Variation in Nanometer
Technology," in Proc. of the Design Automation Conference San
Diego, CA, 2004, pp. 454-459.

[10] O. Coudert, "Gate Sizing: A General Purpose Optimization
Approach," in European Design and Test Conference, p. 214, 1996.

[11] A. Das, S. Ozdemir, G. Memik, J. Zambreno, and A. Choudhary,
"Mitigating the effects of process variations: Architectural
approaches for improving batch performance",presented at
Workshop on Architectural Support for Gigascale Integration
(ASGI), San Diego, CA, June 2007.

[12] A. Datta, S. Bhunia, J. H. Choi, S. Mukhopadhyay, and K. Roy,
"Speed Binning Aware Design Methodology to Improve Profit
Under Parameter Variations," in Proc. of the Conf. on Asia South

Pacific Design Automation, Yokohama, Japan, pp. 712-717, 2006.
[13] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge,

"Drowsy Caches: Simple Techniques for Reducing Leakage Power,"
in International Conference on Computer Architecture (ISCA),
Anchorage, Alaska, pp. 148 - 157, 2002.

[14] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos,
"Modeling Within-Die Spatial Correlation Effects for Process-
Design Co-Optimization," in Proc. of the Intl. Symposium on Quality

of Electronic Design, San Jose, CA, pp. 516-521, 2005.
[15] E. Humenay, D. Tarjan, and K. Skadron, "Impact of Parameter

Variations on Multi-Core Chips," in Workshop on Architectural

Support for Gigascale Integration, June 2006.
[16] Intel, "Intel Processor Pricing", Available at

http://www.intel.com/intel/finance/pricelist/processor_price_list.pdf?
iid=InvRel+pricelist_pdf, 2006.

[17] E. Ïpek, S. A. McKee, R. Caruana, B. R. d. Supinski, and M. Schulz,
"Efficiently exploring architectural design spaces via predictive
modeling," in Intl. Conf. on Architectural Support for Programming

Range factor

(ϕϕϕϕ)

Binning

Strategy

Increase in Batch Performance

with respect to the base

architecture [%]

SC-4 SC-8

0.5
5-bin 5.88 11.50
6-bin 5.58 11.19

0.3
5-bin 6.18 10.51

6-bin 6.10 11.59

Languages and Operating Systems (ASPLOS), San Jose, CA,
October 2006.

[18] N. P. Jouppi, "Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,"
ACM SIGARCH Computer Architecture @ews vol. 18, pp. 364 - 373,
1990.

[19] S. Kaxiras, Z. Hu, and M. Martonosi, "Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power," in
International Conference on Computer Architecture (ISCA),
Göteborg, Sweden, 2001.

[20] N. S. Kim, D. Blaauw, and T. Mudge, "Leakage Power Optimization
Techniques for Ultra Deep Sub-Micron Multi-Level Caches," in
International Conference on Computer Aided Design, p. 627, 2003.

[21] B. C. Lee and D. M. Brooks, "Accurate and efficient regression
modeling for microarchitectural performance and power prediction,"
in Intl. Conf. on Architectural Support for Programming Languages

and Operating Systems, San Jose, CA, October 2006.
[22] H. Lee, S. Cho, and B. R. Childers, "Exploring the Interplay of

Yield, Area, and Performance in Processor Caches," in International

Conference on Computer Design (ICCD), Lake Tahoe, CA, October
2007.

[23] X. Liang and D. Brooks, "Mitigating the Impact of Process
Variations on CPU Register File and Execution Units," in
International Symposium on Microarchitecture, Orlando, FL,
December 2006.

[24] X. Liang, R. Canal, G.-Y. Wei, and D. Brooks, "Process Variation
Tolerant 3T1D-Based Cache Architectures," in 40th International

Symposium on Microarchitecture, Chicago, IL, December 2007.
[25] X. Liang, G.-Y. Wei, and D. Brooks, "ReVIVaL: A Variarion-

Tolerant Architecture Using Voltage Interpolation and Variable
Latency," in Internation Symposium on Computer Architecture,
Beijing, China, June 2008.

[26] M. Miller, "Manufacturing-aware Design Helps Boost IC Yield",
Available at
http://www.eetimes.com/news/design/features/showArticle.jhtml;?art
icleID=47102054, Sep. 2004.

[27] S. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. Sullivan,
and T. Grutkowski, "The Implementation of the Itanium 2
Microprocessor," IEEE Journal of Solid State Circuits, vol. 37,
November 2002.

[28] S. R. Nassif, "Modeling and Analysis of Manufacturing Variations,"
in IEEE Conference on Custom Integrated Circuits, San Diego, CA,
pp. 223-228, May 2001.

