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ABSTRACT

Bayesian-robust Algorithms Analysis

with Applications in Mechanism Design

Aleck Christopher Johnsen

This thesis studies Bayesian-robustness of algorithm design. The main perspective

requires for a single fixed algorithm that its performance is an approximation of the

optimal performance when its inputs are independent and identical draws (i.i.d.) from

every unknown distribution which is an element of a known, large class of distributions.

Formally this information framework is the prior independent setting. Generally this

thesis studies design structure that is common to arbitrary algorithms problems for which

the prior independent setting is appropriate. The questions addressed by this thesis were

largely motivated by questions within mechanism design and thus application of its general

results focuses on mechanism design problems.

As a major contribution, this thesis gives a method – the Blends Technique – that is

agnostic to algorithm problem setting for proving lower bounds on the prior independent

approximation factor of any algorithm. The method constructs a correlated distribution

over inputs that can be generated both as a distribution over i.i.d. good-for-algorithms
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distributions and as a distribution over i.i.d. bad-for-algorithms distributions. Prior in-

dependent algorithms are upper-bounded by the optimal algorithm for the latter distri-

bution even when the true distribution is the former. Thus, the ratio of the expected

performances of the Bayesian optimal algorithms for these two decompositions is a lower

bound on the prior independent approximation ratio. The structure of the Blends Tech-

nique connects prior independent algorithm design, Yao’s Minimax Principle, information

design, tensor decomposition, and benchmark design for the prior free information setting

(i.e., worst-case over inputs / competitive analysis). This framework is applied to give

novel lower bounds on canonical prior independent mechanism design problems.

Another main contribution of this thesis is to use the objective of Bayesian-robustness

to inform prior free benchmark design. Benchmarks are free parameters in worst-case al-

gorithm design and choice of benchmark is of critical concern for algorithm analysis. This

thesis gives a framework for optimal benchmark design from a requirement that approxi-

mation of a prior free benchmark must further hold as a prior independent approximation

guarantee. Subsequently, it shows that benchmark design from this framework is equiva-

lent to optimal prior independent algorithm design.

This thesis includes the solution to a central open question in prior independent mech-

anism design, namely it identifies the prior independent revenue-optimal mechanism for

selling a single item to two agents with i.i.d. values from a regular distribution. This op-

timal mechanism is used in the construction of an optimal solution to the corresponding

benchmark design problem.
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CHAPTER 1

Introduction

This thesis studies Bayesian-robust algorithms analysis. Stochastic models are en-

abling theoretical understanding of algorithms beyond those provided by classical worst-

case treatments (see Roughgarden, 2019). These models are especially interesting for al-

gorithm design problems with information theoretic constraints such as online algorithms,

mechanism design, streaming algorithms, etc.

Within the stochastic framework, the overarching setting for thesis is prior independent

algorithm design: n inputs are independent and identical draws (i.i.d.) from an unknown

distribution F , which comes from a known class of distributions F . Informally, “inputs

are each drawn from a common distribution but we do not know what the distribution

is.” Prior independent algorithms are measured by their worst-case (over distributions)

approximation to the performance of the optimal algorithm which knows the distribution.

Thus, the goal of this setting is to identify the algorithm A∗ that minimizes the worst-case

ratio of expected optimal performance to the expected performance of A∗ for the same

distribution, thereby optimizing a measure of Bayesian-robustness.

Application Settings. The main application of this thesis is mechanism design. One or

more items are allocated to n strategic agents with private types; design of mechanisms

is subject to incentivizing the agents to participate, without knowing exactly how their

types inform their behavior. A minor application of this thesis is online algorithms. An



15

algorithm designer receives a sequence of n inputs and must commit to a decision before

seeing each new individual input, without knowing the future. Prior independent analyses

in mechanism design (e.g., Dhangwatnotai et al., 2015) and online learning (e.g., Auer

et al., 2002) are i.i.d. respectively over values of agents in a mechanism and rounds of

online inputs.

Thus in both settings, an algorithm’s information about the input is structurally lim-

ited, and there is no single algorithm that is optimal given all realizations of the unknown

inputs. Typically, mechanism design and online algorithms are treated as separate realms

of research. This thesis gives many results that are domain-agnostic, i.e., from a unified

framework that abstracts a common environment of incomplete information.

The Blends Technique for Prior Independent Lower Bounds. As a major con-

tribution, this thesis develops a novel, algorithm-agnostic method for establishing lower

bounds on the performance of prior independent algorithms (for classes of i.i.d. distribu-

tions). The method is based on Yao’s Minimax Principle (Yao, 1977). As just described,

the prior independent setting asks for the designer to pick one algorithm that is good

on an adversary’s chosen worst-case distribution. Yao’s Minimax Principle allows the

order of moves of the designer and adversary to be swapped. Thus, the prior independent

optimal approximation ratio can be equivalently identified by an adversary choosing a

distribution over prior distributions and then the designer choosing an optimal algorithm

in response. Note, the class of i.i.d. distributions is not closed under convex combination

(which adds a critical degree of technical complexity to the analysis). Consequently, the

adversary’s distribution over distributions – called a blend – gives generally a symmetric,

correlated distribution over inputs.



16

The main object of study from this minimax approach is dual blends, which are pairs

of distinct distributions over i.i.d. distributions of inputs that induce the same correlated

distribution. To establish a prior independent lower bound, the method considers dual

blends where one side of the dual blend mixes over good-for-algorithms distributions and

the other side mixes over bad-for-algorithms distributions. The adversary can choose the

mix over good-for-algorithms distributions in which case the expectation over Bayesian

optimal performances for this mix will define the benchmark of the prior independent

framework. On the other hand, the algorithm cannot tell the two blends apart and thus

its expected performance is upper bounded by the expectation over performances of the

Bayesian optimal algorithms for the bad-for-algorithms mix. The gap that results from

this Blends Technique between these expected performances is a lower bound on prior

independent approximation.

As a simple example, consider the mechanism design problem of posting a price to a

single agent with value v ∈ [1, h]. (Here the restriction to i.i.d. distributions is trivial as

there is only one agent.) A class of good-for-algorithms distributions is given by point

masses. Note that the Bayesian optimal pricing mechanism for a point mass is to post

identically the same price as the value (at which the agent always buys). A class of bad-

for-algorithms distributions is given by the equal revenue distribution with cumulative

distribution F (v) = 1−1/v and a point mass of 1/h at h. The equal revenue distribution has

the property that the expected revenue from any posted price is 1 (the agent buys if value

is at least the price). Now consider the dual blend where the good-for-algorithms side is

chosen to be the equal revenue distribution over point masses and the bad-for-algorithms

side is chosen to be a point mass on the equal revenue distribution. The expected revenue
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over Bayesian optimal algorithms (in response to point mass distributions) from the good-

for-algorithms side is the expected value of the equal revenue distribution on [1, h], i.e.,

1 + lnh. The expected revenue from the bad-for-algorithms side is 1. This establishes a

lower bound of 1 + lnh on the approximation factor of single-agent posted pricing. (In

fact, this example analysis is tight due to a matching upper bound from Hartline and

Roughgarden (2014).)

There are two challenges in establishing lower bounds for prior independent algorithms

via the blends method. The first challenge is in sufficiently understanding the Bayesian

optimal algorithm for the class of distributions under consideration. In several of the

central studied areas of Bayesian algorithms, this first challenge is solved in closed form.

Bayesian optimal mechanisms are identified broadly by Myerson (1981). For online learn-

ing with payoffs that are i.i.d. across rounds, the Bayesian optimal algorithm is trivial, it

selects the action with the highest expected payoff (which is the same in each round). Of

course, when closed forms are not available, bounds on the Bayesian optimal performance

can be employed instead. An important observation of the method of dual blends is that

not only are Bayesian optimal algorithms used to define the benchmark, but they can

also be solely-sufficient to get non-trivial bounds on any algorithm’s prior independent

approximation. I.e., they play this role without any reference at all to a specific algorithm.

The second challenge of the blends method is in identifying dual blends where the

expected Bayesian-optimal performances for good-for-algorithms and bad-for-algorithms

distributions are significantly separated. In pursuit of this challenge, this thesis gives

two general approaches for constructing dual blends for inputs of size two. (Many of

the challenge problems in prior independent mechanism design are for inputs of size two,
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e.g., this thesis builds on Allouah and Besbes (2018).) The first approach is based on

the observation that when the density function of a correlated distribution on inputs

of size two can be written as a separable product of independent functions per order

statistic of the inputs, then it can be decomposed into two distinct distributions over i.i.d.

distributions. The second approach considers one side of the dual blend constructed from

any scaled class of distributions with the other side given by the inverse-distributions of

these (for which, as a class, the roles of values and scales are reversed in comparison to

the original class).

Overall, the Blends Technique is an elegant method that brings together prior in-

dependent algorithm design, Yao’s Minimax Principle, prior free benchmark design (see

next), the economics topic of information design, and the mathematics/ computer science

topic of tensor decomposition. This thesis applies the Blends Technique to two canonical

problems in mechanism design. Discussion of these applications is given below as part of

Results in Mechanism Design.

Optimal Benchmark Design. There is a second leading approach for robust optimiza-

tion of algorithm design which measures performance in worst-case over inputs against

a benchmark function. This approach to algorithm design is typically named prior free

in mechanism design (which this thesis adopts) and competitive analysis in online algo-

rithms. Critically, the benchmark function is a free parameter in prior free algorithm

design and choice of benchmark is material. In fact, in comparing prior independent

and prior free design, a determination of which setting is more-robust depends on the

prior free benchmark function (which theoretically may be arbitrarily small). This thesis

formalizes a first problem for designing a good benchmark for prior free approximation
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and connects this benchmark design problem to prior independent optimization in a spe-

cific way – for a large class of distributions (of interest to a prior independent algorithm

problem), approximation of a benchmark must induce a guarantee of the same prior in-

dependent approximation. (This property of benchmarks is normalization, (Hartline and

Roughgarden, 2008)). Benchmark design is motivated from the following philosophy.

The choice of prior free benchmark impacts the ability of approximation with respect

to the benchmark to distinguish between good and bad algorithms. On one hand a

benchmark should be an upper bound on what is achievable by an algorithm; otherwise,

approximating it does not necessarily mean that an algorithm is good. On the other hand

it should not be too loose an upper bound; otherwise, neither good nor bad algorithms

can obtain good approximations and the degree to which good and bad algorithms can

be distinguished via the benchmark is limited.

As a simple example, consider comparing the revenue of two mechanisms (below) for

selling digital goods1 to n agents with values v = (v1, . . . , vn) bounded on [1, h] to one

of two benchmarks, the sum-of-values benchmark
∑

i vi and the price-posting-revenue

benchmark maxi i v(i) where v(i) is the ith highest value. To ensure benchmarks give an

upper bound on revenue, Hartline and Roughgarden (2008) suggested that the benchmark

satisfies the property that, for any distribution on inputs from a given family of distri-

butions, the expected benchmark (over the same distribution of inputs) be at least the

expected performance of the optimal mechanism that knows the distribution. This prop-

erty is exactly normalization above, thus inducing prior independent guarantees. Both

1 In a digital goods auction, there are n copies of an item for sale and each agent has one-unit-demand.
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the sum-of-values and price-posting-revenue benchmarks are normalized (Hartline and

Roughgarden, 2008).

Not all normalized benchmarks are equally good at discriminating between good and

bad mechanisms. Consider the following two mechanisms. The random-sampling mech-

anism partitions the agents at random and offers the optimal price from each part to

the other part (Goldberg et al., 2006). The random-power-pricing mechanism posts a

take-it-or-leave-it price drawn from the uniform distribution on powers of two in [1, h]

(Goldberg and Hartline, 2003). These mechanisms and the benchmarks of the preceding

paragraph are related as follows. On all inputs v, the sum-of-values benchmark exceeds

the random-power-pricing mechanism by a Θ(log h) factor. On all inputs v, the random

sampling mechanism and the price-posting-revenue benchmark are Θ(1). Moreover, the

performance of the latter benchmark and mechanism are always sandwiched between the

former benchmark and mechanism and can equal either of them up to Θ(1). Thus, the

loose benchmark of sum-of-values does not discriminate between good mechanisms like

random-sampling and bad mechanisms like random-power-pricing.

The preceding discussion suggests a benchmark design problem of identifying the

normalized benchmark to which the tightest approximation is possible. The tightest ap-

proximation possible for a benchmark is its best-response resolution, as up to this factor

the benchmark cannot distinguish between good and bad algorithms. The sum-of-values

benchmark has logarithmic resolution while the price-posting-revenue benchmark has con-

stant resolution.

