
• In EEF space both, the Koopman operator and NNs learn 
effective models for use in an MPC framework

• Evaluation: (1) Ability of learned model + MPC to 
generate policies that successfully achieve the desired 
goal state (2) Robust to limited training data (Table 1)

• The Koopman operator [2] is an infinite-dimensional 
linear operator that can capture all relevant information 
about any dynamical system

• Therefore, our learning method need not change 
depending on the linearity of the system kinematics

• Similar to the NN approach, we can then pair the linear 
models with linear MPC, and the nonlinear models with 
nonlinear MPC (e.g. iLQR [3], Sequential Action Control 
[4]), to generate policies online

• High-fidelity kinematic models can be used in the 
control of complex, high-dimensional robotic systems

• Errors in the kinematic model can result in many 
negative practical implications including instability of the 
system and unsafe control 

• One way to improve upon pre-defined kinematic models 
is to learn the model directly from data

• In particular, learning from demonstration allows us to 
compute kinematic models based solely on observations 
of the robotic system interacting with the environment

An Empirical Analysis of Methods for Learning Robot Kinematics from Demonstration
Alexander Broad1,2, Deepak Gopinath1,2, Todd Murphey1 and Brenna Argall1,2

1Northwestern University, Evanston, IL 60208 
2Shirley Ryan AbilityLab, Chicago, IL, 60611

Motivation

Preliminary Results

Discussion and Future Work
• We observe a trend that suggests the Koopman operator 

is able to learn useful kinematic models from less data 
compared to Neural Networks

• We expect to find larger differences as we further 
explore the higher-dimensional representation of the 
robot system
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Model Learning Approaches

• In this work, we explore a number of modern 
approaches that can be used to learn models for robot 
kinematics directly from demonstration data

• We are specifically interested in learning models which 
are actionable in a Model Predictive Control framework 
(Fig. 1)

• Therefore, the model should be differentiable and 
interpretable by standard MPC frameworks, i.e.

• We are particularly interested in how these approaches
1. handle low-data scenarios, and 
2. scale to high-dimensional data sources 

Hardware Experiments

• Experimental Platform: Kinova MICO (Fig. 2)
• Linear representation: End-effector (EEF)
• Nonlinear representation: Joint space 

Fig. 2. Kinova MICO

Neural Networks

Koopman Operator

• Neural Networks (NN) [1] are a general learning 
approach for modeling linear/nonlinear functions

• To model linear systems, we can define the neural 
network structure based on the state space of the 
system, e.g.

• However, this approach will not work for nonlinear sys.
• Instead, we must use more complex network 

architectures and nonlinear activation functions
• In this case, we can compute the desired A & B matrices 

by taking numerical derivatives of the learned model

Fig. 1. Pictorial description of the proposed workflow

Goal Position 1 Goal Position 2 Goal Position 3

# data pts. Koopman Neural Net Koopman Neural Net Koopman Neural Net

10

100

1000

~12,000

- Model + MPC succeeds                          - Model + MPC fails

Table 1.

• When a model learns the system dynamics, results 
along the performance metrics are comparable

• Metrics: Distance to goal, Control effort, Path Length


