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[Szegedy et al.’13]: Imperceptible changes to test inputs are misclassified 
by neural nets.

Adversarial Attacks



Adversarial attacks have been designed for a variety of domains.

Adversarial Attacks



Adversarial Robustness

➢Reliability because of critical 
applications such as self driving cars.

➢Ensuring fairness of predicted 
outcomes.

➢Recent empirical evidence that 
robustly trained nets lead to more 
humanly-aligned representations 
[Engstrom et al.’19].

Broad Goal: Training ML systems (e.g., classifiers) that are robust to 
small adversarial perturbations (at test-time). 

Takeaway from the talk: Learning problems that arise even for 
simple settings leads to new, interesting algorithmic problems!



Non-adversarial Setting (PAC learning)

Aim: Learn a classifier 𝑓 ∈ ℋ (concept class) that minimizes 
Prediction error (or 0/1 error)  = Pr

𝑥,𝑦 ∼𝒟
[𝑓 𝑥 ≠ 𝑦]

Training phase: Given labeled examples 𝑥1, 𝑦1 , … , 𝑥𝑁 , 𝑦𝑁 ∼ 𝒟 , 
where 𝒟 is a distribution over ℝ𝑛 × {−1,1}.
(Learn a 𝑓:ℝ𝑛 → {−1,1} )  

Testing phase: Draw 𝑥, 𝑦 ∼ 𝒟, and give 𝑥 as input. Predict label 𝑦?

𝒙
Label =
𝒚 ?

Classifier 𝒇

Test 
Input

Talk Focus on Realizable setting: ∃ 𝑓∗ ∈ ℋ with prediction error 0.

(otherwise we are in the more challenging agnostic learning setting).



The Adversarial Setting

Training phase (same): Given labeled data 𝑥1, 𝑦1 , … , 𝑥𝑁 , 𝑦𝑁 ∼ 𝒟. 
(Learn classifier 𝑓:ℝ𝑛 → {−1,1} )  

Testing phase (different): Draw 𝑥, 𝑦 ∼ 𝒟, and adversarially perturbed 
𝑥′ is input. Predict label 𝑦?

𝒙 x’ Label =𝑦?

Perturbed 
Input

Classifier

Test 
Input

Goal of Adversary:

– prediction(𝑥′)≠prediction(𝑥) or label(x) 

– 𝑑 𝑥, 𝑥′ = ||𝑥 − 𝑥′||∞ is small (imperceptible change)



Adversarial Robustness: definitions

• Given 𝑥 ∈ ℝ𝑛 and a label 𝑦 ∈ {−1,1} and a classifier 𝑓:ℝ𝑛 →
+1,−1 , we say that 𝑓 is 𝛿-robust at 𝑥 if: 

𝑓 𝑥 + 𝑧 = 𝑦, ∀𝑧: ||𝑧||∞ ≤ 𝛿.

Robust PAC learning of hypothesis class 𝓗. 
Given 𝜖 > 0, and 𝑥1, 𝑦1 , … , (𝑥𝑚, 𝑦𝑚) samples i.i.d. from distribution 𝒟
such that min

f∈ℋ
L𝛿 𝑓 = 0 (realizable setting), find 𝑓′s.t. 𝐿𝛿(𝑓′) ≤ 𝜖.

ℓ∞ball of 
radius 𝛿
around 𝑥

Robust prediction (or 0/1) error/loss:
𝐿𝛿 𝑓 =𝔼 𝑥,𝑦 ∼𝐷[ max

𝑧:||𝑧||≤𝛿
𝕀 [𝑓 𝑥 + 𝑧 ≠ 𝑦])]

Can also define by 
𝑓 𝑥 + 𝑧 ≠ 𝑓(𝑥)

not robust



Broad Goal

What concept classes are robustly PAC learnable efficiently (both 
samples, running time)? 

• Understand robust learnability of a 
broad natural concept class 
(polynomial threshold functions).

• Design new efficient algorithms for 
robust PAC learning and matching 
computational lower bounds.

• A promising approach for neural nets 
with one hidden layer.