Returning to the general algorithms setting, the outline of the approach so far to

benchmark design is summarized as follows:
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• A class of distributions over inputs induces a class of normalized benchmarks.

• The benchmark admitting the tightest approximation is optimal, i.e., the bench-

mark having smallest best-response resolution.

• The algorithm achieving this approximation is the prior free optimal algorithm

for the benchmark.

• Normalization of the benchmark implies that the prior free approximation factor

of an algorithm (to the benchmark) is at least its prior independent approxima-

tion factor (for the normalizing class of distributions).

A natural question is how this prior free approach – and its optimal algorithm – compares

to directly identifying the prior independent optimal algorithm, i.e., the one with the

best worst-case-over-distributions approximation to the Bayesian optimal algorithm. A

main contribution of this thesis is the general result that optimal benchmark design is

equivalent to prior independent optimization. Specifically, the prior free optimal algorithm

for the optimal benchmark is the prior independent optimal algorithm and further, the

optimal benchmark is simply the prior independent optimal algorithm scaled up by its

approximation factor (so as to satisfy the normalization constraint).2 Consequently, it is

not possible to identify optimal benchmarks and their corresponding optimal algorithms

when the solution is unknown for the prior independent optimization algorithm problem.

There is an important negative interpretation of this equivalence result (i.e., that the

prior free benchmark optimization problem and the prior independent optimization prob-

lem give the same answer). One reason to prefer prior free analysis over prior independent

2 The analysis that proves this equivalence is straightforward and, perhaps, obvious in hindsight. As
will be described next, there is an alternative measure of resolution which, in hindsight, may be viewed as
a relaxation of best-response resolution. The prior literature strongly suggested that benchmark design
from either definition was equivalent; this thesis includes the result that the relaxation is sometimes lossy.
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analysis is that, intuitively, prior free should be more robust by measuring approxima-

tion pointwise per input vector v rather than in expectation per distribution. (This is

implemented formally from normalization.) However, the equivalence result described

above indicates that there is no added robustness from the prior free approximation of

the optimal benchmark (above the robustness of prior independent analysis).

Generally, there are environments where increased robustness can informally be ob-

served from prior free approximation of alternative benchmarks. An example is the best-in-

hindsight benchmark of the expert learning problem. This thesis analyzes expert learning

to make explicit the challenge to equivalence of prior independent design and the given

framework for benchmark design.

Towards a possible improvement to benchmark design, observe that the approach of

normalized-benchmark optimization via resolution can be generalized by abstracting to

allow consideration of other techniques which establish provable lower bounds on approxi-

mation. A second such method to establish a lower bound is measured in worst-case-over-

distributions as the approximation of the expected benchmark (over inputs from a distri-

bution) by the optimal algorithm which knows the distribution (Goldberg et al., 2006)). In

fact, Hartline and McGrew (2005) used the prominent equal revenue distribution (EQR) of

mechanism design to prove that this approach is tight for a large class of benchmarks and

n = 3 agents; and Chen et al. (2014) used EQR to prove that this approach is tight for a

large class of benchmarks and a general number n of agents. This measure of lower bound

on approximation from Goldberg et al. (2006) is a benchmark’s normalization-symmetric

resolution, as it is measured “symmetrically” to normalization constraints. This thesis

includes comparison of best-response versus normalization-symmetric resolution measures
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by which it realizes: optimizing the latter yields smaller “absolute” resolution but the op-

timal algorithm approximation to its benchmark must be larger (tautologically by design

of best-response resolution).

Results in Mechanism Design. A last main contribution of this thesis is identification

of the optimal, scale-invariant, truthful prior independent mechanism for the setting of

maximizing revenue from the sale of a single item to two agents for the standard class

of i.i.d. regular value distributions.3 Its optimal approximation factor is ≈ 1.907. Thus,

per the previous discussion of an equivalence between prior independent algorithm design

and (best-response resolution) benchmark design, the optimal prior free benchmark is also

identified by corollary (and with identical optimal resolution ≈ 1.907).

This prior independent mechanism design result answers a major question left open

from Dhangwatnotai et al. (2015), Fu et al. (2015), and Allouah and Besbes (2018). The

optimal mechanism is a mixture between the Second Price Auction (SPA), where each

agent is offered a price equal to the highest of the other agents’ values, and the auction

where these prices are scaled up by a factor of about ≈ 2.44. This solution is the first

example of a prior independent optimal mechanism that arises as the solution to a non-

trivial optimization problem and is not a standard mechanism from the literature (though

the mechanism does fall into the class of lookahead mechanisms described by Ronen (2001)

and has the same form as mechanisms used to prove upper bounds in Fu et al. (2015)

and Allouah and Besbes (2018)). Further, the result identifies the worst-case class of

distributions (when values have support [0,∞)), specifically by showing that the optimal

3 Allouah and Besbes (2018) conjecture that the restriction to scale-invariance within this setting is
without loss. The author of this thesis endorses this conjecture.
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mechanism and worst-case distributions are mutual-best-responses (and are thus a mixed

Nash equilibrium).

Some context follows regarding the restriction to mechanisms that are (a) dominant

strategy incentive compatible (DSIC), i.e., where truthtelling is a good strategy for each

agent regardless of the strategies of other agents, and (b) scale-invariant. It is known

that there are environments for prior independent mechanism design where DSIC is not

without loss (Feng and Hartline, 2018). The restricted class of DSIC mechanisms is

interesting even if it is with loss. It is not known whether scale-invariance is without loss

or not.3 Without assuming scale-invariance, the question is open since Dhangwatnotai

et al. (2010).

As previously mentioned, this thesis further includes novel results stating lower bounds

within mechanism design from implementation of the Blends Technique. The settings for

these results are similar but not identical to the setting of the optimal mechanism just

identified. All three settings have the following in common: they are two-agent, single-

item auction environments. Otherwise, distinct parameters from the optimal result above

are italicized.

Both blends-induced lower bound results are applied within finite value support [1, h]

and thus drop the assumption of scale-invariance. (Note, the worst-case distributions of

the optimal analysis above have positive density in both limits approaching 0 and∞ and

thus do not fit into this setting.)

Within the new context of these modifications, the first result considers the objective

of revenue maximization for the standard class of i.i.d. regular value distributions. (i.e.,
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same as above). This thesis uses the Blends Technique to establish a lower bound for this

setting of 23/18 ≈ 1.2777.

While in absolute terms, this lower bound on the optimal prior independent approx-

imation factor does not compare favorably to the tight, scale-invariant factor above of

≈ 1.907, consider the comparison. Intuitively, holding everything else fixed, the prior in-

dependent approximation of an optimal mechanism should be smaller for scale-conscious

mechanisms when values have finite support [1, h] than for scale-invariant mechanisms

when values have infinite support [0,∞). Certainly the optimal mechanism which knows

bounded support will not commit a priori to a markup mechanism (other than possibly the

benign-1-mark-up of the SPA). Thus in the finite-support setting, the 1.907-lower-bound

is unlikely to persist and a lower bound of 1.2777 is meaningful. Comparing approximation

factors indicates the possibility of a price of scale-anonymity.

The second lower-bound result from the Blends Technique considers the objective of

residual surplus maximization (i.e., maximizing: the expected value of the agent who

receives the single-item minus any payments made) for the class of all distributions. For

this residual surplus objective, an upper bound of 4/3 exists as a corollary of Hartline and

Roughgarden (2014). This thesis establishes a lower bound of 1.00623 (no previous lower

bound was known other than the trivial lower bound at 1).

As a point of interest, these two applications of the Blends Technique (a) use the same

example of a dual blend solution to prove their lower bounds, but (b) choose different sides

of the dual blend to effectively set the prior independent benchmark. This observation has a

natural interpretation in terms of information design and a consequence of this dichotomy

is that there is no Blackwell ordering between the two sides of the example dual blend.
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Historical Context: Online Algorithms and Mechanism Design. Online algo-

rithms have been analyzed via a worst-case competitive analysis since Sleator and Tarjan

(1985) with textbooks on the subject, e.g., Borodin and El-Yaniv (1998). In competitive

analysis, the performance of an online algorithm is measured as its worst case ratio to

the optimal offline algorithm. Good online algorithms are known with respect to this

measure for many problems. For some problems this measure is too pessimistic, occur-

ring when no good ratio is achievable by any algorithm and therefore good algorithms

are not meaningfully separated from bad algorithms. The two approaches for resolving

this issue are to either (a) restrict the offline algorithm to which the performance of the

online algorithm is compared or (b) restrict the class of inputs that are considered. For

this thesis, the most relevant example of (a) comes from expert learning where an algo-

rithm’s regret is measured with respect to the best fixed action in hindsight (Littlestone

and Warmuth, 1994; Freund and Schapire, 1997). The most relevant example of (b) for

this thesis is the diffuse adversary model of Koutsoupias and Papadimitriou (2000) which

evaluates an algorithm as the ratio between its expected performance and the optimal

offline performance in worst-case over a class of distributions on inputs.

Less immediately related to this thesis is a systematic study of analysis frameworks for

online algorithms conducted by Boyar et al. (2015). They focus on a canonical two server

problem and show how specific analysis frameworks result in different rankings of standard

algorithms for the problem. These frameworks tend to vary the inputs compared between

the algorithm and the benchmark rather than varying the benchmark itself. For example,

the competitive ratio is the worst case over inputs of the optimal offline performance to

the online algorithm’s performance; while the max-max ratio compares the worst optimal
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offline performance to the worst algorithm performance, with both worst-cases taken over

normalized inputs. They also consider analyses that directly compare algorithms rather

than comparing the algorithms indirectly via a benchmark.

To place in context the development of robust analyses of mechanisms it is helpful

to consider the predominant method for the analysis of mechanisms in economics. In

economics, the preferences of the agents are assumed to be drawn from a known distribu-

tion and the design framework asks for the mechanism that maximizes performance (and

satisfies incentive constraints) in expectation over this prior distribution over preferences.

This area is known as Bayesian mechanism design, e.g., see the survey by Hartline (2013).

Competitive analysis was introduced to the design of mechanisms by Goldberg et al.

(2006). While in online algorithms, the information theoretic barrier to good performance

is the lack of information that comes from the online arrival of the input, for dominant

strategy incentive compatible mechanism design, the information theoretic barrier to good

performance comes from the need to satisfy the incentive constraints of the agents, namely

that truthtelling is an equilibrium. The equivalent of the optimal offline algorithm, namely

the optimal performance without incentives, is rarely an interesting benchmark as no good

ratio is achievable. Both approaches (a) and (b) described above for online algorithms

have been taken. For an example of (a), and with parallels to online learning, Goldberg

et al. (2006) compares mechanisms for selling a digital good to the optimal revenue from

posting a single price to all agents (i.e., the price-posting-revenue benchmark discussed

in the introduction). They and the subsequent literature developed the area of prior

free mechanism design. In this area, the performance of a mechanism is compared to a

benchmark performance in worst-case over inputs.
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Lower bounds are important in the study of good mechanisms. Goldberg et al. (2006)

introduced the following approach for establishing a lower bound on the prior free approx-

imation of any mechanism to a given benchmark. The approach considers a distribution

over inputs for which all (undominated) mechanisms perform the same. For the objective

of revenue maximization this distribution is known as the equal revenue distribution and

has cumulative distribution function F (v) = 1 − 1/v on support [1,∞). An agent with

value drawn from this distribution offered any price p ≥ 1 accepts with probability 1/p

and yields expected revenue 1. Goldberg et al. (2006) show a lower bound on the prior

free approximation to a posted-price-revenue based benchmark of 2.42 in the limit with

the number of agents going to infinity. For the special case of n = 3 agents, the lower

bound is 3.25; Hartline and McGrew (2005) proved that this lower bound in the n = 3

case is indeed tight by giving a mechanism that achieved it. Chen et al. (2014) proved

that the lower bound of 2.42 is tight with a non-constructive proof and, moreover, that

the lower-bounding method gives a tight bound for a large class of benchmarks that, like

the one of Goldberg et al. (2006), are constant in the value of the highest agent.

Hartline and Roughgarden (2008) revisited the choice of benchmark of Goldberg et al.

(2006) and identified the normalization constraint. Recall, they observe that if a bench-

mark satisfies the normalization constraint then mechanisms that approximate the bench-

mark in worst case also approximate the Bayesian optimal mechanism for any distribution

in the class (with no worse an approximation factor). This consequence is known as the

prior independent corollary of approximation of a normalized benchmark.
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A specific normalized benchmark given by Hartline and Roughgarden (2008) is defined

by the supremum of the performance of the Bayesian optimal mechanisms for each distri-

bution in the class. For a digital goods auction with a revenue objective,1 this benchmark

is the price-posting-revenue benchmark (from the benchmark design example above). For

expert learning, this benchmark is the best-in-hindsight benchmark. For auction settings,

Devanur et al. (2015) give a simpler normalized benchmark based on relaxing the incentive

constraints to constraints of envy-freedom.

