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Abstract—Assistive robotic manipulators have the potential
to improve the lives of people with motor impairments. They
can enable individuals to perform activities such as pick-and-
place tasks, opening doors, pushing buttons, and can even
provide assistance in personal hygiene and feeding. However,
robotic arms often have more degrees of freedom (DoF)
than the dimensionality of their control interface, making
them challenging to use—especially for those with impaired
motor abilities. Our research focuses on enabling the control
of high-DoF manipulators to motor-impaired individuals for
performing daily tasks. We make use of an individual’s residual
motion capabilities, captured through a Body-Machine Inter-
face (BMI), to generate control signals for the robotic arm.
These low-dimensional controls are then utilized in a shared-
control framework that shares control between the human user
and robot autonomy. We evaluated the system by conducting
a user study in which 6 participants performed 144 trials of a
manipulation task using the BMI interface and the proposed
shared-control framework. The 100% success rate on task
performance demonstrates the effectiveness of the proposed
system for individuals with motor impairments to control
assistive robotic manipulators.

I. INTRODUCTION

People with motor impairments often have difficulty per-
forming activities of daily living. According to the Ameri-
cans with Disabilities report [1] over 12 million people need
assistance in their daily lives. This number grows to about
20 million people when asked specifically about dealing
with difficulties that stem from lifting and grasping tasks.
Assistive technologies like powered wheelchairs, walkers,
canes and prosthetic devices have greatly enhanced the
quality of life for individuals with disabilities. For those with
motor impairments that limit the functionality of their arms
or hands, robotic assistive manipulators have the potential
to enhance their independence. With assistive manipulators,
people with impairments can regain the ability to perform
daily living tasks which would otherwise be difficult without
the aid of a caregiver.

Pre-development surveys with potential users of robotic
manipulators indicate that reaching, grasping, and picking
up objects from the shelf and floor are tasks that are
highly prioritized [2]. Assistive manipulators can allow users
to independently perform activities such as pick-and-place

tasks, object manipulation, opening doors, pushing buttons
and/or light switches, and even personal hygiene and feed-
ing. However, robotic manipulators often have more degrees
of freedom (DoF) than the dimensionality of their control
interfaces, making them challenging to use—especially for
those with impaired motor abilities. Using a limited control
interface such as the sip-and-puff—whose control output
dimensionality is even lower (e.g. 1-D) than that of standard
joysticks—means manipulation tasks are often tedious, if not
impossible, to perform.

Some works offer the solution of making the control of
robotic manipulation fully or partially autonomous [3], [4].
Studies have shown that users prefer to retain as much
control as possible when working with assistive devices
[5]. Therefore, an attractive solution is to develop a shared-
control system where robotic autonomy is used to enhance
and aid the user’s input for manipulation tasks. A shared-
control paradigm has been shown to be effective in a
number of different areas such as obstacle avoidance and
navigation of powered wheelchairs [6]. Within the context
of robotic arms, explicit planning and control within a high
dimensional space is a formidable challenge that can become
feasible and learnable by allowing for a variable sharing of
control between the user and the robot.

Another challenge for people with motor impairments
is the rehabilitation process, which aims to allow patients
to keep their remaining motor function and possibly even
recover some lost function. To encourage the continued use
of muscular activity, a participant’s residual body movements
can be captured to provide control signals for an assistive
device. The question then becomes how to use these limited
signals to enable the control of a high-Dof robotic arm.

We propose a shared-control framework for assistive
manipulation that is built on the concept of autonomous
piecewise trajectory segments and the use of a body-machine
control interface, to address the aforementioned problems.
Our novel approach enables assistive manipulation for peo-
ple with motor-impairments with beneficial rehabilitation
effects. We demonstrate the feasibility of the proposed
control framework by conducting a user study. The experi-
ments were performed with the MICO robotic arm (Kinova
Robotics, Canada)—the research edition of the commercially
available JACO arm, which is designed specifically for use
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Fig. 1. Left: MICO manipulator from Kinova Robotics. Right: Our
Body-Machine Interface

within assistive domains (Figure 1, left). In the next section,
we review related work. Section III details the proposed
system and Section IV describes the evaluation approach
followed with experimental results. In the final section we
conclude with directions for future work.