[29] S. Natarajan, M. A. Breuer, and S. K. Gupta, "Process Variations and
their Impact on Circuit Operation," in International Symposium on

Defect and Fault Tolerance in VLSI Systems, p. 73, 1999.
[30] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou, "Yield-

Aware Cache Architectures," in International Symposium on

Microarchitecture, Orlando, FL, December 2006.
[31] B. Ozisikylmaz, A. Das, G. Memik, and A. Choudhary, "Processor

Price Prediction Models", Available at
http://www.ece.northwestern.edu/~boz283/Processor_Price_Predictio
n.html, 2008.

[32] M. Powell, S.-H. Yang, B. Falsa, K. Roy, and T. Vijaykumar,
"Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-
Submicron Cache Memories," in ACM/IEEE Intl. Symposium on Low

Power Electronics and Design, Rapallo, Italy, pp. 90-95, 2000.
[33] S. Raj, S. B. K. Vrudhula, and J. Wang, "A Methodology to Improve

Timing Yield in the Presence of Process Variations," in Proc. of the

Conf. on Design Automation, San Diego, CA, pp. 448-453, 2004.

[34] R. Rao, D. Blaauw, D. Sylvester, and A. Devgan, "Modeling and
Analysis of Parametric Yield under Power and Performance
Constraints," IEEE Des. Test, vol. 22, pp. 376-385, 2005.

[35] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester, "Statistical
Estimation of Leakage Current Considering Inter- and Intra-Die
Process Variation," in ISLPED '03, Seoul, Korea, August 25-27,
2003.

[36] A. Raychowdhury, S. Ghosh, S. Bhunia, D. Ghosh, and K. Roy, "A
Novel On-chip Delay Measurement Hardware for Efficient Speed
Binning," in Intl. Online Testing Symposium, France,

[37] B. F. Romanescu, M. E. Bauer, D. J. Sorin, and S. Ozev, "A Case for
Computer Architecture Performance Metrics that Reflect Process
Variability," Duke University, Dept. of ECE, May 2007.

[38] B. F. Romanescu, M. E. Bauer, D. J. Sorin, and S. Ozev, "Reducing
the Impact of Intra-Core Process Variability with Criticality-Based
Resource Allocation and Prefetching," in ACM International

Conference on Computing Frontiers, Ischia, Italy, May 2008.
[39] P. Shivakumar, S. Keckler, C. Moore, and D. Burger, "Exploiting

microarchitectural redundancy for defect tolerance," in International

Conference on Computer Design (ICCD), pp. 481-488, October
2003.

[40] P. Shivakumar and Norman Jouppi, "CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model," WRL Research Report.

[41] G. S. Sohi, "Cache Memory Organization to Enhance the Yield of
High Performance VLSI Processors," IEEE Trans. Comput., vol. 38,
pp. 484-492.

[42] SPSS_Inc, "SPSS Clementine version 11 ", Available at
http://www.spss.com/clementine,

[43] Sun, "OpenSPARC T1", Available at http://opensparc-
t1.sunsource.net/index.html,

[44] S. H. Tadas and C. Chakrabarti, "Architectural approaches to reduce
leakage energy in caches," in International Symposium on Circuits

and Systems,
[45] P. Tan, M. Steinbach, and V. Kumar, "Introduction to Data mining,"

Addison-Wesley, 2005.
[46] R. Teodorescu and J. Torrellas, "Variation-Aware Application

Scheduling and Power Management for Chip Multiprocessors," in
International Symposium on Computer Architecture (ISCA) Beijing,
China, June 2008.

[47] The_R_Foundation, "The R Project for Statistical Computing",
Available at http://www.r-project.org/,

[48] A. Tiwari, S. R. Sarangi, and J. Torellas, "ReCycle: Pipeline
Adaptation to Tolerate Process Variation," in International
Symposium on Computer Architecture, San Jose, CA, June 2007.

[49] J. W. Tschanz, "SUB 45nm Low Power Design
Challenges",presented at International Symposium on Quality
Electronic Design San Jose, CA, 2007.

[50] O. S. Unsal, J. W. Tschanz, K. Bowman, V. De, X. Vera, A.
González, and O. Ergin, "Impact of Parameter Variations on Circuits
and Microarchitecture " IEEE Micro, vol. 26, pp. 30-39,
November/December 2006

[51] S. Yang, M. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar, "An
integrated circuit/architecture approach to reducing leakage indeep-
submicron high-performance I-caches," in International Symposium

on High-Performance Computer Architecture, pp. 147-157, 2001.
[52] S. Yang, M. D. Powell, B. Falsafi, and T. N. Vijaykumar,

"Exploiting choice in resizable cache design to optimize deep-
submicron processor energy-delay," in International Symposium on
High-Performance Computer Architecture, pp. 151- 161, 2002.