The following gives an outline of the origins of prior independent analysis and compare

it to the diffuse adversary approach in online algorithms. The prior independent corollary

of prior free approximation of the benchmarks of Hartline and Roughgarden (2008) moti-

vated the consideration of relaxing the assumption of worst-case inputs in a similar fashion

to approach (b) above. A key difference, however, between the diffuse adversary model

for online algorithms (Koutsoupias and Papadimitriou, 2000) and the prior independent

model is that the diffuse adversary model compares algorithms against the optimal offline

benchmark (which relaxes the information theoretic constraints of the online optimization

problem) where as, in prior independent mechanism design, mechanisms are compared to

the optimal mechanism for the distribution (that satisfies the incentive constraints). The

advantage of considering distributions in the diffuse adversary model is more in the spirit

of smoothed analysis. Dhangwatnotai et al. (2015) considered prior independent mech-

anism design as a first-order goal and since then it has been the subject of a flourishing

area of research.
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The prior independent mechanism design framework gives a natural question of identi-

fying the optimal mechanism. This question is framed by a restriction to a class of distri-

butions, but is not subject to an ad hoc performance benchmark as is prior free mechanism

design. Previous literature has only identified optimal prior independent mechanisms in

environments that are special cases of the fully general problem. Hartline and Roughgar-

den (2014) gave the prior independent optimal mechanism for revenue maximization in

the sale of a single item to a single agent with value from a bounded support where the

prior independent optimal mechanism posts a randomized price.

For revenue maximization in the sale of an item to one of two agents with values drawn

from an i.i.d. regular distribution, Dhangwatnotai et al. (2015) show that the Second Price

Auction is a 2-approximation (i.e., as an upper bound). Fu et al. (2015) gave a randomized

mechanism showing that this factor of 2 is not tight. Upper and lower bounds on this

canonical problem were improved by Allouah and Besbes (2018) to be within [1.80, 1.95].

Recall, a main result of this thesis is to identify the prior independent optimal mechanism

for the scale-invariant environment with approximation factor ≈ 1.907.4 For this two

agent problem with i.i.d. values from a distribution in the subset of regular distributions

that further satisfy a monotone hazard rate condition, Allouah and Besbes (2018) show

that the Second Price Auction is optimal. It can now be observed that the optimality of

the Second Price Auction results from constraints binding that are loose when the class

4 The Allouah and Besbes (2018) lower bound of 1.80 was proved under the same additional as-
sumption of scale invariance as the optimal lower bound of 1.91. Further, they reduce the scale-invariant
assumption to an assumption that the allocation for every fixed ratio of values v1/v2 exists in the limit as
the values themselves approach 0. Technically, they show that if limα→0 xi(α · v) always exists, then the
optimal prior-independent mechanism is scale-invariant.
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of distributions includes a special type of distribution (Triangle revenue curves, which do

not satisfy monotone hazard rate).

Final Introductory Notes. An outline of the rest of the chapters of this thesis is

deferred to Section 2.3 where it may generally reference the Preliminaries in Chapter 2.

Additional Related Work sections for topics are presented locally where each topic is

introduced. Future Work discussions are included in the Conclusion in Chapter 7.

The author of this thesis is a co-author of bolded paper references.
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CHAPTER 2

Preliminaries

This thesis considers two directions regarding information settings of robust algorithm

design. Predominantly, we study the prior independent setting which takes n inputs

independently and identically (i.i.d.) drawn from an unknown distribution from a known

class of distributions (Definition 2). Also, as a topic, we study a connection to benchmark

design within the prior free setting which takes n inputs arbitrarily from an input space

with known support. Our main results are generally algorithm-agnostic, i.e., the results

describe analyses that do not depend on the underlying algorithm setting.

As an application, this thesis further states and solves applied prior independent results

within mechanism design which fit in variously to our main, agnostic results. In particular,

our application is single-item, truthful auction environments with n single-dimensional

agents who have linear utility functions. The predominant objective for the auction

designer is to maximize either revenue or residual surplus.

This chapter provides a thorough foundation for the rest of the thesis.

2.1. Setup of Prior Independent Design

Let F be a class of probability distributions with known fixed support V (e.g., [0,∞)).

In the prior independent algorithm design setting (PI), there is a distribution F which is

known to come from the class F and n inputs are drawn i.i.d. from F (thus input space is

Vn). Critically, the algorithm designer does not know the specific F ∈ F . The notation
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F is overloaded to be the cumulative distribution function (CDF), and its probability

density function (PDF) is f .

(On a technical note, this thesis includes a number of parameterized distributions

as components of various analyses. To support notation for these, we an include an

explanation of our distribution naming schemes in Appendix B.1.)

Fix an algorithm design problem that takes n i.i.d. inputs. Denote a class of feasible

algorithms by A and an algorithm in this class by A with expected performance A(v)

for inputs v. When evaluating the performance in expectation over inputs drawn from a

distribution F , we adopt the notation A(F ) = Ev∼F [A(v)]. An algorithm’s performance

for an unknown distribution F is measured against the performance of the optimal al-

gorithm which knows F . With these abstractions, we formally define the Bayesian and

prior independent (PI) optimization problems.

Definition 1. The Bayesian optimal algorithm design problem is given by a distribu-

tion F and class of algorithms A; and solves for the algorithm OPTF with the maximum

expected performance:

OPTF = argmaxA∈AA(F ).(OPTF )

Note that OPTF is an algorithm. Given a distribution F , the expected performance of the

optimal algorithm is OPTF (F ) and is the benchmark that we use for prior independent

algorithms:

Definition 2. The prior independent algorithm design problem is given by a class of

algorithms A and a class of distributions F ; and searches for the algorithm that minimizes
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its worst-case approximation:

αF = min
A∈A

[
max
F∈F

OPTF (F )

A(F )

]
= min

A∈A

[
αFA
]

(αF)

where the value of the program αF is the optimal prior independent approximation factor

for class F and class A (which we leave implicit). The bracketed term is the prior inde-

pendent approximation guarantee of a fixed algorithm A given F and is denoted by αFA

(as shown on the right).

There is a well-understood interpretation of min−max optimization problems as being

2-player games between (1) in our case, an algorithm designer who “plays first” and

commits to an algorithm in the outer min-program, and (2) an adversary who has oracle-

knowledge of the worst-case arguments to “play second” within the inner max-program.1

Subsequently in Chapter 4, this thesis will study lower bounds on prior independent

approximation by fixing adversary strategies up front. Given a space Ω, denote the set of

all possible distributions by ∆(Ω) – i.e., the probability simplex. Denote a distribution over

elements ω ∈ Ω by γ ∈ ∆(Ω). Given a function f : Ω1 × Ω2 → R where Ω1 and Ω2 have

arbitrary dimensions, we denote the expectation of f over arguments ωi ∈ Ωi according

to γi ∈ ∆(Ωi) as f(γi,ωj 6=i) = Eωi∼γi [f(ωi,ωj)], e.g., in Theorem 9. In particular, we

study adversary distributions δ ∈ ∆(F) which are pre-committed distributions over the

distribution-elements of F . (Formally, see Definition 18 for blends.) Thus, inputs will be

drawn using a two-step process: (1) a random distribution F̂ ∼ δ is drawn, and then (2)

n inputs are drawn i.i.d. from F̂ .

1 Because the abstract concept of an adversary is an inherent consequence of nature rather than being
a tangible real-world player, the adversary is generally not subject to algorithm running time constraints
in terms of identifying its optimal play.
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2.2. Application: Mechanism Design Preliminaries

This section gives a formal introduction to mechanism design as the highlighted appli-

cation of our general results in the thesis, which otherwise do not depend on the algorithm

setting. This section is included in order to provide full support for reference as we prove

our technical mechanism design results later (namely, Theorem 5, Theorem 11, and The-

orem 12).

2.2.1. Mechanism Design Basics

We consider mechanism design as it relates to auctions, i.e., an algorithmic setting of

requesting bids from strategic agents, and subsequently allocating items to the agents and

charging them monetary payments. The canonical auction consists of maximizing revenue

(i.e., agent payments) by selling one item to one of n agents (possibly randomly) who each

have a private value for the item drawn i.i.d. from a common probability distribution, with

the distribution known by the auction designer (i.e, Definition 1 applied to this setting).

The optimal auction to maximize revenue (or other simple objectives, we define common

objectives later) in this setting was solved by Myerson (1981).

Each agent i ∈ {1, . . . , n} has value vi in a range of known support, e.g., vi ∈

V = [0,∞) or vi ∈ V = [1, h] for which V is one agent’s value space. Values are

private to the agent and are not known by the mechanism. A profile of n agent val-

ues is denoted v = (v1, . . . , vn); the profile with agent i’s value replaced with z is

(z,v−i) = (v1, . . . , vi−1, z, vi+1, . . . , vn). The list of agent values in decreasing order is

v(1), . . . , v(n).
2

2 Re-arranging agents to be labeled in order is typically without loss of generality. For where it is
helpful, we further abstractly define v(n+1) = 0 to be a default, “sentinel” value.
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A mechanism collects reports from each agent as bids and maps them to (possibly

randomized) allocations and payments. A truthful mechanism is a special case which takes

values v as input rather than arbitrary bids (and must be designed to incentivize agents

to report their values truthfully, see Myerson’s characterization below in Theorem 1).

Specifically, a stochastic social choice function x and a payment function p map a

profile of values v respectively to a profile of allocation probabilities, and a profile of

expected payments. Thus, a truthful mechanism is denoted M = (xM ,pM). Where

the mechanism is clear from context, we will use the simpler notation M = (x,p). We

may also overload notation and write a mechanism’s expected performance as a function

M : vn → R. A mechanism design problem may restrict the design space to a class of

mechanisms M.

For allocation probability xi and expected payment pi, the agent’s expected utility is

linear as vi xi− pi and agents maximize utility in expectation. We give the most common

objectives for mechanism design as a formal definition:

Definition 3. The most common objectives for mechanism design are:

• Revenue is the sum-total over agent payments:
∑

i pi.

• Residual surplus is the sum-total over agent utilities:
∑

i xivi − pi.

• Total welfare is the sum-total over agent expected-value-of-allocation:
∑

i xivi;

note that this total respects: [revenue + residual surplus = total welfare].

With definitions to follow, we restrict attention to mechanisms that are feasible, dominant

strategy incentive compatible (DSIC/ truthful), and individually rational (IR), properties

which become formal constraints for mechanism design. The feasibility constraint for
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single-item mechanisms requires that for all inputs v, the profile of expected allocations

across all agents sums to at most 1. The following DSIC and IR constraints must hold for

all agents i, values vi, and other agent values v−i. The DSIC constraint requires that it is

always optimal for an agent i to “bid” value true vi. In this sense, DSIC mechanisms are

truthful. The IR constraint requires that an agent i always gets non-negative utility by

truthfully bidding vi. The rest of this Section 2.2.1 presents pertinent structures from the

mechanism design literature in order to support main results of this thesis which appear

in later subsections.

2.2.2. Characterization of Truthful Equilibrium

The following theorem of Myerson (1981) characterizes social choice functions x that can

be implemented by truthful (DSIC) mechanisms (i.e., all agents reporting truthfully is a

Nash equilibrium).

Theorem 1 (Myerson, 1981). Allocation and payment rules (x,p) are induced by a

dominant strategy incentive compatible mechanism if and only if for each agent i,

(1) (monotonicity) allocation rule xi(vi,v−i) is monotone non-decreasing in vi, and

(2) (payment identity) payment rule pi(v) satisfies

pi(v) = vi xi(v)−
∫ vi

0

xi(z,v−i) dz + pi(0,v−i),(2.1)

where the payment of an agent with value zero is often zero, i.e., pi(0,v−i) = 0.

Unless stated specifically otherwise in this thesis, we do fix pi(0,v−i) = 0.
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2.2.3. Standard Mechanisms

This section describes a number of common auctions. The Second Price Auction (SPA)

is a special case of the VCG Mechanism which has a number of nice properties: it is a

truthful auction, it optimizes total welfare, and it also optimizes revenue when used in

conjunction with a correct “reserve price” (which is a minimum price that any agent must

pay to be allocated).

Definition 4. A reserve price is a minimum price for allocation regardless of any

other considerations, e.g. auction parameters or the realized values of other agents.

Definition 5. The single-item Second Price Auction (SPA) with n agents allocates

the item to an agent with largest value v(1) at a price equal to the second-largest value v(2).