II. RELATED WORK

Human-machine interfaces are rapidly developing tech-
nologies to restore function in people with motor impair-
ments. These interfaces are built upon the reorganization of
motor coordination patterns to control different devices such
as a prosthetic arm moving with EMG signals [7], driving a
wheelchair using tongue motions [8], compensatory strate-
gies in stroke survivors [9], and many more.

Researchers have employed brain-machine interfaces to
investigate how the brain controls redundant limb kine-
matics. Since the turn of the new millennium, a growing
number of researchers have begun to consider how brain
activities recorded both by implanted electrode arrays [10]
and by non-invasive electroencephalographic (EEG) systems
[11] can be used to control external devices. These earlier
works stemmed from a long history of neurophysiological
studies aimed at investigating what motor information is
encoded in brain activities, and particularly in the primary
motor area of the cortex [12]. In the early 1970’s Fetz
and Finocchio [13] provided the first demonstration of the
possibility for a monkey to control by operant conditioning
the activity of individual brain neurons. However, a few
decades elapsed before the technologies of electrode arrays
and the methods for decoding population activities made
possible the development of the first brain machine interfaces
based on multi-unit recordings.

Brain-machine and body-machine interfaces share not
only the same acronym (BMI) but also a large number
of equivalent computational problems, most notably (i) the
challenge to decode the user’s movement intention from
multiple signals containing related information and (ii) tech-
niques for connecting the decoded signals to external de-
vices. Several examples exist of interfaces that exploit overt
motor activities, such as gaze control [14], head motions (as
in the Headmouse, Origin Instruments, USA), EMG signals
[15], EEG signals [16] and even tongue motions [17]. A
recent extensive review and classification of non-invasive
human-machine interfaces can be found in Lobo-Prat et
al. [18]. Unlike brain-machine interfaces, body-machine
interfaces engage their users in sustained physical activities
that by maintaining mobility can prevent muscle atrophy,

promote cardiovascular health and support partial recovery
of movement skills. The BMI utilized in this study has the
distinctive feature of being based on upper-body motions
captured by multiple inertial sensors with the combined
purpose of operating external devices and of promoting,
preserving and remapping residual mobility that remains
available to persons with severe paralysis. Our previous work
involved using the BMI to address 2-D control problems
[19], [20]—control the speed and heading of a powered
wheelchair, a cursor position on a screen, typing on a virtual
keyboard and playing games including pong. In this paper,
we use our BMI within a framework to facilitate the control
of high-dimensional assistive robotic arms.

It is challenging to scale up the lower-dimensional signals
from limited interfaces to control high-DoF robotic arms.
When using a 2- or 3-axis joystick interface, it is not possible
simultaneously to control both position and orientation of the
end-effector (a 6-D control problem). Commercial solutions
involve toggling modes to operate a subset of robot’s DoF,
such as in the 6-DoF MANUS arm (Exact Dynamics B.V.,
Netherlands) and the 6-DoF JACO arm (Kinova Robotics,
Canada), which can however add cognitive and physical
burden on the user. Some works have targeted to simplify
the operation of assistive robotic arms via full autonomy
where the human specifies the target object or task [3], [4].
Users however typically prefer to retain some control of the
system and, moreover, autonomy may fail to achieve task
success [21].

In this work we incorporate shared-control autonomy to
reduce the control burden on the user while still keeping
them engaged in the task execution. Shared-control frame-
works have proven useful for robotic powered wheelchairs
[22], however, shared control becomes much more difficult
to achieve in case of high-DoF assistive robotic arms.
For example, in the VICTORIA system, shared control is
provided for wheelchair control, but not for the assistive
robotic arm mounted to it [23].

III. SYSTEM DESCRIPTION

In this section, we present the system description for
the body-machine interface and the proposed shared-control
framework for assistive manipulation.

