
1

Supplementary Document: Delegation-based I/O
Mechanism for High Performance Computing

Systems
Arifa Nisar, Wei-keng Liao and Alok Choudhary

Electrical Engineering and Computer Science Department Northwestern University
Evanston, Illinois 60208-3118

Email: {ani662,wkliao,choudhar}@ece.northwestern.edu

V. BACKGROUND AND RELATED WORK

This work is inspired by the observation that file systems are
unable to cater for a group of related clients accessing shared
files. This hampers their ability to fine-tune the consistency
control mechanism to meet I/O requirements optimally. We
believe that lack of proper programming interfaces to the file
systems prevents applications from passing down their I/O in-
tents that could be very useful in optimizing I/O performance.
For example, a group of processes writing a partitioned global
array in parallel should be considered as a group of correlated
I/O requests by the file system. In this case, data consistency
control should only protect the file data from processes outside
of the group, instead of the processes inside. Without a proper
way to detect such cases, the file system is forced to protect
individual request regardless of the client’s group membership.

Under these circumstances, we believe that an I/O layer
sitting in between application processes and file system is
necessary to capture the missing information and potentially
use it to enhance I/O performance. For understanding the
characteristics of parallel file systems on supporting data con-
sistency for concurrent requests to shared files, we investigated
the file locking protocols and their implementations on existing
file systems. Since different file systems may not use the same
locking mechanism, it is important that this I/O layer adapts to
their distinct features in order to produce the best I/O strategy.

A. Distributed Lock Management in Parallel File Systems

Modern parallel file systems, in order to meet high data
throughput requirements, employ multiple I/O servers, each
managing a set of disks. Files stored on these systems can
be striped across the I/O servers, so large requests can be
served concurrently. Due to the nature of file striping, lock
granularity is usually set to be the file block or stripe size
instead of a byte. If two I/O requests fall into the same lock
granularity region and at least one of them is a write, they must
be carried out serially even if they do not overlap in bytes. File
systems rely on a locking mechanism to provide a client with
an exclusive access to a file region and hence to implement the
data consistency control. The implementation of a distributed
file locking system aiming at reducing the lock acquisition
frequency, varies among different file systems. Many parallel
file systems, such as IBM’s GPFS [1], [2] and Lustre [3],

[4], adopt an extent-based locking protocol in which a lock
manager tends to grant access to the largest possible file
region. For example, the first requesting process to a file is
granted the lock for an entire file. When the second write from
a different process arrives, the first process will relinquish a
part of the file to the requesting process. If the starting offset
of the second request is ahead of the first request’s ending
offset, the relinquished region will start from the first request’s
ending offset toward the end of file. If not, the relinquished
region will contain a segment from file offset 0 to the first
request’s starting offset. The advantage of this protocol is that a
process’s successive requests within the already granted region
would require no lock request.

To avoid the obvious bottleneck from a centralized lock
manager, various distributed file locking protocols have been
proposed. For example, GPFS employs a distributed token-
based locking mechanism to maintain coherent caches across
compute nodes [1]. This protocol makes a token holder a
local lock authority for granting further lock requests to its
corresponding byte range. A token allows a node to cache
data that cannot be modified elsewhere without first revoking
the token.

Lustre, a POSIX compliant file system, respects POSIX I/O
atomicity semantics. To guarantee I/O atomicity, file locking is
used for each read/write call, allowing only exclusive access
to the requested file region. Lustre file system stripes a file
in round robin fashion across the file servers. Lustre uses a
distributed locking protocol where each I/O server manages
locks for the file stripes it stores. Extent based locking is
performed on the stipes stored at any individual I/O server. On
an I/O request, I/O server grants the locks growing downwards
covering all the stripes to the largest uncontended extent [5].
If a client requests a lock held by another client, a message is
sent to the lock holder requesting to release the lock. Before
a lock can be released, dirty cache data must be flushed to
the servers. On parallel file systems like Lustre and GPFS,
where files are striped across multiple I/O servers, conflicted
locks can significantly degrade parallel I/O performance [6]
and hence it is important that an I/O middleware recognizes the
file system’s locking behavior and minimizes lock conflicts.
Our proposed work is motivated by such needs and designed
to generate the I/O pattern which performs best with the
underlying file system’s locking mechanism. We use Lustre

to demonstrate the impact of perfectly matched I/O access
patterns with locking boundaries of underneath file systems.

B. MPI-IO

MPI defines a set of programming interfaces for parallel file
access, commonly referred as MPI-IO. With this framework,
many optimizations such as two-phase I/O [7] and data sieving
[8], have been successfully demonstrated significant perfor-
mance improvement for the parallel I/O. One of the promi-
nent software contributions is the collective I/O functionality
proposed in the message passing interface (MPI) standard [9].
In addition to two-phase I/O [7], many collaboration strategies
have been proposed and demonstrated their success, including
disk directed I/O [10], persistent file domain [11], [12], view
based collective I/O [13], collaborative caching [14], [15],
layout awareness [16] etc.

There are mainly two types of I/O access functions in MPI-
IO: Collective I/O and Independent I/O. Collective functions
require collaboration among processes to rearrange I/O re-
quests for achieving better performance. This collaboration
incurs the overhead of process synchronization but it provides
significant performance improvements over uncoordinated I/O.
ROMIO[17] implements collective I/O calls using the two-
phase I/O method, which comprises of the request redistri-
bution and I/O phases. Two phase I/O’s implementation for
collective functions is explained in figure 8. The implemen-
tation first calculates the aggregate access file region and
then evenly partitions it among the I/O aggregators into file
domains. The I/O aggregators are a subset of the processes
which act as I/O proxies for all of the processes. In the
redistribution phase, all processes exchange data with the
aggregators based on the calculated file domains. If data to be
distributed is larger than the maximum buffer size, collective
I/O operation is decomposed into multiple steps of two-phase
I/O. In the I/O phase, aggregators access the shared file
within the assigned file domains. Two-phase I/O can combine
multiple non-contiguous requests into large contiguous ones.
This approach has been demonstrated to be very successful
as modern file systems handle large contiguous requests more
efficiently. On the parallel machines where each compute node
contains a multi-core CPU or multiple processors, ROMIO, by
default, picks one of the core/processor as the aggregator in
every node.