The SPA is in fact an example of a k-lookahead auction (Ronen, 2001) which defines an

important class of auctions restricted to those that only ever allocate to the k largest

bidders (after ordering and breaking value-ties uniformly at random). The SPA is a

1-lookahead auction.

Definition 6 (Ronen, 2001). The class of single-item k-lookahead mechanisms (k-

LA) with n ≥ k agents is defined by restriction to mechanisms that only ever give positive

allocation to the k agents with largest values v(1), . . . , v(k).

Note, the allocations to large-valued agents may condition on the realized values of the

un-allocated, small-valued agents with values v(k+1), . . . v(n).
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A markup mechanism is a special case of 1-lookahead that commits to a markup scalar

r ≥ 1 in advance and offers the price r · v(2) to the largest-valued agent. The SPA is the

edge-case markup mechanism with rspa = 1.

Definition 7. The r-markup mechanism Mr offers the price r · v(2) to the agent with

the largest value v(1). A randomized markup mechanism Mr̂,ξ draws random r̂ from a

given distribution ξ. The class of randomized markup mechanisms is Mmark.

Definition 8. An anonymous price posting – denoted APπ – posts a take-it-or-leave-it

common price π and randomly allocates to the agents who are willing to pay π (i.e., any

agent i with vi ≥ π).

Lastly, a k-lottery is another special case of k-lookahead mechanism.

Definition 9. A k-lottery – denoted LOTk – is a k-lookahead in which a price posting

mechanism is used internally: set π = v(k+1) and allocate randomly to the top k agents.

Most generally, the Lottery mechanism randomly gives away the item for free: LOTn =

AP0.

2.2.4. Myerson Virtual Values

This section introduces a monumentally important component of Myerson’s analysis is the

concept of virtual value. Myerson illustrates how mechanism design and optimization are

greatly simplified by using an amortized analysis to calculate performance, specifically by

adding up the “marginal” gain (or loss) from serving an agent over all possible agent types

as the price is monotonically decreased (weighted by the agent’s distribution over values),
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according to the mechanism’s allocation rule. For derivation of virtual value and further

discussion of its intuition, see Myerson (1981) and Chapter 3.3.1 of Hartline (2020).

Fact 1. Given an agent with value v drawn independently from distribution F , the

agent’s virtual value function φF (mapping value to virtual value) in an auction fixing

each of the following objectives is given by:

Virtual Values for Revenue: φF (v) = v − 1−F (v)
f(v)

Virtual Values for Residual Surplus: φF (v) = 1−F (v)
f(v)

Virtual Values for Total Welfare: φF (v) = v

As observed, we let the definition for virtual value be overloaded across objectives. Some

results given from the perspective of virtual value are constant across settings, exhibiting

the power of virtual values as an analytical tool (e.g. Theorem 2, Theorem 3 below). We

end this section with the following useful observation about virtual value functions, which

states that virtual value φF (v̂) at v̂ ≥ z is unchanged when a draw from F is conditionally

known to be at least z.

Fact 2. Given a revenue, residual surplus, or total welfare objective, and a distribution

F with domain [a, b] (or [a, b =∞)). Let
−→
F z be the distribution resulting from conditioning

one random draw v ∼ F by v ≥ z for a ≤ z ≤ b. Then for v̂ ≥ z,

(2.2) φF (v̂) = φ
−→
F z(v̂)

Fact 2 holds because the operation of conditioning v ≥ z applies the same multiplicative

factor 1/(1− F (z)) to both the (1− F (v)) and f(v) terms appearing in the revenue and
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residual surplus virtual value functions – which cancels. For total welfare it is trivially

true.

2.2.5. Monotone Hazard Rate, Regular, and Irregular Distributions

This section describes important properties of distributions – namely Definition 10 for

monotone hazard rate (MHR) and anti-monotone hazard rate (a-MHR); and Definition 11

for regularity which is related to the definitions of virtual value for various auction objec-

tives. The properties define canonical analytical settings within mechanism design. They

affect both the strength and complexity of result statements that can be obtained (by

the mechanism design literature generally) by acting as natural restrictions on classes of

distributions for robust mechanism design.

Definition 10. Given a distribution F , its hazard rate function λF (v) = f(v)/(1− F (v))

describes an “instantaneous rate of failure” of draws from F . Monotone hazard rate

(MHR) distributions have dλF (v)/dv ≥ 0 for all inputs v. By comparison, anti-monotone

hazard rate (a-MHR) distributions have dλF (v)/dv ≤ 0.

Let Fmhr be the class of all MHR distributions and Fa-mhr be the class of all a-MHR

distributions (each within a context of known input support).

We make two observations relating to hazard rate functions. First, note that the classes

Fmhr and Fa-mhr are disjoint excepting that they share a “boundary” when dλF/dv (v) = 0

for all inputs v. Second, note that the multiplicative-inverse of hazard rate (λF (v))−1

appeared above in the virtual value function for both revenue and residual surplus objec-

tives.
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Definition 11. For a virtual value function φ(·) paramterized by a given auction

objective, a distribution F is regular if dφ(v)/dv ≥ 0 for all inputs v. Otherwise it is

irregular.

Let F reg be the class of all regular distributions (within the context of known input

support and a given auction objective).

The following explains relationships between the property-based classes of this section for

auctions with specific objectives.

Fact 3. Given a revenue objective, the class of MHR distributions is a subset of the

class of regular distributions, which is a subset of all distributions: Fmhr ⊂ F reg ⊂ Fall.

Given a residual surplus objective, the class of a-MHR distributions and the class of

regular distributions are equal: Fa-mhr = F reg ⊂ Fall.

2.2.6. Quantiles and “Revenue” Curves

For distribution F , the quantile q of an agent with value v denotes how weak that agent

is relative to the distribution F , i.e., the probability that a random draw from F will

be at least v.3 Technically, quantiles are defined by the mapping QF (v) = 1 − F (v) =

Pr [v′ ≥ v | v′ ∼ F ]. Denote the function mapping back to value space by VF , i.e., VF (q) =

F−1(1 − q) is the value of the agent with quantile q. Note that all functions defined

for all inputs in quantile space have domain [0, 1], and that a default random quantile

q̂ is a uniform draw from the range [0, 1]. The rest of this section describing “Revenue

Curves” RF adopts the standard nomenclature of the revenue perspective. However unless

3 For the places we use it, a percentile of a value v is 1− q to reflect how strong an agent is relative
to distribution F , i.e., the output of the CDF function which is the probability that a random draw from
F will be at most v.
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otherwise stated, everything presented in this section for revenue curves in quantile space

holds for alternative objectives if “revenue” was replaced with the correct “performance”

measurement.

A single agent revenue curve RF : [0, 1] → R gives the revenue from posting a price

as a function of quantile q, i.e., of the probability that the agent accepts the price. For

an agent with value distribution F , price VF (q) is accepted with probability q, so revenue

is RF (q) = q VF (q). We overload the function RF to also take inputs from value space,

defined by RF (v) = RF (QF (v)) = QF (v) · v = (1 − F (v))v.4 5 The slope of the revenue

curve R′F is marginal revenue.

Fact 4 (Myerson, 1981). The slope of the revenue curve R′F – i.e., the marginal

revenue function – is equal to virtual value (in quantile space):

φF (q) = R′F (q)

and regular distributions (Definition 11) are equivalent to (weakly) concave revenue curves

in quantile space.

Towards analyzing irregular distributions, Myerson implements a second amortization

technique called ironing. For continuous regions of quantile space where an agent’s alloca-

tion function has constant output, expected marginal surplus R′F – equivalently expected

4 In fact, revenue curves for both quantile space and value space domains are potentially set-valued
functions. For quantile space, set-valued outputs result from regions of the domain of F where the CDF
is a constant smaller than 1, because revenue (or residual surplus) changes while quantile does not.
For value space, set-valued outputs result from regions of quantile space corresponding to point masses,
because quantile drops while value is constant.

5 For residual surplus we will have the overloaded definition RF (q) = q ·(Eq̂ [VF (q) | q̂ ≤ q]− VF (q)) =∫ q
0

(VF (q̂)− VF (q)) dq̂. For total welfare it is RF (q) = q ·Eq̂ [VF (q) | q̂ ≤ q] =
∫ q

0
VF (q̂)dq̂.
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φF – can be treated as its average value of the region, at all points in the region. Tech-

nically, given an ironed region [a, b] ∈ [0, 1], the ironed marginal revenue at all quantiles

q ∈ [a, b] is RF (a) + RF (b)−RF (a)
b−a · (q − a).

We define a single agent ironed revenue curve within the context of optimal analysis

(rather than allowing arbitrary choice of ironed regions). A single agent ironed revenue

curve R̄F : [0, 1] → R is defined only for the quantile space domain (and not for value

space), and is defined as the concave hull of the original revenue curve (which is always

possible to achieve for a single agent by ironing exactly all of the regions of the domain

where the revenue curve and its concave hull are not already equal). The definition takes

advantage of the following.

Fact 5. Given a distribution F for a single agent, for fixed q̂ as an a priori fixed

probability of sale, the maximum revenue achievable given q̂ is R̄F (q̂).

The regions where the revenue curve and ironed revenue curve are not equal are described

as strictly ironed. Paralleling Fact 4, we have a corresponding definition for ironed virtual

value φ̄F , which is again equal to the slope of the ironed revenue curve as marginal ironed

revenue.

Fact 6 (Myerson, 1981). The slope of the ironed revenue curve R̄′F – i.e., the marginal

ironed revenue function – is equal to ironed virtual value φ̄F :

φ̄F (q) = R̄′F (q)
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Continuing, note the following are both (weakly) concave functions: (1) revenue curves

for regular distributions and (2) ironed revenue curves for irregular distributions. The

remaining observations of this section identify consequences of this geometry.

Fact 7. The concavity of (1) revenue curves for regular distributions and (2) ironed

revenue curves for irregular distributions implies that both are non-increasing in quantile.

In comparison to value space, the uniformity of the quantile space domain is relatively

simpler for analysis, having already encapsulated the density function f(·). Thus, it is

more intuitive to illustrate revenue curves using quantile space. For the revenue objective

specifically, values have a geometric interpretation when the revenue curve is drawn in

quantile space, which we describe in Fact 8.

Fact 8. (For the revenue objective specifically, there is a bijection between values

v ∈ [0,∞) and the slopes of rays coming out of the origin in the revenue curve graph

with quantile space domain. Explicitly, a point (q̂, R̂ = RF (q̂)) of a revenue curve RF

necessarily implies RF (VF (q̂)) = VF (q̂) · q̂ = R̂. Equivalently, RF (v) = R̂ if and only if

QF (v) = q̂.

Lastly we consider distributions that include point masses. Interpreted within a revenue

curve, a point mass at v corresponds to a continuous region [a, b] ∈ [0, 1] of quantile

space with measure equal to the point mass’ discrete probability measure. A specific

distribution F (incorporating v) maps v to the quantile-range a = 1− limx→v+ F (x) and

b = 1− limx→v− F (x).

We consider the formal interpretation of allocating with fixed probability q̂ when

it requires partial allocation to a value with a point mass, i.e., when we strictly have
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q̂ ∈ (a, b). The solution is to internally re-weight allocation at v by a (diminishing)

multiplicative factor of (q̂ − a)/(b − a). This becomes transparent in the geometry. We

give some final information relating to the geometry of a point mass within a revenue

curve:

Fact 9. Consider a distribution F with point mass at value v with implicit measure

limx→v+ F (x) − limx→v− F (x) and with definitions for a, b in the immediately preceding

text.

For the revenue objective specifically, the geometric interpretation of a point mass

follows directly from Fact 8. A point mass is graphed into the revenue curve by: restricting

the line segment between (0, 0) and (b, RF (b)) to inputs in [a, b]. A necessary identity is

that the slope R′F of this line segment is the value v.

This follows directly from R′F (v) = φF (v) = v−(1−F (v))/f(v) = v because f(v) =∞.

As a further consequence for revenue: regular distributions can only incorporate point

masses as the (closed) upper bounds of their domains. The contrapositive statement is:

any distribution with positive measure of density strictly above a point mass is irregular.

For the residual surplus objective specifically, the geometric interpretation of a point

mass is a horizontal line segment on [a, b] (because all probabilities-of-sale q̂ ∈ [a, b] require

posting price v and all agent-quantiles in this range have value v for which the objective

is 0 regardless if they are included or not, so the derivative here is 0).

This follows directly from R′F (v) = φF (v) = (1 − F (v))/f(v) = 0 because f(v) = ∞.

Regular distributions must not have a lower bound on their support a > 0 where F (a) = 0.