• Lots of open questions

ℓ∞ball of 
radius 𝛿
around 𝑥



Challenges in Training

Q1 (Certification):  Given a trained classifier 𝑓, test 
input 𝑥 and budget 𝛿, certify that 𝑓 is 𝛿-robust at 𝑥

or find an attack 𝑥′.

[Athalye et al.’18]: Out of 9 recently proposed methods to robustly 
train a neural network, only 2 are really robust!

➢ Provable certification procedures can provide a uniform benchmark 
to compare different methods to achieve robustness.

Given (labeled) N samples from the distribution 𝒟, want to find a 
classifier 𝑓 that predicts correctly and robust at these samples. 



Questions of Interest

Q1 Certification:  Given a trained classifier 𝑓, test input 𝑥 and budget 
𝛿, certify that 𝑓 is 𝛿-robust at 𝑥 or find an attack 𝑥′ (Computational) 

Q2 Training: Given a training set and robustness threshold 𝛿, find the 
best adversarially 𝛿-robust classifier on samples (Computational)

Q3 Generalization:  If 𝑓 has low error on training set and is also 
adversarially robust, how well does it generalize? (Statistical) 

Q3 has received much attention recently. [Schmidt et al’18, Cullina et al’ 
18, Attias et. al’18, Yin et al.’19, Khim and Loh’19, Montasser et al.’19]

(Q2) + (Q3) ➔ Efficient learning of robust classifiers 



Statistical Question (Generalization)

Q3:  Does low robust error on training samples ⟹ low 
robust prediction error at test time? 

• Can get good generalization bounds for simple classes like 
linear classifiers, polynomial threshold functions etc. 

• [Schmidt et al.’18] sample complexity could become much larger
• [Cullina et al.’18], [Yin et al.’19] analyzed generalization using 

robust analogs of VC dimension and Rademacher complexity. 
• [Montasser et al.’19]: Any function class of finite VC dimension 𝑑

can be robustly learned (improperly) using exp(𝑑) many samples. 
Proper learning can be impossible even with finite VC dim. 

Rest of Talk: We will focus on finding a classifier that performs well 
on just the training examples (purely computational question).



Computational Complexity questions

Q1 Certification:  Given a trained classifier 𝑓, test input 𝑥 and 
budget 𝛿, certify that 𝑓 is 𝛿-robust at 𝑥 or find an attack 𝑥′.

Q2 Training:  Given a training set and budget 𝛿, find the best 
adversarially robust classifier.

[Bubeck et al.’19]: Design a task on which 1. PAC learning is easy 
1. Has a robust classifier with 𝛿 ∼ diameter of the data.
2. Computationally hard to find the robust classifier (assuming 

some cryptographic assumptions).
• The classifier is not natural (comes from the crypto problem)
See [Goudeau et al’19] for lower bound for a different robustness 
defn. 

What about natural function classes?



Polynomial Threshold Functions (PTFs)

Classifier 𝑓:ℝ𝑛 → {−1,1} where

𝑓 𝑥 = sgn(𝑝(𝑥)) where 𝑝(𝑥) is any n-variate polynomial.

Fact 1: Any polynomial 𝑝(𝑥) of degree 𝑑 can be expressed as a 
inner product of a co-efficient vector and 𝜓(𝑥) where 𝜓(𝑥) is a 
vector of all monomials of degree ≤ 𝑑 (expanded feature space).  

E.g., General degree 2 polynomial 𝑝 𝑥 = 𝑥𝑇𝐴 𝑥 + 𝑏𝑇𝑥 + 𝑐
represented by co-efficient vector (𝐴, 𝑏, 𝑐)

Fact 2: Degree 𝑑 = 𝑂(1) polynomials can be PAC-learned in 
polynomial time (e.g., using SVM with polynomial kernel). 