Independent I/O calls, on the other hand, do not require
process synchronization and hence lack the opportunity to
exchange requests. Therefore, application users community
is discouraged to use independent I/O citing its poor per-
formance. However, not all scientific applications can afford
process synchronization due to the irregularity of their data
distribution and creation. For instance, when several global
arrays are partitioned among the different groups of processes,
synchronization I/O for a global array requires all processes to
participate even for those groups that do not contain any data
for this array. In such a situation, synchronization serializes
I/O. Mostly, process synchronization may not even be possible
as new data objects are created dynamically, and one process
may not have any information about the data on a different

0P P2 P4 P6

P1 P2 P30P P1 P2 P30P P5 P6 P74P P5 P6 P74P

endstart aggregate access region
offset view in file space

0P P1 P2 P3

P4 P5 P6 P7

start

end

I/O phase

file system

domains
file

data partitioning of a 2D global array
a logical view of subarrays in memory space

communication phase

Fig. 8. Two Phase Implementation for MPI Collective I/O: In the first phase
aggregate access region is evenly divided among the chosen processes termed
as aggregators. In the second phase aggregators complete the file system I/O
by performing the actual file system operations.

process. Examples of such I/O pattern are the applications
using Adaptive Mesh Refinement (AMR) algorithm. For these
applications, independent I/O may be the only choice and it
is important that the I/O systems provide performance similar
to the collective I/O.

Traditional collective I/O does not have persistent file do-
main assigned to the aggregators. Every I/O access is treated
individually and the access region specific to the I/O call is
partitioned to the aggregators. Collective I/O is also limited
by the maximum allowed size of the temporary buffer. If
access region per process is larger than the maximum buffer
size (16 MB is default) then data exchange is performed
in multiple stages. Collective I/O generates large disjoint
contiguous accesses to the file system and does not consider
underlying file system locking strategy.

I/O delegation system allocates a small set of additional
nodes to handle I/O responsibilities. I/O delegation system
aims to minimize file lock conflicts and improve the MPI
independent I/O performance. A file caching mechanism is
implemented in the delegate system that enables data aggre-
gation across multiple requests aiming for improving MPI in-
dependent I/O performance. This feature is also considered an
optimization that spans multiple MPI-IO requests, collectives
and/or independents, which have been ignored by existing
MPI-IO optimizations. I/O delegate performs asynchronous
data communication in a single step. I/O delegate system
employs a static file domain mapping method that statically
maps evenly partitioned file regions to the delegates such that
the data layout is perfectly matched with underlying the file
system.

C. Cray XT MPI Optimizations

In our experiments, we observed significant performance
difference for the native MPI collective I/O method between
Franklin and Abe. The two-phase I/O implementation in the
MPI-IO library installed on Abe uses the traditional file do-
main partitioning method. This method divides the aggregate

2

access file region of a collective I/O into contiguous, disjoint
subregions, each assigned to an I/O aggregator. However, this
strategy performs poorly on Lustre as investigated in [18].

Very recently, a new collective buffering algorithm used
by the Cray MPI-IO library [19], [20] similar to the static
file domain partitioning method proposed in [18] was made
available on Franklin[21] and successfully demonstrated a
dramatic performance enhancement. In traditional collective
I/O, file domain is assigned at the time access. Access region
is partitioned in disjoint regions and each region is assigned
to an aggregator. In contrast to the traditional collective I/O a
persistent file domain is assigned to the aggregators.

The idea of keeping a static and optimal mapping between
the I/O processes and file servers is the key to scalable
parallel I/O performance on Lustre file system. However,
there are two limitations on the current design of the Cray’s
collective buffering algorithm. First, the default number of I/O
aggregators is set to equal to the number of I/O servers no
matter how large the number of application processes is. When
the number of application processes is much larger than the I/O
servers, the communication contention for rearranging request
data to the I/O delegates can easily become the performance
bottleneck. Second, the largest file access region that can be
processed by a single two-phase I/O is equal to the file stripe
size times the number of I/O servers.

For instance, when the file stripe size is set to 1MB on
Franklin, the maximum file access region per two-phase I/O
is only 48 MB. For requests with much larger aggregate file
access region, this limitation will produce many two-phase
I/O stages and each covers a file region no greater than 48
MB. Under such circumstance, this algorithm may incur higher
overhead of process synchronization and communication.

From Figure 6(a) we observe that the native collective I/O
on Franklin fails to scale beyond 512 application processes.
On the contrary, the I/O delegate approach scales much better.
The reasons behind can be the 48 MB file access limitation
and the delegate system being able to aggregate small requests
in the caches. Also, delegate can improve I/O performance
across multiple access calls. Cray XT MPI does not allow
more than 48 aggregators in the interest of removing lock
contention. For very large number of application processes,
only 48 aggregators may become communication bottleneck
and hamper scalability.

File domain assignment for Cray MPI is similar to the
file domain assignment in the delegate system. I/O delegate
provides a way to minimize lock contention in case there
are more delegates than servers. Other than the scalability
problem, the new collective buffering only benefits the col-
lective writes and is not applicable to collective reads or
independent I/O. As explained in section VI-A, I/O delegate
performs asynchronous data communication in a single step.
Each application process sends data over to any delegate in a
single MPI send only.

D. I/O Delegation and I/O Forwarding

I/O delegation with file caching framework (IODC) [22]
provides an infrastructure where all the I/O accesses are

pushed through a small number of additional compute pro-
cesses (referred to as I/O Delegate processes). This infrastruc-
ture creates an intermediate layer between application and file
system. IODC reduces lock contention by limiting the number
of processes accessing the underlying parallel file system.
It also employs a collaborative file caching subsystem to
enable data aggregation, page migration, and request sequen-
tial consistency control. The delegation layer is implemented
in ROMIO and hence transparent to the regular MPI-IO
programs. Performance evaluation of this work demonstrated
noticeable improvements for collective I/O on both Lustre
and GPFS. In this paper, our proposed approach extends
the I/O delegation concept and focuses on the file locking
characteristics of the underlying file system. Moreover, in
addition to collective I/O, our solution is also directed towards
independent I/O.