The contrapositive statement is: any distribution F with F (a) = 0 for a > 0 is irregular.
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As a further consequence for residual surplus: regular distributions with positive den-

sity can only incorporate a point mass at v = 0 as the (closed) lower bound of their

domains. The contrapositive statement is: any distribution with positive measure of den-

sity strictly below a point mass is irregular.

2.2.7. Optimal Bayesian Mechanisms and Foundational Results

This section summarizes pertinent results in mechanism design. Optimizing revenue from

a single agent whose value v is drawn from a known distribution F is straightforward.

Fact 10. For any distributions F , the optimal mechanism for a single agent posts

the monopoly price VF (qm) (Definition 8) corresponding to the monopoly quantile qm =

argmaxq RF (q).

Next we work towards the solution for Bayesian settings with n agents (Theorem 3 below).

First we show technically how mechanism performance can be measured using virtual

values – a mechanism’s revenue can be understood via the marginal revenue approach of

Myerson (1981) and Bulow and Roberts (1989).

Simply, the expected revenue of a mechanism M with n agents is equal to its expected

surplus of marginal revenue, equivalently, its expected surplus of virtual value. Theorem 2

gives two related statements and the differences are bolded.6

Theorem 2 (Myerson, 1981). Given any incentive-compatible mechanism M with

any allocation rule x(·), the expected revenue of mechanism M for agents with values

6 Per previous discussion regarding setting, the exact theorem statement of Theorem 2 holds for
alternative objectives with their respective definitions of φF and φ̄F .
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drawn i.i.d from F is equal to its expected surplus of virtual value, i.e.,

(2.3) M(F ) =
∑

i
Ev∼F [pi(v)] =

∑
i

(
Ev∼F

[
φFi (vi)xi(v)

]
+Ri,F (qi = 0)

)
Alternatively, given any incentive-compatible mechanism M with allocation rule x(·), the

expected revenue of mechanism M for agents with values drawn i.i.d. from F is equal to

its expected surplus of ironed virtual value if additionally x(·) is constant for each

agent i on regions that are strictly ironed by R̄i,F :i.e., then

(2.4) M(F ) =
∑

i
Ev∼F [pi(v)] =

∑
i

(
Ev∼F

[
φ̄Fi (vi)xi(v)

]
+Ri,F (qi = 0)

)
The Bayesian optimal single-item auction OPTF given F is the one that maximizes ex-

pected surplus of virtual value, or equivalently, the one that maximizes ironed virtual value.

Theorem 2 gives a description of mechanism performance using a reduction to virtual

value. It includes an abstract description of the optimal mechanism following directly

at the end of the theorem statement. The following corollary makes explicit the optimal

structure for auctions within the setting of regular distributions F reg:

Theorem 3 (Myerson, 1981). For i.i.d., regular, single-item auctions with any objec-

tive, the optimal mechanism OPTF is the second-price auction with reserve price equal to

the monopoly price.

We will use the following Lemma 1 for the calculation of the performance of specific

optimal mechanisms for our dual blends analyses (towards proving the revenue gap of

Theorem 11 in Section 4.5.3 and the residual surplus gap of Theorem 12 in Section 4.5.4).
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For the revenue objective and specifically n = 2, evaluating a mechanism’s performance

via virtual values has a natural, geometric interpretation. An extension of this lemma is

given in Appendix A.2 for use there.

Lemma 1 (Dhangwatnotai et al., 2015). In i.i.d. two-agent single-item settings, the

expected revenue of the second price auction is twice the area under the revenue curve

and the expected revenue of the optimal mechanism is twice the area under the smallest

monotone concave upperbound of the revenue curve.

The last foundational result in this section is due to Bulow and Klemperer (1996), the

structure of which later motivates some our specific directions of analysis. For the revenue

objective and a regular distribution F , it relates the performance of the performance of

the SPA with n+ 1 agents to the optimal auction with n agents.

Theorem 4 (Bulow and Klemperer, 1996). For any auction objective, fix a regular

distribution F . The (prior independent) SPA with n + 1 agents whose values are drawn

i.i.d. from F has expected revenue that is at least the expected revenue from the optimal

auction OPTF for n agents which knows the distribution F .

2.2.8. Distribution-Class Boundaries and Equal “Revenue” Distributions

This section gives technical description relating to structure and usage for some of the

most pertinent distributions in mechanism design. The distributions discussed in this

section are important because they have one or both of the following properties (in the

context of one of the relevant auction objectives for this thesis): (a) the distribution
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defines a boundary of the MHR/a-MHR or regular classes of distributions; and/or (b) the

distribution has constant virtual value at all values of its domain.

Not surprisingly, a major theme from identifying these distributions is that particular

boundary distributions which meet definitions of class-restrictions with equality are the

same ones used to prove tightness in a variety of theorem statements. We give an example

of this below in Fact 12 (and further, recall the example in the Introduction using equal

revenue distribution / point mass distributions). To these ends, notice that MHR and

regularity are both properties relating to monotonicity of functions parameterized by

distributions, respectively hazard rate and virtual value function.

Definition 12. A distribution is a boundary distribution for a given class when its

characterizing derivative evaluates to a constant 0 for all (relevant) inputs.

The following fact describes some of these characteristics for distributions that act as

boundaries for classes requiring the MHR, a-MHR, or regularity properties.

Fact 11. The following are true about distribution class boundaries.

(1) For revenue, the boundary of the MHR class of distributions (Fmhr) – requiring

the derivative of hazard rate be equal to 0 on upwards closed domain– are as

follows:

• the general case where hazard rate is a constant (β):

is the shifted exponential distribution ‘Sed’ parameterized by its (shifted)
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domain lower bound a ≥ 0 and its hazard rate β > 0:

Seda,β(v) = 1− e−β(v−a) for v ∈ [a,∞) λSeda,β(v) = β

seda,β(v) = β · e−β(v−a) dλSeda,β/dv (v) = 0

• a special case where hazard rate is infinite (∞):

is the point mass function ‘Pmd’ (c.f., a Dirac function7) parameterized by

constant output a; this is effectively derived from the shifted exponentials in

the general case using in-the-limit analysis as (β →∞):

Pmda(v) = 1 at v = a λPmda(v) =∞

pmda(v) :=∞ dλPmda/dv (v) = 0

(2) For residual surplus,

• the (common) strong-boundary of the MHR and a-MHR classes of distribu-

tions (Fmhr and Fa-mhr) is the specific exponential distribution ‘Exd’ (which

requires fixing lower bound a = 0) parameterized only by its hazard rate

7 If formal definitions are necessary, we use the following Dirac function technique, which most
naturally aligns with the formal definitions needed to evaluate integrals in the limit dx→ 0,

Pmda := limdx→0[Pmddxa (x) = (x− a)/dx for x ∈ [a, a+ dx]], pmda := limdx→0[pmddxa (x) = 1/dx]

and if necessary, a point mass at the upper endpoint h of an integral is modified to h + dx (which is
inconsequential because it is inside the limit). However we trust that this thesis’s computation of expected
values of functions over inputs drawn from distributions incorporating point masses is clearly correct;
which is: by separating out the contribution of the function value at the point mass as an additive term
with probability weight equal to the point mass.
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β > 0:

Exdβ(v) = 1− e−βv for v ∈ [0,∞) λExdβ(v) = β

exdβ(v) = β · e−βv dλExdβ/dv (v) = 0

• in fact Fa-mhr = F reg (from Fact 3), so the boundary of the class of regular

distributions F reg is again the exponential distribution Exd. They are the

same because the virtual value function (given distribution F ) for residual

surplus is equal to 1/(λF ) and must be non-decreasing to be regular, and

similarly the hazard rate (λF ) must be non-increasing to be a-MHR. Clearly

these are equivalent conditions. Specifically, we have:

φExdβ(v) = 1/β, dφExdβ/dv (v) = 0

(3) For revenue, the boundaries of the class of regular distributions F reg – requiring

the derivative of virtual value be equal to 0 – are as follows:

• an important special case where virtual value is the constant 0:

is the quadratic distribution ‘Qud’ parameterized by its domain lower bound

a > 0:

Quda(v) = 1− a/v for v ∈ [a,∞) φQuda(v) = 0

quda(v) = a/v2 dφQuda/dv (v) = 0

• the general case where virtual value is a constant (φ):

is the shifted quadratic distribution ‘Sqd’ parameterized by its domain lower
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bound a ≥ 0 and its shift φ < a (for which there is no lower bound on φ and

for which setting φ = 0 gives the previous special case):

Sqda,φ(v) = 1− (a− φ)/(v − φ) for v ∈ [a,∞) φSqda,φ(v) = φ

sqda,φ(v) = (a− φ)/(v − φ)2 dφSqda,φ/dv (v) = 0

• a special case where virtual value is a positive constant (a = vv > 0):

is the point mass function ‘Pmd’ (c.f., a Dirac function7) parameterized by

constant output a; this is effectively derived from the general case using in-

the-limit analysis as (vv → a−):

Pmda(v) = 1 at v = a φPmda(v) = a

pmda(v) :=∞ dφPmda/dx (v) = 0

In cases (3b), the general class of shifted quadratics summarizes a very simple geometric

interpretation for revenue curves in quantile space: for inputs in (0, 1], it includes all

non-negative line segments as outputs. Specifically, the revenue curve for Sqda,φ is a line

segment with slope φ connecting an (open) point (0, a− φ) and a (closed) point (1, a).

As previously mentioned, class-boundary distributions are frequently used to prove

that theorem statements are tight and we give an example here.

Fact 12 (Bulow and Klemperer, 1996). Theorem 4 is tight for regular class-boundary

distributions Sqd0,φ for all φ < 0, i.e., both the SPA with n + 1 agents drawn i.i.d. from

Sqd0,φ and OPTSqd0,φ
with n i.i.d agents have expected revenue equal to (−φ) · n > 0.
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As alluded in Fact 11, quadratic distributions Quda are the φ = 0 special case of the

shifted quadratic distributions Sqda,0. Quadratic distributions play an important role in

auction design for the revenue objective, where they are examples of equal revenue distri-

butions (EQRs). Equal revenue distributions have the following definition and properties

(Fact 13).

Definition 13. A distribution is an equal revenue distribution (EQR) if all 1-agent

price posting auctions have the same expected revenue.

Generally, the Quadratics Quda describe exactly the class of regular equal revenue dis-

tributions (and they maintain both the regularity and equal-revenue properties under

top-truncation).

Fact 13. The following are true about equal revenue distributions.

• A sufficient condition for a distribution with domain [a,∞) to be an equal revenue

distribution (EQR) is that its virtual value function evaluates to 0 at all quantiles

q ∈ (0, 1] corresponding to values at least a. All quadratic distributions Quda meet

this condition.

• Consider a Bayesian auction (of Definition 1) for a revenue objective with 1 agent

whose value is drawn from a quadratic distribution Quda. The expected revenue

of any price-posting auction with price π ∈ [a,∞) is a, i.e., posting any price

π ≥ a gets equal revenue.

There exists an indirect extension of “EQR” to the residual surplus setting which we name

EQRS. An indirect extension of the EQR-concept is necessary because virtual values for
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residual surplus are strictly positive everywhere except at q = 0 where they are 0 (see

Fact 1) and on point mass regions of quantile space, so there is no analogous distribution

(in an auction with 1 agent) that achieves equal residual surplus for all posted prices.

For residual surplus, the key adaptation towards establishing an EQRS is to require

equal performance of price posting critically within the context of knowing that the price

will be accepted by at least 1 agent (i.e., an agent with unknown larger value). Equivalently,

the auction (a) must always sell to (b) an agent with unconditionally-constant virtual

value.

For residual surplus, assuming a price will trade is fairly natural because heuristically

this condition holds at price 0 where all virtual values are positive. Intuitively, given

constant virtual values, only an irrational auction would increase a posted price to a

level at which it might not trade. Further, exponential distributions are the natural class

of EQRSs under this condition, which makes sense because exponentials are the unique

boundary of regularity for residual surplus (cf. the equal revenue condition versus border-

regularity condition for revenue). We reinforce these intuitions by bolding in Fact 14

the key differences of EQRS, in comparison to revenue and EQR.

Fact 14. Consider a Bayesian residual surplus auction with n ≥ 1 agents whose

values are drawn i.i.d. from an exponential distribution Exdβ. The expected residual sur-

plus of any of the following k-lookahead auctions which are all guaranteed to trade

(without conditioning on the value of any winning agent) is 1/β: for values

v(1) ≥ v(2) . . . ≥ v(n), a k-lookahead auction for any k ∈ {2, . . . , n + 1} which offers

respectively prices π ∈ {v(2), . . . , v(n), 0} gets equal residual surplus.
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Sufficient conditions for a distribution to be an equal residual surplus distribution

(EQRS) are that its virtual value function evaluates to a constant β at all

quantiles q ∈ (0, 1], and the distribution has domain lower bound at 0. The

class of exponential distributions Exdβ meet this condition.