• Degree-d PTFs: {sgn(𝑝 𝑥 : 𝑝 𝑥 is a degree-d polynomial}

E.g., Linear classifiers are degree-1 PTFs 



OUR RESULTS FOR POLYNOMIAL 
THRESHOLD FUNCTIONS (PTF)



Computational Lower Bound

Thm. Given training samples 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 and 𝛿 > 0, it is 
NP-hard to distinguish between 

YES: Exists a degree-2 PTF that has 𝛿-robust error of 0 on samples

NO: Every degree-2 PTF has 𝛿-robust error > 0 on samples

• Implies a similar statement for robust PAC learning (generalization)

• Sharp contrast to PAC learning where PTFs learnable in polytime

Remarks:



Computational Lower Bound

Thm. Given training samples 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 and 𝛿 > 0, it is 
NP-hard to distinguish between 

YES: Exists a degree-2 PTF that has 𝛿-robust error of 0 on samples

NO: Every degree-2 PTF has 𝛿-robust error of >1/3 on samples

• Implies a similar statement for robust PAC learning (generalization)

• Sharp contrast to PAC learning where PTFs learnable in polytime

Remarks:

Thm [Approximation hardness]. Given training samples 
𝑥𝑖 , 𝑦𝑖 𝑖∈[𝑚] it is computationally hard to distinguish between 

YES: Exists a degree-2 PTF that has 𝛿 -robust error of 0 on samples

NO: Every degree-2 PTF has O(
𝛿

logΩ 1 𝑛
)-robust error of > 0 on samples



Polynomial Time Algorithms for 
degree-2 PTFs

Thm [Approximately Optimally Robust]. If there exists a degree-2 PTF 
of zero training error that is also 𝛿-robust, algorithm finds a classifier 

of zero training error that is robust up to radius 𝛿′ = O(
𝛿

log 𝑛
).

Remarks:

• Implies a similar statement for robust PAC learning (generalization)

• The log 𝑛 factor can not be improved unless the state-of-the-art 
of a well-known problem (Quadratic Programming) is improved.

• Θ( log 𝑛) is the ``computational cost of achieving robustness”.

• If there exists a linear classifier (degree-1 PTF) that has 𝛿-robust 
error of 0 (on samples), then we can find one in polynomial time. 



From Certifying Robustness at a Point 
to Learning Robust PTFs  

Prop. For any 𝛿 > 0, 𝛾 ≥ 1, sub-class of PTFs ℋ satisfying some 
simple closure properties, (Cert) ⟹ Learn : 

(Cert) There is a polynomial time algorithm that given 𝑓 ∈ ℋ that is 
not 𝛿-robust at 𝑥, finds 𝑧 with 𝑧 ∞ ≤ 𝛾𝛿 with 𝑓 𝑥 + 𝑧 ≠ 𝑓 𝑥 ,

(Learn) There is a polynomial time algorithm that learns a perfect 
classifier (when it exists) with approximately (up to factor 𝛾 ) optimal 
robustness.

• Implies a similar statement for robust PAC learning (generalization)

• Also holds for randomized algorithms. 

• Certification is a natural polynomial optimization problem.

Open: Algorithms for learning robust higher degree PTFs follow if we 
can design an efficient algorithm for certifying robustness .   

Remarks:



FROM CERTIFYING ROBUSTNESS TO 
ROBUST LEARNING



Certification problem

Q1: (Cert)  Given a trained classifier 𝑓, test input 𝑥 and robustness 
threshold 𝛿, certify that 𝑓 is 𝛿-robust at 𝑥 or find an attack 𝑥′.

Suppose 𝑓 𝑥 = sgn 𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐 , 𝑦 = 𝑓 𝑥 = −1.

Check if exists 𝑧 such that 𝑓 𝑥 + 𝑧 = +1, ||𝑧||∞ ≤ 𝛿.

i.e., max
𝑧:||𝑧||∞≤𝛿

( 𝑥 + 𝑧 𝑇𝐴 (𝑥 + 𝑧) + 𝑏𝑇 𝑥 + 𝑧 + 𝑐) > 0.

i.e. , max
𝑧:||𝑧||∞≤𝛿

𝑧𝑇 −𝑦 𝐴 𝑧 + 𝑏′ 𝑇𝑧 + 𝑐′ > 0
(same polynomial except 
potential sign flip and 
shift by current point)

Computational Question: Does there exist 𝑧 with ||𝑧||∞ ≤ 𝛿
and 𝑧𝑇𝐴′𝑧 + 𝑏′ 𝑇𝑧 + 𝑐′ > 0 ? 