In pursuit of avoiding the I/O bottleneck at storage systems,
architectures like BlueGene, have brought I/O nodes closer to
parallel storage layer. The IBM BlueGene systems adopt a
new I/O architecture specially designed to reduce the scale of
I/O contention. The new I/O sub-system consists of a group
of additional I/O nodes physically situated in between the
compute nodes and file system servers. Compute nodes on
a BlueGene are organized into separate processing sets, each
equipped with an I/O node. I/O requests from the compute
nodes on the same processing set are accomplished via the I/O
node [23], [24]. From file system’s point of view, I/O nodes are
the actual clients to the file system. Hence, data consistency
semantics are enforced on the I/O nodes. Other existing
contributions have also recognized the importance of using
a middleware to coordinate parallel I/O requests by reducing
potential conflicts before data reaches file system. Different
system level solutions have been proposed to accomplish I/O
forwarding between compute nodes and I/O nodes. CIOD
(Control and I/O Daemon) [25], is a light weight kernel for I/O
nodes developed at IBM. It receives I/O requests forwarded
from the compute nodes over the collective network and
invokes corresponding Linux system calls. ZOID (ZeptoOS
I/O Daemon) [26], a function call-forwarding infrastructure
developed at Argonne National Lab, is integrated into the
ZeptoOS software stack [27]. Both of these I/O forwarding
components allow communication between statically mapped
compute nodes and I/O nodes only. They do not facilitate the
intercommunication between I/O nodes, or flexibility between
compute and I/O nodes interactions. Such inflexible I/O archi-
tectures may lose all the high level I/O information as well as
the opportunity of any optimization at I/O nodes layer.

E. File Domain Partitioning in Collective I/O

Recent research has shown the importance of adjusting
parallel I/O requests with the file system’s locking boundaries
[28], [18], [29]. Several file domain partitioning methods have
been proposed and evaluated in [18]. The stripe-boundary
alignment method appears to be the best choice for GPFS.
This method aligns the partitioning of the aggregate access file
region with the GPFS’s file stripe boundaries which results
in large contiguous requests to the file system. On Lustre,

3

the static and group-static partitioning methods outperform
other methods with significant margins. The static method
assigns the file domains based on the stripes stored on the
I/O servers by keeping the mapping of the I/O processes to
the servers persistent. Since the client-server mapping does not
change from one collective I/O call to another and the number
of accessing clients per server is minimized, this method
eliminates the possible lock conflicts. We adopt the static file
domain strategy in our I/O delegation system, expecting that
the lock conflicts from the delegate processes to the file system
can be minimized.

Sanchez et. al [30] proposed an I/O proxy based I/O archi-
tecture, which uses local disks to implement an intermediate
file system between application and parallel storage system.
This architecture uses the local file system to perform some
optimizations before data is flushed to parallel file system.

Panda [31] is a server-directed I/O strategy, in which one
compute node and one I/O node act like master client and
master server. Master client and master server exchange the
layout of in memory and on disk data distribution to determine
the optimized way of transferring data between clients and I/O
nodes.

Collective buffering approach [32] rearranges requests in
processors’ memory, to initiate optimized I/O requests, thus
reducing the time spent in performing I/O operations. This
scheme requires a global knowledge of I/O pattern in order
to perform optimization. Bennett et.al. present an I/O library
Jovian [33], [34], which uses separate processors called ‘co-
alescing nodes’ to perform I/O optimization by joining small
I/O operations. This approach requires application support to
provide out-of-core data information in order to combine the
contiguous data on disk.

VI. IMPLEMENTATION OF I/O DELEGATE SYSTEM

delegates
processes

I/O servers

application
processes

network

S S S SSS

D DDDDD

P P P P P P

P

P

P P P P P P

P

PPPPP

P

P

P PP

MPI−IO

MPI library

Fig. 9. I/O Delegate Architecture: It is a portable I/O middleware integrated
inside the MPI-IO layer. A small percentage of application processes is
allocated in addition to the required application processes (P). These additional
resources termed as delegate processes (D) perform all the I/O operations like
open(), write(), read(), sync() and close() on the behalf
of application processes.

The I/O delegation system is implemented in ROMIO
library, so it can be available to all the MPI-IO applications
and is portable across different file systems. This system is ac-
tivated by separating all the MPI processes allocated by a par-
allel job into two disjoint groups, one running the application

and the other running the I/O delegate system. The delegate
system emerges as an intermediate layer between application
and parallel storage system. Compute processes running on
this intermediate layer are called delegate processes. The num-
ber of delegate processes is kept no more than a small fraction
of total compute processes executing the parallel application.
Figure 9 illustrates the overall system architecture. All the I/O
operations initiated by the application processes pass through
the delegate processes which perform respective I/O operations
on behalf of the application processes. Current implementation
requires users to explicitly allocate additional processes for
I/O delegation when submitting a parallel job. At the start of
the application, the number of delegates is taken as an input
parameter and automatically adjusted to match the number
of I/O servers of underlying file system, so the number of
delegates is either a factor or multiple of the number of servers,
unless otherwise specified. Our current implementation does
not change the number of delegates during the life time of the
application. The entire MPI processes allocated by a single
MPI job are split into two separate communicator groups,
one for the delegate processes and the other for the parallel
application, which exchange I/O and related information with
each other using MPI inter-communicators.

To make this implementation generic, we use MPI dynamic
process management functionality for initial communicator
setups. For machines that have not yet supported the dynamic
process management, such as Cray XT, we use the traditional
communicator construction functions, such as MPI communi-
cator split, to separate the two communicators.

During the MPI application’s execution, all I/O requests
from the application processes are redirected to the I/O dele-
gate processes, limiting the file system interactions to delegate
processes only. Reduction in the number of compute nodes
accessing the storage system reduces the scale of overall I/O
contention at storage system. Delegate processes continuously
poll on incoming requests from application processes as well
as from peer delegate processes. Application processes send
requests, such as file open, write, read, and close, to delegate
processes, and delegate processes collaborate with each other
to perform I/O bookkeeping and optimizations. The lifetime of
delegate processes is mapped to parallel applications execution
time only. However, the idea of such I/O architecture can
be extended to a set of physical compute nodes persistently
serving requests from all the applications. As described earlier
in Section V, the IBM BlueGene systems have already been
configured with such I/O layer in hardware. To explore the
maximal potential of such architecture, it’s necessary to make
the software layer aware of the MPI processes running a single
program and treating them as an integrated I/O client. Fol-
lowing sections discuss various components of I/O delegation
system in detail.