We conclude with “canonical” definitions for equal revenue / residual surplus distributions,

because these unique, simple forms are frequently sufficient for result statements.

Definition 14. The canonical equal revenue distribution – i.e., the equal revenue

distribution – is Eqrd = Qud1.

The canonical equal residual surplus distribution – i.e., the equal residual surplus distri-

bution – is Eqrsd = Exd1.

2.3. Thesis Outline

The rest of this thesis is laid out as follows. We start with applied, optimal prior

independent design. Chapter 3 gives the solution for a long-standing open question in

mechanism design going back to Dhangwatnotai et al. (2010) (and implicated by Hart-

line and Roughgarden (2008)), namely it identifies the prior independent revenue-optimal

mechanism for selling a single item to two agents with i.i.d. values from a regular distribu-

tion (Theorem 5; under a scale-invariance assumption which is conjectured to be without

loss).

Chapter 4 relaxes the focus to identifying lower bounds on prior independent approxi-

mation. We develop the Blends Technique (Definition 19) which is an explicit method for

applying Yao’s Minimax Principle (Theorem 9) to the prior independent setting. The con-

struction of lower bounds from the Blends Technique will apply for any prior independent
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algorithms problem and hold without characterizing the optimal algorithm. Rather, these

lower bounds only depend on computation of expected Bayesian optimal performance for

distributions in the prior independent reference class (Theorem 10). Chapter 4 includes

examples of dual blend solutions for the approach of the Blends Technique. Further, ap-

plies these examples within mechanism design to state novel lower bounds (for settings

similar but not identical to the setting of Chapter 3).

Chapter 5 presents an expanded analysis of the structure of the Blends Technique.

The main dual blends example of Chapter 4 is generalized in two distinct ways to state

the existence of two broad classes of such solutions that may fit into the Blends Tech-

nique. Theoretical optimization of the Blends Technique for establishing lower bounds –

which still may be with loss compared to optimal prior independent algorithm design –

is connected to information design. A natural perspective that arises from considering

blends within information design is to assess whether or not the two “sides” of a dual

blend have a relationship in terms of Blackwell ordering. Lastly, dual blends themselves

are explained to be a special case of non-unique tensor decomposition.

Chapter 6 considers how the prior independent setting may connect to the prior free

setting (i.e., worst-case over inputs / competitive analysis) via benchmark design. This

is implemented by an idea to require that prior free benchmarks are design in a way

that an algorithm’s prior free approximation implies that the algorithm achieves the same

prior independent approximation (a property called normalization). We show that if the

optimal normalized benchmark is selected as the one which allows smallest approximation

by an algorithm, then the problem of benchmark design is equivalent to the problem

of prior independent approximation (Theorem 16). Benchmark design from this first
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perspective is also analyzed for the online-algorithms problem of expert learning and this

analysis raises certain challenges for this approach. A second measure to determine the

“optimal” benchmark is also presented and then the two benchmark design problems of

this chapter are compared.

Chapter 7 concludes this thesis by highlighting its main themes. Respecting the order

of presentation in Chapter 7, these themes are: Benchmark Design, Adversarial Play

(and the Blends Technique, and the Role of Scale-invariance. Included in the concluding

discussion for each topic is an outline for directions of future work. One additional theme

is featured that does not otherwise appear in this thesis to cover other works by the

author: Economic Inference in Auctions (Hartline et al., 2019, 2020b).
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CHAPTER 3

A Revenue-optimal Prior Independent Mechanism

In this chapter we solve the following optimization problem in mechanism design. The

setting is a prior independent single-item, 2-agent auction setting with a revenue objective.

The class of distributions is regular F reg and the class of mechanisms is truthful (DSIC),

individually rational and scale invariant mechanismsMsi, i.e., mechanisms which respect

allocations xi(k · v) = xi(v) ∀ v, k > 0. The consequences of scale-invariance are:

mechanism performance is everywhere linear in inputs (M(k · v) = k ·M(v) ∀ v, k > 0)

and we may assume a default scale for analysis.

This chapter is organized as follows. Section 3.1 states the main result up front,

which includes a description of the optimal mechanism and the optimal choice of distri-

bution by the adversary in order to measure worst-case prior independent approximation.

Section 3.2 gives definitions and supporting material as needed for this chapter.

Section 3.3 proves optimality of our solution (as mixed Nash, i.e., mechanism and

worst-case distribution are mutual best-responses) using further restrictions on the mech-

anism space and distribution space in order to simplify to a local analysis (specifically,

we first restrict to random markup mechanisms (Definition 7) and triangle revenue-curve

distributions (Definition 16)). Finally, Section 3.4 reduces the original mechanism space

Msi and distribution space F reg of the broad problem to the local setting (in the context
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of the locally-proposed actions of mechanism designer and adversary). This final reduc-

tion finally shows that the local analysis is sufficient to apply overall and establishes the

general theorem statement.

Material in this chapter is largely drawn from Hartline et al. (2020a).

3.1. Statement of the Optimal Mechanism Result

This section gives our optimal result (which makes the assumption of scale-invariance).

In particular, we identify the optimal approximation factor to be αF
reg ≈ 1.907.

Theorem 5. Given a single item, 2-agent auction with a revenue objective, the optimal

truthful, scale-invariant mechanism (from the classMsi) against regular distributions F reg

for the prior independent design program (αF
reg

) is Mr̂,ξ which randomizes according to

ξ over the second-price auction M1 with probability ξ1 and r∗-markup mechanism Mr∗

with probability ξr∗ = 1 − ξ1, where ξ1 ≈ 0.806 and r∗ ≈ 2.447. The worst-case regular

distribution is Trvdq∗m with its monopoly quantile q∗m ≈ 0.093 and its approximation ratio

is αF
reg ≈ 1.907.

Some notation to fully explain this statement is deferred to the next section. To summa-

rize, the optimal mechanism is an a priori mixture over the SPA and a specific markup

mechanism, effectively a mixture over markup factors of rspa = 1 and r∗ ≈ 2.447 (see ac-

tion definitions in Section 2.2.3). The adversary’s optimal choice of δ∗(F reg) is realized as

a point mass on a single triangle revenue-curve distribution F ∗ = Trvdq∗m with q∗m ≈ 0.093

(see Definition 16).
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3.2. Supporting Definitions and Structures

This section covers new definitions and facts as needed by this chapter. The statement

and proof of Theorem 5 depend on analysis of revenue curves RF for every F ∈ F reg.

Given the restriction to scale-invariant mechanisms, it will be sufficient to consider only

distributions that are anonymously-scaled, and specifically, they are standardized so that

the single-agent optimal revenue defaults to maxq RF (q) = 1.

Fact 15. Given a distribution Fz=1 with default scaling parameter z = 1 and with

domain [a, b] (or domain [a,∞)). The distribution F1 can be arbitrarily re-scaled for

z ∈ (0,∞) to Fz(x) = F1(x/z) with domain [z · a, z · b] (respectively domain [z · a,∞)).

Revenue curves scale linearly: RFk = k · RF . For example, if k = 1/2, F = Ud0,2,

and F1/2 = Ud0,1, then RUd0,1 = 1
2
· RUd0,2 . Further, the ratio of optimal performance

OPTF (F ) to the performance of any scale-invariant mechanism M si(F ) is constant under

such re-scaling.

The rest of this section leads up to the definitions of triangle and quadrilateral revenue-

curve distributions. We emphasize that these distributions are named based on the shapes

of their revenue-curves, rather than the shapes of their density functions.

Definition 15. Given the class of Shifted Quadratics with CDF Sqda,φ(x) = 1 −

(a− φ)/(x− φ) and PDF sqda,φ(x) = (a− φ)/(x− φ)2 for x ∈ [a,∞). For revenue auctions, a

constant negative virtual value distribution Cnvdφ with φ < 0 is parameterized by its

(negative) virtual value φ and is the Sqd0,φ<0 special case of shifted-quadratic distribution.

It has CDF Cnvdφ(x) = 1 + φ/(x− φ) and PDF cnvdφ(x) = − φ/(x− φ)2. Define the sub-class

of Constant Negative (revenue) Virtual Value distributions CNVV = {Cnvdφ : φ < 0}.
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For a revenue objective, the (distribution) elements of the CNVV class are equivalently

defined by all revenue curves (parameterized by negative φ) that are simple line segments

connecting a point (in quantile revenue curve space) (0,−φ) to (1, 0) with slope φ.

Recall from Fact 9 that point masses appear in revenue curves as (positively-sloped)

line segments and thus, truncating a distribution (see Appendix B.1) at a specific value

v (equivalently quantile QF (v)) will convert the revenue curve to a line segment between

the origin (0, 0) and the point (QF (v), RF (v)). The theme of monopoly-truncation ap-

pears in the next two definitions for triangle and quadrilateral revenue-curve distributions.

Triangles are top-truncated CNVVs. Quadrilaterals apply top-truncation to underlying

revenue curves described by 2 regions of constant negative virtual values. See Figure 3.1

for the intuition of both classes of distributions.

Definition 16. A default-scaled triangle revenue-curve distribution Trvdqm is param-

eterized by its monopoly quantile qm, and is defined by the (set-valued) quantile function:

QTrvdqm (v) =



1
1+v(1−qm)

for 0 ≤ v < 1/qm

[0, qm] for v = 1/qm

0 otherwise

Equivalently the revenue-curve distribution Trvdqm is given by the truncation at v = 1/qm

of the CNVV distribution Sqd0,(− 1/1− qm). The class of default-scaled Triangles is

F trv = {Trvdqm : qm ∈ [0, 1]}
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and contains both the (untruncated) CNVV distribution Sqd0,−1 and the (effectively “fully-

truncated”) point mass distribution Pmd1 as edge cases.1 Triangles are exhibited in Fig-

ure 3.1.

The triangulation of a default-scaled (regular) distribution F with monopoly quantile

qm is the conversion of F to the corresponding triangle Trvdqm.

Definition 17. A default-scaled quadrilateral revenue-curve distribution Qrvdqm,q̄,r

is parameterized by its monopoly quantile qm ∈ [0, 1], a second “inflection” quantile q̄ ∈

[qm, 1], and a (markup factor) ratio r with 1/q̄ ≤ r ≤ (1− q̄)/q̄(1− qm) which is the ratio

between the monopoly slope and the slope through its inflection point,2 and is defined by

the (set-valued) quantile function:

QQrvdqm,q̄,r
(v) =



q̄
q̄+vrqm(1−q̄) for 0 ≤ v ≤ 1/rqm

q̄qm(r−1)
vrqm(q̄−qm)+(rqm−q̄) for 1/rqm ≤ v < 1/qm

[0, qm] for v = 1/qm

0 otherwise

1 Consider the CNVV with virtual value equal to k → −∞ with effectively “all” density above value
1, and truncate it at value 1.

2 Note that the quantile q̄ together with a feasible markup factor r identifies exactly the inflection
point (on the quantile-space revenue curve graph) to the right of the peak of a quadrilateral distribution.
If we choose the parameters in the order qm, r, q̄ (rather than qm, q̄, r as in the definition), the feasible
ranges are qm ∈ [0, 1], then r ≥ 1, then qmr

qmr+(1−qm) ≤ q̄ ≤ min{rqm, 1}.
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Figure 3.1. Revenue Curves for Triangle and Quadrilateral Distributions
The left hand side is the revenue curve for triangle distribution Trvdqm and the right

hand side is the revenue curve for quadrilateral distribution Qrvdqm,q̄,r.

Equivalently the revenue-curve distribution Qrvdqm,q̄,r is given by monopoly truncation of

a distribution that is 2-piecewise composed of Shifted Quadratics.3 The class of default-

scaled Quadrilaterals is

Fqrv = {Qrvdqm,q̄,r : qm ∈ [0, 1], q̄ ∈ [qm, 1], 1/q̄ ≤ r ≤ (1− q̄)/q̄(1− qm)}

and contains edge cases that are analogous to those of Triangles (Definition 16, due to

either being untruncated or a point mass), and edge cases that are Triangles themselves.

Quadrilaterals are exhibited in Figure 3.1.

The quadrilateralization of a default-scaled (regular) distribution F with monopoly

quantile qm is parameterized by (feasible) r and is the conversion of F to the correspond-

ing quadrilateral Qrvdqm,q̄(qm,r),r where the slope 1/rqm fixes the resulting quadrilateral’s

“inflection point” by intersection with the revenue curve RF , thereby identifying q̄.