Polynomial Optimization problem

General Polynomial Optimization Problem (𝜸-factor approximation):

Given polynomial 𝑔 find Ƹ𝑧 such that

1. 𝑔 Ƹ𝑧 ≥ max
𝑧:||𝑧||∞≤𝛿

𝑔(𝑧) (Preserve polynomial value)

2. || Ƹ𝑧||∞ ≤ 𝛿𝛾 (Relax the ℓ∞ radius constraint by 𝛾 factor )

Remarks:
• Finding a Ƹ𝑧 finds an adversarial example. If none exists, then 

certifies robustness up to a slightly smaller radius. 
• This corresponds to a (1, 𝛾)-factor bicriteria approximation for the 

problem max
𝑧:||𝑧||∞≤𝛿

𝑔(𝑧) .

• Closely related to like Quadratic Programming  and other well-
studied polynomial optimization problems.                      



From Certification to Learning

Input: Given training samples 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚
Aim: Find classifier 𝑓 𝑥 ≔ sgn(𝑥𝑇𝐴𝑥 + 𝑏𝑥 + 𝑐) that correctly 
classifies these m points and robust at these 𝑚 points.  

Variables: 𝐴, 𝑏, 𝑐.  Is there a feasible (𝐴, 𝑏, 𝑐 )
where ∀𝑖 ∈ 𝑚 , ∀𝑧: 𝑧 ∞ ≤ 𝛿,

yi 𝑥𝑖 + 𝑧 𝑇𝐴 𝑥𝑖 + 𝑧 + 𝑏𝑇 𝑥𝑖 + 𝑧 + 𝑐 > 0.

• Constraints are linear in 𝐴, 𝑏, 𝑐 ! An LP with a constraint for each 𝑧 !

• 𝛾-factor approx. for optimization problem provides an efficient 
separation oracle with approx. factor 𝛾 for Ellipsoid algorithm

• When Ellipsoid algorithm terminates either finds a (𝛿/𝛾)-robust 
classifier or there is no 𝛿-robust classifier.                      



Certification for Degree d=1,2

Q1:  Given a trained classifier 𝑓, test input 𝑥 and budget 𝛿, certify 
that 𝑓 is 𝛿-robust at 𝑥 or find an attack 𝑥′.

Thm. For d=2, polynomial time algorithm achieving 𝛾 = 𝑂 log 𝑛

Polynomial optimization problem:
Given polynomial 𝑝 𝑧 find Ƹ𝑧 s.t.
(1) 𝑝 Ƹ𝑧 ≥ max

𝑧:||𝑧||∞≤𝛿
𝑝(𝑧) ,  (2)  || Ƹ𝑧||∞ ≤ 𝛿𝛾

Simple Claim. For linear classifiers, can certify robustness efficiently.

Pf. If 𝑝(𝑧) = 𝑤𝑇𝑧 + 𝑐. max
𝑧:||𝑧||∞≤𝛿

𝑝(𝑧) = 𝛿 𝑤 1 + 𝑐 by z = 𝛿sgn(𝑤). 

So 𝛾 = 1 for degree d=1. Robustness of linear classifier ⟺ℓ1 margin.



Related to Quadratic Programming (QP)

Quadratic Programming QP: max
𝑧∈ −1,1 𝑛

σ𝑖≠𝑗 𝑎𝑖,𝑗𝑧𝑖𝑧𝑗

[Charikar, Wirth’03]: QP obj. can be approximated 𝑂(log 𝑛) factor.

Some Technical Differences:
• We cannot assume 𝑎𝑖,𝑖 = 0 (solution need not be {−1,1})
• We need to deal with linear terms.
• We don’t want to approximate quadratic objective value, but 

preserve it exactly. Can relax the ℓ∞radius.

Solution: Similar SDP + a modification of the rounding in [CW03].  