A. I/O Request Flow

All the delegate processes run an infinite loop that
keeps polling incoming requests from both the application
and delegate processes using respective inter- and intra-
communicators. When a file is collectively opened by a group

4

of application processes, only delegate process 0 creates the
file and broadcasts the open request to the rest of delegates. On
receiving the open request, all delegate processes open the file
locally and initializes the data structures for I/O delegation. A
unique global ID associated to local file ID at the delegates is
returned to the clients, so it can be used for future references
to this file. The metadata of a read/write request is packaged
by each application process into an MPI message containing
the information of file ID, request size, and an array of
requesting file offset-length pairs if the request consists of
multiple disjoint file regions. When a delegate process receives
this message, it allocates proper memory space to receive
the metadata, as well as the cache pages to accommodate
the write/read data. For write request, metadata is sent to a
delegate process followed by the write data. The write data is
sent by using an MPI derived data type to pack noncontiguous
data, so the communication can be completed in a single
MPI send call. Delegate process separates the disjoint request
segments based on the offset-length metadata and copies them
to their respective location in the cache pages. The byte
number of data received is sent back to the application process
as the return value. I/O delegate system adds an extra step
of passing data through delegate nodes, which incurs some
extra data communication cost. But as our implementation
does not use the optimizations implemented in ROMIO, we
justify this communication overhead by saving two-phase
I/O’s synchronized communication overhead. We have also
implemented an alternate approach that packs the write request
metadata along with the actual data in a single message.
Our experimentation shows that these two approaches perform
about the same, so we selected two-messages approach and
present its evaluation results. For read request, the operations
are simply reversed. Data are fetched in units of file stripes
and read data is also cached at the delegate processes. The file
close operation is similar to file open, where delegate process
0 acts as a coordinator for all the delegate processes.

B. File Caching
We incorporate a file caching mechanism into the I/O del-

egation layer. Although caching is considered to be beneficial
mainly for repeated data access, this caching mechanism is the
essential component of I/O delegate layer aiming to improve
both write and read performance.

With the feature of file caching, small write requests can
be aggregated at the cache pages and later flushed to the file
system. The size of I/O operations to the file system are in the
units of cache page size, in our case also the file stripe size.
Similarly, small read requests to a single file stripe will result
in only multiple of stripe size read request at the delegate
process. File domain is logically partitioned in to file stripe
sized regions that are statically assigned to the delegates in
a round robin fashion. Due to the use of static file domain
strategy, local cache pages stored at an I/O delegate perfectly
map to file stripes handled by a unique I/O server. Figure 3
illustrates an example of such mapping for delegate D2 to
server OST2.

The caching policy used in our previous work [22], is a
greedy algorithm that caches the first requested data on the

delegates regardless the locking protocol implemented by the
underneath file system. Our new delegation implementation in-
corporates the ideas of taking the file system locking behavior
into concern. Static file domain assignment to the delegates
ensures that there is only one copy of file data. Metadata
information associated with a cache page is maintained by the
same delegate that holds the cache page. The fact that only one
delegate has access to the caching information of a file stripe,
eliminates the need of distributed locking mechanism like the
one proposed in [35], [36], [22]. In the absence of locking
requirements, no data communication is required amongst the
delegates for caching operations.

The caching mechanism keeps tracks of dirty segments in
each file stripe in the form of offset-length pairs. Coalescing of
two consecutive dirty ranges in the same stripe is performed
when a new request accesses the cached stripe. Coalescing
stops when a cache page is fully dirty. When flushing a cache
page, if it contains more than one dirty segment, a read-
modify-write will be performed. This approach allows one
read and one write per file stripe in the worst case and helps
avoiding unaligned I/O access by flushing partially filled cache
pages.

In addition to avoiding lock conflicts by using static file
domain mapping, we have achieved many performance bene-
fits from our caching design. The caching mechanism enables
aggregation of data across the multiple I/O calls, generates
stripe sized I/O which matches the stripe boundary of under-
lying file system, reduces read-modify-write operations and
hence the client-server communication cost.

C. Running I/O Delegates on Multi-core Compute Nodes

Modern high-performance computing systems are heading
towards constructing multi-core compute nodes architectures.
It would be interesting to explore the performance impact
of running I/O delegates, each on a single core of a multi-
core compute node. For file system perspective, all processes
running on a single compute node are handled by the sole
copy of client-side file system on that node, so lock requests
coming from different processes on the same node do not
cause any conflicts. We enable the I/O delegate system in
such a way that when more than one core per nodes are used
as delegate processes, the file domain assignment conforms
the mapping of the I/O servers to the delegate nodes, instead
of delegate cores. For example, in Figure 3, multiple cores
working as delegate processes in delegate node D0 are still
assigned stripes S0, S3, S6, · · ·. No matter how many cores
per nodes are used, file domain assignment remains same at
the delegate node level. This assignment guarantees no new
lock conflicts that would occur among the processes within
the same delegate node, while the I/O workload is shared by
more delegate processes.

D. MPI-IO Semantics

MPI-IO data consistency requirements differ from that of
POSIX’s [37]. POSIX’s semantics require that by the time a
write operation is returned, all other processes should maintain

5

sequential consistency and atomicity. On the other hand, MPI-
IO semantics require that by the time a write is returned,
only the processes in the same communicator group are
guaranteed to maintain semantics. Since I/O delegation system
is integrated in ROMIO, it is important that the MPI-IO data
consistency is not broken. The data cached at the I/O delegate
processes is available to all the application processes that
collectively open the shared file.