3 For technical completeness. On [qm, q̄], the distribution is the shifted-quadratic Sqda,φ for a =
q̄(1−qm)−rqm(1−q̄)

rqm(q̄−qm) and φ = −(rqm−q̄)
rqm(q̄−qm) . On [q̄, 1], the distribution is the shifted-quadratic Sqd0,φ for

φ = −q̄
rqm(1−q̄) . The quantile range [0, qm] is truncated.
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3.3. Local Proof for Markup Mechanisms, Triangle Revenue Curves

To recap, in this section and the next we prove Theorem 5 with the following main

steps. First, in Theorem 6 (stated next) we characterize the prior independent optimal

mechanism under the restriction to randomized markup mechanismsMmark and triangle

revenue-curve distributions F trv, cf. Alaei et al. (2018). This restricted program has the

same solution as we claim in Theorem 5.4 Second, we show that the optimal randomized

markup mechanism and the class of Triangle distributions are mutual best responses

among the more general classes of truthful, scale-invariant mechanisms Msi and regular

distributions F reg. Combining these results gives the main result in Theorem 5.

Theorem 6. Given a single item, 2-agent revenue auction, the optimal truthful, scale-

invariant, randomized markup mechanism (from the class Mmark) against default-

scaled Triangles F trv for the prior independent design program (αF
trv

) is Mr̂,ξ which

randomizes according to ξ over the second-price auction M1 with probability ξ1 and r∗-

markup mechanism Mr∗ with probability ξr∗ = 1 − ξ1, where ξ1 ≈ 0.806 and r∗ ≈ 2.447.

The worst-case triangle distribution for this mechanism is Trvdq∗m with q∗m ≈ 0.093 and

its approximation ratio is αFtrv ≈ 1.907.

4 Note the almost identical language of Theorem 6 in comparison to previous statement of Theorem 5:
the only changes are the (bolded) definitions of the class of mechanisms and the distribution class.
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The proofs of Theorem 5 and Theorem 6 depend on a sequence of sub-results. We start

by giving the proof of Theorem 6 here,5 then this section and the next give full lists of

sub-result statements but otherwise omit a number of the formal proofs.

Proof. The approach of this proof is to identify the triangle Trvdq∗m for which the

designer is indifferent between the second price auction M1 and at least one other (non-

trivial) markup mechanism, denoted Mr∗ , both of which must be optimal. As part of

this proof we show that where this occurs, the markup factor r∗ of alternative optimal

mechanisms Mr∗ is indeed unique.

For such a distribution Trvdq∗m , the mechanism designer is also indifferent (in minimiz-

ing the approximation ratio) between any mixture over M1 (with probability ξ1) and Mr∗

(with probability ξr∗ = 1−ξ1), and all other r-markup mechanisms for 1 ≤ r 6∈ {1, r∗} are

inferior (which we graph in Figure 3.2, in the context of Trvdq∗m). Critically though, the

mechanism designer can strategically choose ξ∗1 to constrain the behavior of the adversary.

We then identify the ξ1 for which the adversary’s best response (in maximizing the

approximation ratio) to Mr̂,ξ ∈ Mmark is the distribution Trvdq∗m ∈ F trv. The solu-

tion “profile” composed of Mr̂,ξ and Trvdq∗m is a (mixed) Nash equilibrium between the

mechanism designer and the adversary, and therefore it solves the prior independent op-

timization problem. The parameters can be numerically identified as ξ∗1 ≈ 0.80564048,

r∗ ≈ 2.4469452, q∗m ≈ 0.0931057, and the approximation ratio is αF
trv ≈ 1.9068943.

5 Theorem 6 appears in Hartline et al. (2020a) with the following explanation of its proof:
“The parameters of this optimal mechanism are the solution to an algebraic expression (cf. Lemma 4)

that we are unable to solve analytically. Our proof will instead combine numeric calculations of select
points in parameter space with theoretical analysis to rule out most of the parameter space. For the re-
maining parameter space, we can show that the expression is well-behaved and, thus, numeric calculation
can identify near optimal parameters.”
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Per the outline above, first we identify the triangle distribution monopoly quantile q∗m

and the r∗ for which M1 and Mr∗ obtain the same ratio. Denote the approximation ratio

for the SPA M1 as APX1(qm) = 2− qm (the ratio of quantities in Lemma 2 to Lemma 3

below), which is continuous in qm. Denote the approximation ratio of the optimal markup

mechanism against distribution Trvdqm by

(3.1) APX∗(qm) = sup
r>1

OPTTrvdqm (Trvdqm)

Mr(Trvdqm)

By Lemma 4, the approximation ratio APX∗(qm) is continuous in qm as well. It is easy

to verify that APX1(0) = 2 > APX∗(0) = 1 while APX1(1) = 1 < APX∗(1) = ∞. By

continuity, there exists a q∗m where these two functions cross, i.e., APX∗(q
∗
m) = APX1(q∗m).

See Figure 3.2. By numerical calculation, q∗m ≈ 0.0931057 for which

(3.2) r∗ = argmaxr>1

OPT(Trvdq∗m)

Mr(Trvdq∗m)
≈ 2.4469452

Now fix r∗ and let ξr∗ be a distribution that is restricted to mixing over markup mecha-

nisms M1 and Mr∗ . We search for ξ∗r∗,1 – the probability on M1 – for which the adversary

maximizes the approximation ratio of mechanism Mr̂,ξr∗ by specific selection of the trian-

gle distribution Trvdq∗m (i.e., with the desired monopoly quantile).6 Denote by qm(ξr∗,1)

the monopoly quantile as a function of ξ∗r∗,1 for the triangle distribution that maximizes

6 Note the following technique: a (mechanism designer) player identifies a correct “mixture” over the
set of designer-best-response actions in order to require the specific action-response by the (adversary)
other player which induces those designer-best-responses in the first place. This is a common theme
towards solving for mixed Nash equilibrium in 2-player, zero-sum games.
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Figure 3.2. Performance of Optimal Markups against Worst-case Triangle

The figure on the left plots, as a function of qm, the approximation ratio APX1(qm) of
M1 = SPA against triangle distribution Trvdqm (straight line), and the approximation
ratio APX∗(qm) of the optimal non-trivial markup mechanism Mr∗(qm) against triangle
distribution Trvdqm (curved line). Note explicitly here – the graph of APX∗ embeds a
locally optimal markup factor r∗(qm) as an argmax (per equation (3.1), with functional
dependence on qm) and therefore the r∗ used to plot each point (of the curved line) is
generally distinct from the optimal ratio for an alternative monopoly quantile q′m. The
functions cross at q∗m ≈ 0.0931057.
The figure on the right plots the revenue of the r-markup mechanism Mr on triangle
distribution Trvdq∗m as a function of markup r, i.e., Mr(Trvdq∗m). Notice how by choice of
q∗m, the optimal non-trivial markup mechanism has the same revenue as M1.

the approximation ratio of mechanism Mr̂,ξr∗ , i.e.,

qm(ξr∗,1) = argmaxqm
OPT(Trvdqm)

Mr̂,ξr∗ (Trvdqm)
.

By numerical calculation, for any r ∈ [2.445, 2.449], we observe qm(0.81) < q∗m <

qm(0.8). Continuity of qm(·) for r ∈ [2.445, 2.449] and ξr∗,1 ∈ [0.8, 0.81] (with formal proof

of continuity in the reference paper but omitted here) then implies that there exists ξ∗r∗,1

such that qm(ξ∗r∗,1) = q∗m. By numerical calculation, ξ∗1 = ξ∗r∗,1 ≈ 0.80564048. �

The proofs of Lemma 2 and Lemma 3 (next) both follow directly from Lemma 1 (Dhang-

watnotai et al., 2015). The proof of Lemma 4 is technical but straightforward.
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Lemma 2. Given a single item, i.i.d., 2-agent revenue auction, the optimal truthful

mechanism against any regular distribution F reg posts the monopoly price equivalent to

qm; and against distributions which further are default-scaled and truncated, this optimal

mechanism obtains revenue 2 − qm (where qm is in fact the probability that an agent’s

value is equal to the monopoly price, from truncation).

Lemma 3. The revenue of the second-price auction M1 for distribution Trvdqm is 1,

i.e., M1(Trvdqm) = 1.

Lemma 4. The revenue of the r-markup mechanisms Mr on triangle distribution

Trvdqm, for r ∈ (1,∞) and qm ∈ [0, 1), is

Mr(Trvdqm) =
2r

(1− qm)(r − 1)

 1− qm
(1− qm) + rqm

−
ln
(

r
(1−qm)+rqm

)
r − 1

 .

3.4. Final Proof for All Truthful Mechanisms, All Regular Distributions

We now show that the characterization of the previous section – i.e., optimal strategies

for the mechanism designer restricted to markup mechanisms Mmark and the adversary

restricted to default-scaled Triangles FTrvd – remain optimal in the more general setting

in which the mechanism class is all truthful scale invariant mechanismsMsi ⊃Mmark and

the distribution class is all regulars F reg ⊃ F tri. We restate the full theorem statement

here and are now able to give its proof; but to repeat, a number of formal proofs for its

sub-results (below) are omitted.

Theorem 5. Given a single item, 2-agent auction with a revenue objective, the optimal

truthful, scale-invariant mechanism (from the classMsi) against regular distributions F reg
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for the prior independent design program (αF
reg

) is Mr̂,ξ which randomizes according to

ξ over the second-price auction M1 with probability ξ1 and r∗-markup mechanism Mr∗

with probability ξr∗ = 1 − ξ1, where ξ1 ≈ 0.806 and r∗ ≈ 2.447. The worst-case regular

distribution is Trvdq∗m with its monopoly quantile q∗m ≈ 0.093 and its approximation ratio

is αF
reg ≈ 1.907.

Proof. The technique relies on a mutual-best-response argument that the optimal

mechanism and adversarial distribution can be localized to “well-behaved” markup mech-

anisms on one side (which incorporate probability at least 2/3 on M1 = SPA) and Trian-

gles on the other. The proof fully proceeds from the following outline, with dependence

on the referenced sub-results.

• our starting “guess-and-check” assumption is that the adversary will choose only

monopoly-truncated distributions from class Fmt in mixed-Nash equilibrium;

• using the starting assumption, we reduce the mechanism search space from Msi

to Mmark, which completes one side of the overall reduction (see Theorem 7);

• from within Mmark, propose the randomized markup mechanism Mr̂,ξ as the

distribution over markups according to ξ (per the theorem statement);

• finally, show that the adversary’s best response to Mr̂,ξ among all regular dis-

tributions is an element of the Triangles F trv (specifically to allow the edge-case

Triangles represented by a point mass, i.e., Trvd1), which completes the second

side of the overall reduction (see Theorem 8);

• further, the previous point confirms the starting guess-and-check assumption,

therefore it completes the proof. �
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The outline of the rest of this section is as follows. The next two theorem statements

each solve one side of the reduction in the proof of Theorem 5. Following that, we give a

sequence of lemmas that are needed to support Theorem 8, and finally a proof sketch for

Theorem 8 to give intuition for how the lemmas fit together. See the reference paper for

omitted proofs and the full proof of Theorem 8 (Hartline et al., 2020a).

Theorem 7. Given a single item, i.i.d., 2-agent, truthful, revenue auction, the class

of scale-invariant mechanisms (from the class Msi), and the class of regular distributions

F reg.

For every mechanism M ∈ Msi, there is a randomized markup mechanism M ′ ∈

Mmark ⊂ Msi with (weakly) higher revenue (and weakly lower approximation ratio) on

every monopoly-truncated (and regular) distribution F ∈ Fmt. I.e., M ′(F ) ≥M(F ).

Theorem 8. Given a single item, i.i.d., 2-agent, truthful revenue auction, the class of

regular distributions F reg and any stochastic markup mechanism Mr̂,ξ that assigns proba-

bility ξ1 ∈ [2/3, 1] on the second-price auction M1.

For any regular distribution F ∈ F reg, either the triangulation to FTrvd of F or the

point mass Trvd1 has (weakly) higher approximation ratio than F . I.e.,

max

{
OPTFTrvd(FTrvd)

M(FTrvd)
,
OPTTrvd1(Trvd1)

M(Trvd1)

}
≥ OPTF (F )

M [(F )

The point of Theorem 8 is that it shows that the adversary does not need to consider

arbitrary regular distribution F to maximize the approximation ratio of the (optimal)

mechanism Mr̂,ξ of Theorem 5, because it always prefers instead either its triangulation
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or the point mass distribution. (Note, the point mass is an edge-case triangle revenue-

curve distribution and its value does not matter because of scale-invariance).

Because these are both Triangles, all regular distributions are shown to be (weakly)

“dominated” in the adversary’s choice set by elements of the Triangles. From here we list

the lemma statements needed to prove Theorem 8. We only give the proofs of the first

two of these: Lemma 5 and the Truncation Lemma 6.