A. Body Machine Interface and Control Signals
In a body-machine interface, body motions generate con-

trol signals to operate external devices. The BMI provides
an effective pathway for control because even in people with
severe impairments, some residual movements remain avail-
able. These movements are captured by multiple sensors,
whose combined outputs define a signal space for controlling
the external device.

In the proposed BMI system, a high dimensional control
signal captured from the participant’s residual movements is
mapped to a lower dimensional control vector. Importantly,
these surviving degrees of freedom captured from the body
are higher dimensional than the required control signal. This
kinematic redundancy provides the BMI user with a unique
opportunity to identify and coordinate a convenient subset
of movements to achieve task objectives with a flexible
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and adaptable motor behavior [24]. This enables the user
to effectively issue control signals for the robotic arm via
a reorganization of their own high-dimensional upper body
motions.

In the current BMI setup the user wears a vest that
is equipped with four MTx (Xsens Technologies B.V.,
Netherlands) motion trackers in order to capture shoulder
movements. An IMU is placed on the front and back of
each shoulder as can be seen in Figure 1 (right). The
orientation of each sensor is computed by a sensor fusion
algorithm through the combination of the output of 3-DoF
embedded accelerometers, gyroscopes and magnetometers.
For the purpose of this study we only use roll and pitch
as input signals for the interface because the yaw signals,
derived from the magnetometer, have a tendency to drift in
the presence of electric motors and large metallic objects.
The IMU signals are captured at the rate of 50Hz. With
four IMUs the body space is defined by an eight dimensional
vector of coordinates captured from the four sensors.

The available residual movements depend on the injury
and therefore the interface is user-specific. To this end, we
use a calibration phase to map the user’s movements to
control signals. During the calibration phase, the participants
are asked to engage in free-style motions of the upper
body for twenty seconds. The purpose of this activity is to
characterize the space of IMU signals that each subject could
comfortably span. The mapping matrix A is obtained by
Principal Component Analysis (PCA). A linear transforma-
tion, C = A · h, is defined to map the body movements onto
the 2-D vector C, that controls the motion of the robot.1 PCA
lends itself quite naturally to this task, since the principal
eigenvectors represent the dimensions with largest variability
in the data—and thus also the dimensions with the largest
capacity for movement from the user. The first two principal
eigenvectors of the calibration data are extracted to form a
2-D control space. For further details of the interface and
calibration, see [20].

B. Control Framework for Assistive Manipulation
We are interested in a system that keeps the user in control

and at the same time provides assistance in manipulation
tasks. Using low-dimensional control signals from the BMI,
our aim is to enable the simultaneous operation of all degrees
of freedom of a high-DoF robotic arm. To address this
challenge, we introduce robot autonomy to reduce the user’s
control burden. By contrast, under direct teleoperation the
user would be responsible for individually controlling each
joint of the robotic arm at each time step, or equivalently
the position and orientation of the end-effector. (For our
experimental platform, both are 6-D control problems.)

Our intended system will create a sequence of functionally
relevant piecewise segments based on the semantics of
actions performed during a typical execution of a given
manipulation task—such as reaching, grasping, and pouring.
As a first step, in this work the autonomous system plans
piecewise trajectory segments for predefined manipulation
task using autonomously perceived goals (Section IV-B).

1We begin with a mapping to 2-D, as this has been shown in our previous
work to be both feasible and effective [20]. Future work will scale up C to
higher dimensions.

Fig. 2. Schematic of the system pipeline.

Next, the motor-impaired user influences the execution of
these trajectories through (i) control of the speed (U) of
the manipulator along each segment of the task, and (ii)
dynamically switching (S) between trajectory segments in
order to complete the desired task. The 1-D continuous
valued signal U, controls the speed of the manipulator along
the current trajectory. The 1-D binary signal S triggers a
switch between motion segments. The threshold to generate
the binary signal is set as twice the standard deviation of
the second principal component, and is obtained during the
calibration stage of the BMI interface. This approach allows
for operation of a high-DoF arm with the limited control
signals 〈U, S〉 available from the BMI interface. Users thus
are able to inject their preference and situational awareness
into the otherwise autonomous task execution.