VII. EXPERIMENTATION

I/O Delegate System is evaluated on two large production
machines; Franklin, a Cray XT4 system at National Energy
Research Scientific Computing Center [21] and the TeraGrid
Intel-64 Cluster named Abe at the National Center for Super-
computing Applications [38]. Table VII describes the technical
summary of Franklin and Abe, as well as the file system
configurations used in evaluation. For performance evaluation,
we used one artificial benchmark from ROMIO test programs,
and two I/O kernels from production applications FLASH and
S3D. The I/O bandwidth numbers were calculated by dividing
the aggregate I/O amount by the time measured from the
beginning of file open until after file close.

For all three I/O applications, each process writes a fixed
size of data to the shared file(s). Thus, the total data size to be
written increases proportionally as the number of processes.
Although no explicit file synchronization is called in these
benchmarks, closing files flushes all the dirty cache data. We
have collected results up to 8192 application processes on
Franklin and 512 application processes on Abe. I/O delega-
tion system was evaluated with 4-6% and 9-12% additional
compute resources allocated as delegate processes. For eval-
uation purposes we have used 4 cores per compute node for
application processes, and 1 to 4 cores per node for delegate
processes, while the number of delegate nodes are kept either
a factor or multiple of the number of file system I/O servers.
Section VII-D from supplementary document demonstrates the
change in performance when number of delegate nodes are co-
prime to the number file servers.

A. S3D I/O

S3D solves fully compressible Navier-Stokes, total en-
ergy, species and mass continuity equations coupled with
detailed chemistry. The governing equations are solved on
a conventional three-dimensional structured Cartesian mesh.
A checkpoint is performed at regular intervals, and its data
consists primarily of the solved variables in 8-byte three-
dimensional arrays, corresponding to the values at the three-
dimensional Cartesian mesh points. During the analysis phase
the checkpoint data can be used to obtain several more derived
physical quantities of interest; therefore, a majority of the
checkpoint data is retained for later analysis. At each check-
point, four global arrays are written to files and they represent
the variables of mass, velocity, pressure, and temperature,
respectively. Mass and velocity are four-dimensional arrays
while pressure and temperature are three-dimensional arrays.
All four arrays share the same size for the lowest three spatial
dimensions X, Y, and Z, and they are all partitioned among

MPI processes along X-Y-Z dimensions in the same block
partitioning fashion. The length of the fourth dimension of
mass and velocity arrays is 11 and 3, respectively, and not
partitioned.

B. FLASH I/O

Variation in block numbers per MPI process is used to
generate a slightly unbalanced I/O load. Since the number of
blocks is fixed for each process, increasing the number of
MPI processes linearly increases the aggregate write amount.
FLASH I/O produces a checkpoint file and two visualization
files containing centered and corner data. The largest file is
the checkpoint, the I/O time of which dominates the entire
benchmark. FLASH I/O uses the HDF5 I/O interface to save
data along with its metadata in the HDF5 file format. Since
the implementation of HDF5 parallel I/O is built on top of
MPI-IO [39], the performance effects of I/O delegate caching
system can be observed in overall FLASH I/O performance.
To eliminate the overhead of memory copying in the HDF5
hyper-slab selection, FLASH I/O extracts the interiors of the
blocks via a direct memory copy into a buffer before calling
the HDF5 functions. There are 24 I/O loops, one for each of
the 24 variables. In each loop, every MPI process writes into a
contiguous file space, appending its data to the previous ranked
MPI process; therefore, a write request from one process does
not overlap or interleave with the request from another. In
ROMIO, this non-interleaved access pattern actually triggers
the independent I/O subroutines, instead of collective subrou-
tines, even if MPI collective writes are explicitly called.

FLASH I/O writes both array data and metadata through the
HDF5 I/O interface to the same file. Metadata, usually stored
at the file header, may cause unaligned write requests for array
data when using native MPI-IO.

C. Cache Eviction

This section provides evaluation and analysis of cache pages
eviction in I/O delegate. A full-dirty page is marked with
a high priority for flushing and are first ones to be evicted
under memory usage pressure. The metadata of each cache
page contains a time variable to record the last access time.
For page eviction, a least-recently-used (LRU) policy is used
amongst the fully dirty pages. At the file close, all the dirty
cache pages, fully dirty by now, are flushed to the file system.
If a page is to be evicted before it is fully dirty then only
the dirty segment is flushed. When flushing a cache page, if it
contains more than one dirty segment, a read-modify-write will
be performed. This approach allows one read and one write
per file stripe in the worst case and helps avoiding unaligned
I/O access by flushing partially filled cache pages.

We have performed additional experimentation to observe
the effect of varying memory pressures on overall I/O per-
formance. S3D I/O kernel is used with the sub-array size of
globally block-partitioned array along X-Y-Z dimensions, a
constant 50 × 50 × 50. This produces approximately 15.26
MB of write data per process per checkpoint. Keeping all other
parameters constant, we reduce the cache pool size to trigger
eviction.

6

TABLE I
COMPARISON OF TECHNICAL SPECIFICATIONS BETWEEN FRANKLIN AND ABE

Specification Franklin Abe
Number of Compute Cores 38,288 9,600
Processor Cores per Node 4 8 (Dual socket quad core)

Number of Compute Nodes 9,572 1,200
Processor Intel 64, 2.33 GHz Opteron 2.3 GHz Quad Core
Memory 8 GB/node (2 GB/core) 8 GB/node (1 GB/core)

Network Interconnect SeaStar2 InfiniBand
Compute Node Operating System Compute Node Linux (CNL) Red Hat Enterprise Linux 4 (Linux 2.6.18)

Parallel Programming Models Cray MPICH2 MPI MVAPICH 2 (v. 2-1.2)
File System Lustre v. 1.6.5-2 (Two /scratch file systems; 436 TB) Lustre (100 TB) v. 1.6

Number of OSTs 48 for each scratch (used 48) 180 (used 128)
Theoretical IO Bandwidth 350 MB/sec x 48 = 16.4 GB/sec -

File Stripe Size (Smallest Lock granularity) 1 MB 1 MB

42.67 32.94

0.86
3.23

30

40

50

60

70

Effect of Cache Pages Eviction

Others

Close Time

17.11 21.3

42.67 32.94

0.86
3.23

0

10

20

30

40

50

60

70

No Eviction Full Page Eviction

Effect of Cache Pages Eviction

Others

Close Time

Write Time

Fig. 10. Time distribution of I/O operations of S3D I/O kernel on
Franklin under varying cache pool sizes. Number of Checkpointing Files
= 10, Number of Application Processes = 4096, Number of Delegates =
192, Data Generated = 610.35 GB, Data/Delegate/File 325.12 MB (No
Eviction). Cache pool size is 2GB/delegate so data fits in the cache and
flushed at MPI_file_close() only. MPI_file_write() time mainly
encompasses communication, cache management, memory copy etc. (Full
Page Eviction). Cache pool size is 256MB/delegate, so cache page eviction
occurs during MPI_file_write() calls. Eviction of Fully dirty pages
alleviates some flushing cost at the time of MPI_file_close(). Overall
I/O time remains the same.