SDP: maxσ𝐴𝑖,𝑗 𝒖𝒊, 𝒖𝒋 + σ𝑏𝑗 𝒖𝒋, 𝒖𝟎 + 𝑐

subject to: ||𝒖𝒊||
2 ≤ 𝛿2, ∀𝑖 = 1,… , 𝑛

||𝒖𝟎||
2 = 1



Tight Connection for degree-2 PTFs
Thm. If there exists a degree-2 PTF of 𝛿-robust training error 0, can 

find a classifier of 0 training error that is O(
𝛿

log 𝑛
)-robust.

Thm. Computationally hard given an instance with a degree-2 PTF 
of 𝛿-robust  training error of 0 to find a classifier of with 0 training 

error that is Ω(
𝛿

log𝑐 𝑛
)-robust.

• Ω log𝑐 𝑛 - best known lower bound for approximately 
maximizing a quadratic program (QP).

• Tight assuming o(log 𝑛 ) approximation is hard for QP

• 𝑂(log 𝑛 ) - best known upper bound for approximately 
maximizing a quadratic program (QP).

Lower bound proof challenge: reduction needs to use multiple 
samples to rule out all possible robust degree-2 PTFs     



NEURAL NETWORKS WITH 
1 HIDDEN LAYER (DEPTH 2 ?)



1-hidden layer NNets
𝑓 𝑥 = sgn(𝑣𝑇𝜎 𝑊𝑥 + 𝑣′ 𝑇𝑥 + 𝑏)

Q1:  Given a trained classifier 𝑓, test input 𝑥 and budget 𝛿, certify 
that 𝑓 is 𝛿-robust at 𝑥 or find an attack 𝑥′.

Corresponding optimization problem:
max

𝑧:||𝑧||∞≤𝛿
||𝐴𝑧 + 𝛼||1 − ||𝐵𝑧 + 𝛽||1 + 𝑐𝑇𝑧 + 𝑏

Remarks:
• If term (I) in objective is removed, then it is convex. 
• If term  (II) in objective is removed, then it is the Grothendieck

problem which has a O(1) approximation. 



1-hidden layer NNets

SDP relaxation: maxσ𝐴𝑖,𝑗 𝒗𝒊 ⋅ 𝒖𝒋 +σ𝒗𝒊 ⋅ 𝒖𝟎𝛼𝑖 + σ𝒖𝒊 ⋅ 𝒖𝟎𝑐𝑖 − 𝑡 + 𝑏

subject to: σ𝑖 | σ𝑗𝐵𝑖,𝑗𝒖𝒋 ⋅ 𝒖𝟎 + 𝛽𝑗 | ≤ 𝑡

||𝒖𝒊||
2 ≤ 𝛿2

||𝒗𝒊||
2 ≤ 1

||𝒖𝟎||
2 = 1

Idea: Problem has a similar flavor to the earlier question. 
Let’s try the same rounding as the degree-2 case!



1-hidden layer NNets

SDP relaxation: maxσ𝐴𝑖,𝑗 𝒗𝒊 ⋅ 𝒖𝒋 +σ𝒗𝒊 ⋅ 𝒖𝟎𝛼𝑖 + σ𝒖𝒊 ⋅ 𝒖𝟎𝑐𝑖 − 𝑡 + 𝑏

subject to: σ𝑖 | σ𝑗𝐵𝑖,𝑗𝒖𝒋 ⋅ 𝒖𝟎 + 𝛽𝑗 | ≤ 𝑡

||𝒖𝒊||
2 ≤ 𝛿2

||𝒗𝒊||
2 ≤ 1

||𝒖𝟎||
2 = 1

Can obtain good guarantees if random variable 𝑋 = σ𝑖 | σ𝑗𝐵𝑖,𝑗 Ƹ𝑧𝑗 + 𝛽𝑗 |

is well behaved compared to σ𝑖 || σ𝑗𝐵𝑖,𝑗𝒖𝒋
⊥||𝟐

𝟐 .