The first step in the technical implementation of this
framework is to autonomously generate trajectories from
the robot’s current configuration Q to the desired goal
configuration. Any suitable motion planner can be used
for this purpose. We used task-constrained motion planning
[25] and the Constrained Bi-directional Rapidly exploring
Random Tree (CBiRRT) [26] in our implementation. To
achieve speed control along the trajectory, we calculate joint
velocities

ν =
δ
τ
·U

based on (i) the user’s input signal, U ∈ [0,1], and (ii) the
autonomy command, computed as the Euclidean distance
δ between the current configuration Q of the robot and
the next configuration waypoint along the path, divided by
timestep τ . Here the command velocity ν ∈ R is the set of
joint velocities sent for execution on the robot manipulator.
In order to progress along the trajectory, we update which
waypoint is the current subgoal based on distance to current
configuration Q, and continue to do this until we have
achieved the final goal configuration.

IV. SYSTEM IMPLEMENTATION AND EVALUATION

To evaluate our proposed system, a user study was per-
formed by subjects with and without high-level Spinal Cord
Injury (SCI).

A. Task

The manipulation task of the user study consisted of using
the robotic arm to pour the contents of a cup into a bowl. The
task was a sequence of the following four motion segments:
(i) reach for the cup, (ii) grasp it, (iii) carry it to the bowl
and (iv) pour the contents of the cup into the bowl.
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Fig. 3. Left: Experimental set-up. Right: Segmented point cloud
clusters (shown in blue).

To assess more extensively the effect of the user’s input,
variability was introduced into the task by modulating the
position of the bowl (three positions). Task success thus
depended on the user appropriately triggering the transition
between segments (iii) and (iv). If they did not switch in
time, the assistive manipulator would continue along its
trajectory, overshooting the bowl. The pouring task was
explained to each participant, along with the effect of the
control signals 〈U, S〉.

B. Autonomy
For the first and third segments we used the CBiRRT

planner to generate a set of waypoints that define a path from
the robot’s current configuration to each subgoal position,
where the final goal was defined to be past the furthest of
the three bowl positions (so that the final trajectory segment
passed over all possible bowl locations). For the second
and fourth segments, no planning was needed: segment
(ii) involved simply closing the gripper, while segment (iv)
involved rotating the wrist.

To compute the position of the cup, we implemented
a tabletop segmentation and Euclidean clustering approach
using the point cloud data obtained from the Kinect RGB-
D sensor. This results in segmented clusters of the objects
present in the scene (Figure 3).

C. User Input
The user provided 2-D input to the system using the BMI,

as described in Section III-B. The first signal allowed the
user to control the speed of the arm along the various tra-
jectories, and the second signal allowed the user to transition
between segments (iii) and (iv). The transitions between
other piecewise trajectories was performed autonomously,
to simplify the task design, since these transitions were not
modulated within the study design.

D. Execution
For each trial one of three bowl positions was randomly

selected. The user began the execution by controlling the
speed U during trajectory segment (i). As the robotic arm
reached the cup, the autonomous system transitioned to
segment (ii) and the user controlled the speed U at which the
gripper was closed in order to grasp the cup. During segment
(iii), the user again controlled the speed of the robotic arm
along the path, until signal S was issued by the user to
switch to segment (iv). During segment (iv), the user speed
U mapped to control the wrist rotation, and thereby poured
the contents of the cup. Figure 4 represents an illustration
of the experimental procedure.

Fig. 4. Illustration of the piecewise segments associated with the
experimental task.

Fig. 5. An SCI user controlling the robot with the BMI during the
experimental task.

E. Subjects
One SCI survivor (31 year old male, 13 years post-injury

at the C5 level) and five uninjured control individuals (mean
age: 28 ±3) participated in the user study. All participants
gave their informed, signed consent to participate in this
experiment, which was approved by Northwestern Univer-
sity’s Institutional Review Board. The SCI participant and
one of the control participants were not naive to the BMI
due to their previous participation in another study [20]. The
remaining participants did not have any prior experience
with the interface. After the calibration of the BMI each
participant performed 24 reaching and pouring trials (8 trials
per bowl position) in a randomized sequence. Note that
continuous visual feedback of the control signals together
with the switching threshold was provided on a computer
screen that was positioned in front of the participants. Figure
5 shows the experimental setup and a user performing the
task using the proposed system.