If the total data received by a delegate do not fit in the cache
pool then some of the pages are flushed to file system during
MPI_file_write(). If data fits in the delegate cache pool
then cache pages are flushed during MPI_file_close().
Figure 10 shows time spent in MPI_file_write() and
MPI_file_close() with and without cache pages evic-
tion. In this evaluation, data received by each delegate is
approximately 325.12 MB. Cache pool size per delegate is
varied from 2GB to 256 MB.

For first case, cache pool size is big enough to not to
cause any eviction before file close. We can see that only
a small fraction of the total time is spent in performing
MPI_file_write() calls. File close takes most of the time
as in the absence of eviction, all the I/O is performed at file
close. In this case I/O accesses at close time are file stripe
aligned which is the lock boundary for Lustre.

In second case, cache pool size per delegate is limited
to 256 MB. In this case eviction will be triggered dur-
ing MPI_file_write() operation to accommodate in-

coming accesses. Delegate cache may be able to hold ap-
proximately maximum of 78% of the total data in the
memory at a given time. Eviction policy is such that the
fully dirty cache pages are chosen to evict. In this ex-
ample an average of 69.5 pages per delegate per check-
pointing file were evicted. Overall time taken by these
two cases is almost the same but there is shift of timing
from MPI_file_close() to MPI_file_write(). Now
MPI_file_write() takes more time to complete because
of eviction while MPI_file_close() time is much less
than first case. That essentially means that there are less cache
pages to flushed at close time because significant portion of
evicted data consisted of fully dirty pages.

Time taken by other components of application include file
open operation, cost of cache management, and memory copy
etc.

From this evaluation we know that eviction does not hurt the
performance in I/O delegation if fully dirty pages are chosen
for eviction. It just shifts time taken in this flushing from
MPI_file_close() to MPI_file_write().

D. Exploring Extent Based Locking Algorithm

Lustre’s internal extent based lock implementation is adapt-
able to the I/O load and access patterns. Lock heuristic changes
with changing number of clients contending for the locks. It
is possible that locks may be granted according to different
heuristics, depending on the arrival time of the requests to a
shared file.

Each I/O server is the lock manager of the stripes stored on
that server and it grants the locks growing downwards covering
all the stripes to the largest uncontended extent. If the number
of processes contending for locks is more than an internally
specified threshold, locks will grow only upward[40]. If some
of the locks are already held by a set of clients before upward
lock extension is triggered, then the clients do not have to
give up the locks they previously held. New requests may be
granted locks grown upward until the uncontended extent. As
I/O delegate flushes stripe by stripe in ascending order of their
offsets, alternated by other stripes from other clients, mix of
downward and upward grown locks may prevent unnecessary
lock relinquishing. This scenario may prevent degradation of
I/O performance.

In figure 7(c), it is difficult to identify the effect of contin-
uous changing of lock acquisition heuristics during the execu-

7

(c)(b)(a)

1024
2048
4096

I/O Time (Mapped)
Comm Time(Mapped)
I/O Time (Unmapped)

Comm Time(Unmapped)

4948 96 14
4

20
1

19
2

14
597

 0

 20

 40

 60

 80

 100

48 96 14
4

20.54

42.58

82.41

10.4

8192

MappedUnmapped

I/O Time Vs Problem Size (Mapped)S3DIO −I/O Bandwidth (2048) S3DIO − Time (2048)

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

I/O
 B

an
dw

id
th

 (G
B/

se
c)

 70
 60
 50
 40
 30
 20
 10

 0

 14
 12
 10

 8
 6
 4
 2
 0

38
4

19
248 96 20
1

19
29749 14
5

14
4

Number of Delegate Processes

Fig. 11. S3D IO Kernel Analysis on Franklin: (a) I/O Performance comparison of perfectly mapped and unmapped I/O access patterns
generated by I/O delegate system for a fixed problem size (b) Breakdown analysis of total time spent in communication and system I/O.
Unmapped delegates-to-server case provides much slower I/O as compared to mapped case, while communication time is unchanged (c) I/O
time for perfectly mapped I/O access patterns with increasing problem size.

tion of an application. We conducted an additional set of ex-
periments with relatively larger number of delegates accessing
an I/O server. We have conducted some additional experiments
to compare performance of mapped and unmapped delegate-
to-server assignment strategies shown in figures 4 and 5.

Figure 11(a) shows I/O bandwidths achieved by both
mapped and unmapped delegates-to-server cases. By keeping
everything else constant, we vary the number of I/O delegates
to observe any change in I/O performance. If the number of
delegates is a co-prime to the number of I/O servers then all
the delegates access all the servers, and such I/O pattern limits
the advantages of extent based locking protocol. Given the
number of I/O servers 48 on Franklin, we chose the number
of delegates 49, 97, 145, and 201 to violate delegates-to-
server mapping. It is evident from figure 11 that I/O bandwidth
decreases significantly for unmapped delegates-to-server case.
On the other hand, mapped case provides much higher I/O
bandwidth than unmapped case.

Figure 11(b) provides a break down analysis of total time
spent in performing I/O operations. Total time spent in com-
pleting the I/O operations can be divided in to two main
components 1) I/O time, and 2) Communication time. We
measured the time spent in the write() calls and refer them
as I/O time. The rest of the time is referred as communication
time, as the operations are mostly data transfer between
application and delegate processes.