1-hidden layer NNets

SDP: maxσ𝐴𝑖,𝑗 𝒗𝒊 ⋅ 𝒖𝒋 +σ𝒗𝒊 ⋅ 𝒖𝟎𝛼𝑖 +σ𝒖𝒊 ⋅ 𝒖𝟎𝑐𝑖 − 𝑡 + 𝑏

s.t. σ𝑖 | σ𝑗𝐵𝑖,𝑗𝒖𝒋 ⋅ 𝒖𝟎 + 𝛽𝑗 | ≤ 𝑡

||𝒖𝒊||
2 ≤ 𝛿2

||𝒗𝒊||
2 ≤ 1

||𝒖𝟎||
2 = 1

Assumption: random variable 𝑋 = σ𝑖 | σ𝑗𝐵𝑖,𝑗 Ƹ𝑧𝑗 + 𝛽𝑗 | satisfies 

𝜇𝑥≫𝜎𝑥.

𝜇𝑥/𝜎𝑥 for MNIST test set.



1-hidden layer NNets
𝑓 𝑥 = sgn(𝑣𝑇𝜎 𝑊𝑥 + 𝑣′ 𝑇𝑥 + 𝑏)

Q1:  Given a trained classifier 𝑓, test input 𝑥 and budget 𝛿, certify 
that 𝑓 is 𝛿-robust at 𝑥 or find an attack 𝑥′.

Thm.  If r.v. X is well behaved, then the SDP either certifies that 𝑓 is 𝛿-
robust at 𝑥 or finds an attack 𝑥′ such that:

||𝑥 − 𝑥′||∞ ≤
𝛿

𝜂
𝑂 log 𝑛 log 𝑘)

Here 𝑘 = # hidden units, 𝜂 = best normalized margin of an adv. 
example.



Experiments

• Use our SDP based method to generate adversarial attacks 
and compare with PGD method of [Madry et al.’16].

• Experiments on MNIST data set with 𝛿 = 0.3 (also 𝛿 = 0.01).

• Our SDP method is much slower than gradient-descent based 
approaches. Can only run on much fewer samples. 

Methodology:
Take a trained network on MNIST and a subset of the MNIST test 
set.
Run PGD attack on the subset and divide into two sets, PGDpass
where the attack succeeds and PGDfail where the attack fails.
See how we do on both the sets.



Experiments

• Use our SDP based method to generate adversarial attacks and 
compare with state of the art PGD method of [Madry et al.’16].

• Experiments on MNIST data set with 𝛿 = 0.3 (also similar gains 
for other values of 𝛿).

𝜹 = 𝟎. 𝟑 PGDpass: Samples 
PGD succeeded 
(randomly 
subsampled) 

PGDfail: Samples 
PGD failed 
(randomly 
subsampled)

We succeed 297/300 244/800

Thoughts:
1. Our SDP-based method is much slower than PGD. 
2. But seems to find more adversarial examples more often.



Experiments
Original Image PGD Attack Our Attack



Summary of results

• Studied robust learnability of a broad natural 
concept class (polynomial threshold functions).

• From computational efficient algorithms, 
separation between robust vs non-robust 
learning for degree-2 PTFs

• Tightly characterized the ``cost of achieving 
robustness‘’ for degree-2 PTFs.

• Connection between robust learning PTFs and 
polynomial optimization. 

• Promising approach towards certifying/ finding 
adversarial examples for neural nets with one 
hidden layer.



Open Problems

• PTFs of degree 3 and higher. Approx. algorithms for optimization 
problem are known only for odd-degree homogenous 
polynomials [Khot-Naor] (but still does not translate to learning). 

Learning Adversarially robust PTFs

• Provable guarantees for 1-hidden layer NNets
• More natural assumptions, better approximations.
• Why does the SDP produce sparser attacks

• Deeper networks? Certifying robustness to learning?
• Speeding up the SDPs e.g., low-rank methods

Learning adversarially robust Neural nets

Adversarial (test-time) robustness for other problems 

• Ongoing work with P. Awasthi, X.Chen, V.Chatziafratis on 
dimension reduction with test-time robustness



THANKS! 
QUESTIONS?