V. EXPERIMENTAL RESULTS

All subjects were able to perform the task by reorganizing
their shoulder movements. They learned to perform the task
effectively after the very first trial and the performance
level stayed the same for the rest of the experiment. We
furthermore observed similar performance between the SCI
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Fig. 6. Top: Robot’s end-effector in (x,y) space. Bottom: User’s
control signals U (blue) and S (red), and the threshold used to
switch between segments (green).

and non-injured subjects, across all measures. The end-
effector position and task completion time were recorded
for each of the trails.

Figure 6 shows the user control signals 〈U, S〉 and the end-
effector position for a representative task trial. Note the use
of signal U for the reaching, grasping and pouring segments,
and the use of signal S to switch (around second 28) to
pouring after reaching the bowl position.

Figure 7 shows the position of the robot end-effector at the
end of each trial for the SCI participant and a representative
control subject. It can be seen that the subjects were able
to successfully switch the trajectory segment in order to
perform the pouring task for each of the three bowl positions.
More importantly, the performance of the SCI participant
was comparable to other uninjured control individuals.

Figure 8 (top) represents the average time to completion
for all participants. The time taken by the SCI participant
for task completion was comparable that of the able-bodied
individuals (C1-C5).

Furthermore, to quantify movement smoothness we cal-
culated jerk as

J =
∣
∣
∣

n

∑
k=1

...x (k)
∣
∣
∣

where x(k) corresponds to discrete samples of the Euclidean
norm of the robot end-effector position. Jerk is the third
derivative of position, and a standard measure to quantify
movement smoothness [27]. A second-order Butterworth
filter with a cutoff frequency of 5Hz was used to smooth

SCI Control

Fig. 7. Position of the robot end-effector at the end of each trial
for the SCI participant (left) and a representative control subject
(right). Each color corresponds to one of the three positions of the
bowl. Note that a successful pouring motion aligns the top of the
cup over the bowl, which results in the robot end-effector position
being offset (since the cup has non-negligible length).

Fig. 8. Top: Average time to completion for all participants. Bottom:
Average movement smoothness for all participants. For both plots,
error bars represent standard deviation.

and attain the end-effector trajectory for each trial. Figure 8
(bottom) shows the average jerk index for all participants.
Note that the SCI participant was as smooth as the uninjured
subjects in controlling the arm movements.

The above results demonstrate the effectiveness of the
proposed shared-control and BMI interface system as the
performance of the SCI participant was comparable to the
control individuals for the manipulation task. Our next steps
will generalize the system to achieve assistive control on
a range of daily manipulation tasks. Our future work also
will explore mapping the BMI signal to alternate subsets
of the control space, as well as the generation of higher
dimensional BMI signals.

VI. CONCLUSIONS

We have introduced a novel system for the control of
assistive robotic manipulators, that makes use of both robot
autonomy and a body-machine interface. We conducted a
user study with six participants (one SCI and five uninjured
control individuals) and all participants were able to use
the system to successfully perform a manipulation task. The
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results of the user study indicate that individuals with severe
motor impairments can effectively operate assistive robotic
manipulators using the proposed system. Furthermore, the
BMI engages the users in physical activity while they operate
the manipulator, which may have potential rehabilitation
benefits. While the focus of this paper has been on the inte-
gration of the BMI for a shared-autonomy control of robot
arm, the presented control framework does generalize to
any number of other control interfaces (e.g. 2-axis joystick,
sip-and-puff). The system was evaluated on a well-defined
manipulation task (picking and pouring motion), as the aim
of this work was a first evaluation of the proposed control
framework. Future work will expand this framework to a
larger set of manipulation tasks and alternate interpretations
of the BMI signal.
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