Figure 11(b) shows the communication and I/O time for
both mappings from figure 11(a). This chart shows that
communication time does not deviate much by changing the
number of delegate processes from a ‘multiple of servers’ to
the closest ‘co-prime’ but I/O time increases drastically. Also
Figure 11(b) confirms that dramatic decrease in I/O bandwidth
in unmapped case is (figure 11 (a)) triggered by the slow I/O
only. In case of mapped delegate-to-server case, the number
of delegate processes accessing one I/O server is limited to
1, 2, 3, and 4 only. By the adaptive nature of lock granting
heuristic, we expect some benefits from extent based locking

protocol even though multiple delegates accesses one server.
Changing the number of delegates from 48 to 49 violates
the perfect mapping between delegates-and-I/O servers. As
each I/O server is contended by all the delegates, extensive
lock confliction at I/O servers may be introduced. Lustre lock
acquisition heuristic may adapt to this development by limiting
or suspending extent based locking. For mapped case, no
I/O performance degradation is seen in figure 7(c) and 11(b)
with the increase in number of delegates. We attribute this
observation to dynamic adaptation of extent based locking
heuristics during he life time of an application. We believe
that in changing the direction of lock growth may only benefit
the clients which are holding the downward grown locks. We
conclude that by keeping the number minimal we may avoid
serious performance degradation.

Another lock acquisition heuristic comes into the effect
when even larger number (32 and above for Franklin) of clients
access an I/O server. For more than 32 clients accessing an I/O
server, extension of lock is limited to 32 MB range only. When
a large number of clients are accessing one server, reducing
the range of lock extension may help reducing the overheard
of lock acquiring-relinquishing-reacquiring phase. This will
essentially allow all the process to compete in the range of
32 MB only[40].

Unmapped case performs slower than mapped case but as
the number of delegates are increased, unmapped case im-
proves gradually. In fact, the I/O time of unmapped delegate-
to-server case decreases with the increase in number of del-
egates accessing the shared file. This may also be attributed
to the adapted lock heuristic. When lock is highly contended,
Lustre switches from extent-based mode to as-requested mode
and hence avoids further lock conflicts.

For perfect mapping between delegate-to-servers, chart 11
(c) demonstrates the effect of increased problem size on I/O
component to the total time. Each curve in this chart represents
the I/O time for a specific problem size with varying number
of I/O delegate processes. Problem size is doubled by doubling

8

the number of application processes from 1024 to 2048 and so
on. We observe that as the problem size is doubled, I/O time
is also doubled and does not deteriorate further. This shows
that if a perfectly mapped I/O access pattern is chosen then
the I/O cost may longer be a bottleneck with growing problem
size.

These results advocate that in order to utilize extent based
protocol to the full of its potential we need to minimize the
number of clients per I/O server.

REFERENCES

[1] General Parallel File System. http://www-
03.ibm.com/systems/clusters/software/gpfs/index.html.

[2] Frank B. Schmuck and Roger L. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Darrell D. E. Long, editor,
FAST, pages 231–244. USENIX, 2002.

[3] Peter J. Braam et al. The Lustre Storage Architecture. www.lustre.org.
[4] Lustre: A Scalable, High-Performance File System. Whitepaper, 2003.
[5] Feiyi Wang, Sarp Oral, Galen Shipman, Oleg Drokin, Tom Wang, and

Isaac Huang. Understanding lustre filesystem internals. White pa-
per, Oak Ridge National Laboratory. http://wiki.lustre.org/images/d/da/
Understanding Lustre Filesystem Internals.pdf, April 2009. Available
online (76 pages).

[6] R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonen. Implementing
mpi-io atomic mode without file system support. In CCGRID ’05:
Proceedings of the Fifth IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’05) - Volume 2, pages 1135–1142,
Washington, DC, USA, 2005. IEEE Computer Society.

[7] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Im-
proved parallel i/o via a two-phase run-time access strategy. SIGARCH
Comput. Archit. News, 21(5):31–38, 1993.

[8] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and
collective i/o in romio. In In Proceedings of the Seventh Symposium on
the Frontiers of Massively Parallel Computation, pages 182–189. IEEE
Computer Society Press, 1998.

[9] Message Passing Interface Forum. MPI: A Message Passing
Interface Standard, Version 1.1, June 1995. http://www.mpi-
forum.org/docs/docs.html.

[10] David Kotz. Disk-directed I/O for MIMD Multiprocessors. In OSDI,
pages 61–74, 1994.

[11] Wei keng Liao, Kenin Coloma, Alok Choudhary, Lee Ward, Eric Russell,
and Neil Pundit. Scalable design and implementations for mpi parallel
overlapping i/o. IEEE Transactions on Parallel and Distributed Systems,
17(11):1264–1276, 2006.

[12] Kenin Coloma, Avery Ching, Alok N. Choudhary, Wei keng Liao,
Robert B. Ross, Rajeev Thakur, and Lee Ward. A new flexible MPI
collective I/O implementation. In CLUSTER. IEEE, 2006.

[13] Nawab Ali, Philip H. Carns, Kamil Iskra, Dries Kimpe, Samuel Lang,
Robert Latham, Robert B. Ross, Lee Ward, and P. Sadayappan. Scalable
i/o forwarding framework for high-performance computing systems. In
CLUSTER, pages 1–10. IEEE, 2009.

[14] Javier Garcı́a Blas, Florin Isaila, Jesús Carretero, Robert Latham, and
Robert Ross. Multiple-level MPI file write-back and prefetching for
Blue Gene systems. In Proc. of the 16th European PVM/MPI User’s
Group Meeting (Euro PVM/MPI 2009), September 2009.

[15] Seetharami Seelam, I-Hsin Chung, John Bauer, Hao Yu, and Hui-Fang
Wen. Application level i/o caching on blue gene/p systems. In IPDPS,
pages 1–8. IEEE, 2009.

[16] Yong Chen, Xian-He Sun, Rajeev Thakur, Huaiming Song, and Hui
Jing. Improving parallel i/o performance with data layout awareness. In
CLUSTER, 2009.

[17] R. Thakur, W. Gropp, and E. Lusk. Users Guide for ROMIO: A
High-Performance, Portable MPI-IO Implementation. Technical Report
ANL/MCS-TM-234, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, October 1997.

[18] Wei-keng Liao and Alok Choudhary. Dynamically adapting file domain
partitioning methods for collective i/o based on underlying parallel
file system locking protocols. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ,
USA, 2008. IEEE Press.

[19] Dick Oswald David Knaak. Optimizing MPI-IO for Applications on
Cray XT Systems. White paper, Cray Inc, May 2009. Available online
(20 pages).

[20] Mark Pagel, Kim McMahon, and David Knaak. Scaling the MPT
software on the cray XT5 system and other new features. In Cray XT
Cray Users’ Group Meeting, May 4-7, 2009, Atlanta, GA., May 2009.

[21] Franklin (Cray xt4). http://www.nersc.gov/nusers/resources/franklin/.
[22] Arifa Nisar, Wei-keng Liao, and Alok Choudhary. Scaling parallel I/O

performance through I/O delegate and caching system. In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[23] George Almasi, Charles Archer, Jose G. Castanos, C. Chris Erway,
Philip Heidelberger, Xavier Martorell, Jose E. Moreira, Kurt Pinnow,
Joe Ratterman, Nils Smeds, and Burkhard. Implementing MPI on the
BlueGene/L Supercomputer.

[24] R. D. Loft. Blue Gene/L Experiences at NCAR. In IBM System Scientific
User Group meeting (SCICOMP11), 2005.

[25] José E. Moreira, Michael Brutman, José G. Castaños, Thomas En-
gelsiepen, Mark Giampapa, Tom Gooding, Roger L. Haskin, Todd
Inglett, Derek Lieber, Patrick McCarthy, Michael Mundy, Jeff Parker,
and Brian P. Wallenfelt. Blue gene system software - designing a highly-
scalable operating system: the blue gene/l story. In SC, page 118. ACM
Press, 2006.

[26] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete Beckman.
Zoid: I/o-forwarding infrastructure for petascale architectures. In PPoPP
’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pages 153–162, New York, NY,
USA, 2008. ACM.

[27] The zeptoos project. http://www.zeptoos.org/.
[28] Hao Yu, R. K. Sahoo, C. Howson, George. Almasi, J. G. Castanos,

M. Gupta, Jose. E. Moreira, J. J. Parker, T. E. Engelsiepen, Robert Ross,
Rajeev Thakur, Robert Latham, and W. D. Gropp. High performance
file I/O for the BlueGene/L supercomputer. In Proceedings of the 12th
International Symposium on High-Performance Computer Architecture
(HPCA-12), February 2006.

[29] Phillip M. Dickens and Jeremy Logan. Towards a high performance
implementation of MPI-IO on the Lustre file system. In Proceedings of
GADA’08: Grid computing, high-performAnce and Distributed Applica-
tions. Monterrey, Mexico, November 2008.

[30] L. M. Sánchez Garcı́a, Florin Isaila, Félix Garcı́a Carballeira, Jesús Car-
retero Pérez, Rolf Rabenseifner, and Panagiotis A. Adamidis. A new i/o
architecture for improving the performance in large scale clusters. In
Marina L. Gavrilova, Osvaldo Gervasi, Vipin Kumar, Chih Jeng Kenneth
Tan, David Taniar, Antonio Laganà, Youngsong Mun, and Hyunseung
Choo, editors, ICCSA (5), volume 3984 of Lecture Notes in Computer
Science, pages 108–117. Springer, 2006.

[31] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-
directed collective i/o in panda. In In Proceedings of Supercomputing
'95, 1995.

[32] Bill Nitzberg and Virginia Lo. Collective buffering: Improving parallel
I/O performance. In HPDC ’97: Proceedings of the 6th IEEE Interna-
tional Symposium on High Performance Distributed Computing, page
148, Washington, DC, USA, 1997. IEEE Computer Society.

[33] Robert Bennett, Kelvin Bryant, Joel Saltz, Alan Sussman, and Raja
Das. Framework for optimizing parallel i/o. Technical report, Univ.
of Maryland Institute for Advanced Computer Studies Report No.
UMIACS-TR-95-20, College Park, MD, USA, 1995.

[34] Robert Bennett, Kelvin Bryant, Alan Sussman, Raja Das, and Joel Saltz.
Jovian: A Framework for Optimizing Parallel I/O. In Proceedings of the
Scalable Parallel Libraries Conference, pages 10–20, Mississippi State,
MS, 1994. IEEE Computer Society Press.

[35] Wei keng Liao, Avery Ching, Kenin Coloma, Alok N. Choudhary, and
Lee Ward. An Implementation and Evaluation of Client-Side File
Caching for MPI-IO. In IPDPS, pages 1–10. IEEE, 2007.

[36] Wei keng Liao, Avery Ching, Kenin Coloma, Arifa Nisar, Alok Choud-
hary, Jackie Chen, Ramanan Sankaran, and Scott Klasky. Using MPI file
caching to improve parallel write performance for large-scale scientific
applications. In SC. The ACM/IEEE Conference on Supercomputing,
November 2007.

[37] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-IO Portably
and with High Performance. In the Sixth Workshop on I/O in Parallel
and Distributed Systems, pages 23–32, May 1999.

[38] Abe (teragrid intel-64 cluster)
. http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64Cluster/.

[39] HDF Group. Hierarchical Data Format, Version 5. The National Center
for Supercomputing Applications. http://hdf.ncsa.uiuc.edu/HDF5.

[40] Lustre mailing list. http://www.mail-archive.com/lustre-
discuss@lists.lustre.org/msg05640.html.

9

http://wiki.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf
http://wiki.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf

	Background and Related Work
	Distributed Lock Management in Parallel File Systems
	MPI-IO
	Cray XT MPI Optimizations
	I/O Delegation and I/O Forwarding
	File Domain Partitioning in Collective I/O

	Implementation of I/O Delegate System
	I/O Request Flow
	File Caching
	Running I/O Delegates on Multi-core Compute Nodes
	MPI-IO Semantics

	Experimentation
	S3D I/O
	FLASH I/O
	Cache Eviction
	Exploring Extent Based Locking Algorithm

	References