Lemma 5. Given a single item, i.i.d., 2-agent, truthful, revenue auction, the class of

randomized markup mechanisms (from the class Mmark), and the class of regular distri-

butions F reg.

The optimal approximation factor αF
reg

Mr̂,ξ
of any Mr̂,ξ ∈Mmark is lower bounded by 1/ξ1

for ξ1 the probability on the SPA.

Proof. By example, point masses are regular distributions and 1/ξ1 is exactly the

approximation of Mr̂,ξ to the SPA which is the optimal mechanism. Therefore αF
reg

Mr̂,ξ
must

be at least 1/ξ1. �

Lemma 6 (The Truncation Lemma). Given a single item, i.i.d., 2-agent, truthful,

revenue auction, the class of randomized markup mechanisms (from the class Mmark),

and the class of regular distributions F reg. Consider any randomized markup mechanism

Mr̂,ξ that places probability ξ1 ∈ [1/2, 1] on the second-price auction M1.

For any regular distribution F ∈ F reg, either the monopoly-truncation of F to F ′ or

the point mass distribution Trvd1 has (weakly) higher approximation ratio than F . I.e.,

max

{
OPTF ′(F

′)

M(F ′)
,
OPTTrvd1(Trvd1)

M(Trvd1)

}
≥ OPTF (F )

M(F )
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.

Proof. By Lemma 5, it can be assumed that the approximation of randomized markup

mechanism Mr̂,ξ on distribution F is at least 1/ξ1 (where ξ1 is the probability on the SPA’s

markup factor of 1). First note that the expected revenue Mr̂,ξ against the point mass

distribution Pmd1 is ξ1 and the optimal revenue on this distribution is 1 (from the SPA).

If the approximation factor OPTF (F )/Mr̂,ξ(F ) is less than 1/ξ1 then Pmd1 gives a higher

approximation factor than F and the lemma follows. For the remainder of the proof,

assume that the approximation factor of mechanism Mr̂,ξ against F is more than 1/ξ1.

View the randomized markup mechanism Mr̂,ξ as a distribution over two mechanisms:

the second-price auction M1 with probability ξ1, and M∗ = Mr̂,ξ−1 , a distribution over

all non-trivial markup mechanisms Mr with r > 1, with probability 1 − ξ1. The opti-

mal mechanism is OPTF . Decompose the revenue from distribution F across the three

mechanisms M1, M∗, and OPTF as follows. Denote the monopoly quantile of F by qm.

• OPT+ and OPT− give the expected revenue of the optimal mechanism from

agents with values above and below the monopoly price (respectively below and

above the monopoly quantile qm).

• SPA+ = OPT+ and SPA− give the expected revenue of the second-price auction

M1 from agents with values above and below the monopoly price.

• MKUP+ and MKUP− give the expected revenue of the stochastic markup mech-

anism M∗ from prices (strictly) above and (weakly) below the monopoly price.

Consider monopoly-truncating the distribution F at qm to obtain F ′ ∈ Fmt (the class of

monopoly-truncated regular distributions). Define analogous quantities (with identities):
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• OPT′+ < OPT+ and OPT′− = OPT−.

Identities follow from the geometric analysis of Lemma 1.

• SPA′+ = OPT′+ and SPA′− = SPA−.

Identities follow from the geometric analysis of Lemma 1.

• MKUP′+ = 0 and MKUP′− = MKUP−.

Values above the monopoly price are not supported by the truncated distribu-

tion, so the revenue from those prices is zero. On the other hand, prices (weakly)

below the monopoly price are bought with the same probability because the

cumulative distribution functions F ′ and F are the same for these prices.

The remainder of the proof follows a straightforward calculation, though as a technical

note we do reference Lemma 22 deferred to Appendix B.2 to support the final sequence

of inequalities below. Write the approximation ratio of Mr̂,ξ on distribution F (using the

given identities) and rearrange:

OPTF (F )

Mr̂,ξ(F )
=

OPT+ + OPT−
ξ1 (OPT+ + SPA−) + (1− ξ1) (MKUP+ + MKUP−)

=
OPT+ + [OPT−]

ξ1 OPT+ + [ξ1 SPA−+(1− ξ1) (MKUP+ + MKUP−)]

Since the approximation ratio on F is at least 1/ξ1, the ratio of the first term in the

numerator and denominator is at most the ratio of the remaining terms [in brackets]:

1

ξ1

=
OPT+

ξ1 OPT+

≤ [OPT−]

[ξ1 SPA−+(1− ξ1) (MKUP+ + MKUP−)]
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Now write the approximation ratio of Mr̂,ξ on monopoly-truncation F ′ (using the given

identities) and obtain a bound on it:

OPTF ′(F
′)

Mr̂,ξ(F ′)
=

OPT′+ + [OPT−]

ξ1 OPT′+ + [ξ1 SPA−+(1− ξ1) MKUP−]

≥
OPT′+ + [OPT−]

ξ1 OPT′+ + [ξ1 SPA−+(1− ξ1) (MKUP+ + MKUP−)]

≥ OPT+ + [OPT−]

ξ1 OPT+ + [ξ1 SPA−+(1− ξ1) (MKUP+ + MKUP−)]

=
OPTF (F )

Mr̂,ξ(F )
.

The calculation shows that, for any distribution F , the monopoly-truncated distribu-

tion F ′ increases the approximation factor of the randomized markup mechanism Mr̂,ξ.

Therefore, the worst-case distribution is monopoly-truncated. �

Lemma 7 (Allouah and Besbes, 2018). Given a single item, i.i.d., 2-agent, truthful,

revenue auction, a markup mechanism Mr ∈Mmark with specific r, and the class of regular

distributions F reg. For any F ∈ F reg with monopoly quantile qm, let the distribution F ′

be the result of ironing F on the region [q̄, 1] for q̄ = QF (1/rqm).7

The virtual surplus of Mr(F ) from quantiles in [q̄, 1] is at least the virtual surplus of

Mr(F
′) from quantiles in [q̄, 1].

Lemma 8. Given a single item, i.i.d., 2-agent, truthful, revenue auction, a randomized

markup mechanism Mr̂,ξ ∈ Mmark specifically with ξ a mixture over ξ1 on the SPA and

7 Recall the definition of ironing from Section 2.2.6; note that the usage of “ironing” here is an inexact
example (of non-optimal revenue curve ironing). In this case, the revenue curve is altered with the same
effect – i.e., the original distribution F itself is converted (via moving the density functions) to F ′ such
that the revenue curve of F ′ is the same as the ironed-as-indicated revenue curve of F .
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ξr̄ = 1− ξ1 on a single non-trivial markup factor r̄, and the class of monopoly-truncated

regular distributions Fmt.

For every F ∈ Fmt, there exists a quadrilaterial distribution FQr ∈ Fqrv for which

optimal revenue is the same but Mr̂,ξ gets (weakly) lower revenue, both in comparison to

the original F . I.e., OPTFQr(FQr) = OPTF (F ) and Mr̂,ξ(F
Qr) ≤Mr̂,ξ(F ).

Lemma 9. Given a single item, i.i.d., 2-agent, truthful, revenue auction, a randomized

markup mechanism Mr̂,ξ ∈ Mmark specifically with ξ a mixture over ξ1 ∈ [2/3, 1] on the

SPA and ξr̄ = 1−ξ1 on a single non-trivial markup factor r̄, and the class of Quadrilaterals

Fqrv.

For every quadrilateral distribution Qrvdqm,q̄,r ∈ Fqrv, consider the triangulation of

Qrvdqm,q̄,r to Trvdqm ∈ F trv. Optimal revenue is the same for the triangle but Mr̂,ξ

gets (weakly) lower revenue on the Triangle Trvdqm, both in comparison to the origi-

nal quadrilateral Qrvdqm,q̄,r. I.e., OPTTrvdqm (Trvdqm) = OPTQrvdqm,q̄,r
(Qrvdqm,q̄,r) and

Mr̂,ξ(Trvdqm) ≤Mr̂,ξ(Qrvdqm,q̄,r).

To end the section, as previously indicated, we include the following proof sketch for

Theorem 8.

proof sketch. Start generally with an arbitrary regular distribution F ∈ F and

an assumption that the mechanism is a markup mechanism Mr̂,ξ with ξ1 ∈ [2/3, 1]. The

sequence of lemmas show – via a series of steps – that the approximation factor of Mr̂,ξ

is worse for the triangulation of F than for the original F . I.e., for every such Mr̂,ξ, the

following steps hold.
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The Truncation Lemma 6 shows for Mr̂,ξ that either we can ignore F because the

point mass Pmd1 is a worse case, or else otherwise the approximation factor (of Mr̂,ξ)

gets worse when F is converted to F ′ which is the monopoly-truncation of F . I.e., the

adversary’s class of regulars F reg is reduced to the class of monopoly-truncated (regulars)

Fmt (which include point masses).

Lemma 7 and Lemma 8 work together to show that the quadrilateralization of F ′ –

within the context of using any markup parameter r > 1 – makes the approximation ratio

of the respective Mr worse. By implication, the approximation ratio of the randomized

markup mechanism Mr̂,ξ becomes worse. I.e., the adversary’s class of monopoly-truncated

regulars Fmt is reduced to the class of Quadrilaterals Fqrv.

Finally, Lemma 9 shows that the triangulation of any quadrilateral distribution again

makes the approximation ratio worse. This gives the final reduction of the adversary’s

choice set to the Triangles F trv. �
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CHAPTER 4

Lower Bounds for Prior Independent Algorithms

Chapter 3 gave the characterization of an optimal 2-agent, one-item, truthful mecha-

nism for a revenue objective and the regular class of distributions F reg. This chapter shifts

the analysis from characterization of optimal algorithms to a broad approach for estab-

lishing lower bounds. Specifically, it introduces a novel Blends Technique (Definition 19)

that is agnostic to problem setting for proving lower bounds on the prior independent

approximation factor of any algorithm.

The Blends Technique depends on solving a general equation that results from appli-

cation of Yao’s Minimax Theorem (Yao (1977), see Theorem 9) to the prior independent

framework, thus we must identify solutions to the equation to prove lower bounds. We

call these solutions dual blends. This chapter explicitly includes example dual blends. As

an application, we use these example solutions within 2-agent mechanism design settings

to prove lower bounds (similar to the setting of the previous chapter but with different

parameters).

A first formal study of the mathematical structure of our solutions is deferred to

Chapter 5, where we identify key properties of the examples from this chapter and use

these properties to inform the design of broad classes of solutions. We will also show there

that the search for an optimal dual blend – with “optimal” determined within the context

of a given prior independent algorithm problem – is connected to the economics topic of

information design, for which our dual blends are competing signalling strategies.
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This chapter is organized as follows. Section 4.1 quickly states Yao’s Minimax Principle

to set up the analysis of our approach. Section 4.2 explains our Blends Technique as

application of Theorem 10 for which the proof is deferred to Section 4.3. Section 4.4

explains in detail the procedure of crafting dual blends solutions to satisfy the key equation

of the Blends Technique (see equation (4.2)) and simultaneously builds a first, simple

example solution for reference through the presentation of the procedure. Section 4.5

gives a second example of a dual blend with its design motivated by common tools from

mechanism analysis and then proceeds to state novel lower bounds for prior independent

mechanism design problems.

Section 4.6 provides an outline of two additional examples of dual blends of interest

for mechanism design but presentation of these highly technical examples is deferred to

Appendix A. Finally, Section 4.7 summarizes the benefits of lower bounds from the Blends

Technique in comparison to similar lower bounds which it implicates.

Material in this chapter is largely drawn from Hartline and Johnsen (2021).

4.1. Theoretical Lower Bounds from Minimax

Yao’s Minimax Principle (Theorem 9) illustrates the role of the adversary through

a direct connection to a 2-player zero-sum game. Some definitions for terms used in

Theorem 9 were introduced at the end of Section 2.1.

Theorem 9 (Yao, 1977). [Yao’s Minimax Theorem] Given a 2-player zero-sum game

G in which sequentially player 1 chooses mixed action γ1 ∈ ∆(Ω1), then player 2 chooses

action ω2 ∈ Ω2. The players are cost minimizers and the cost functions on pure actions

are (any real-valued function) C1(ω1, ω2) ≥ 0 and C2 = −C1. Then the value of game G



80

(the left-hand side) satisfies:

(4.1) inf
γ1∈∆(Ω1)

sup
ω2∈Ω2

C1(γ1, ω2) ≥ sup
γ2∈∆(Ω2)

inf
ω1∈Ω1

C1(ω1, γ2)

4.2. A Technique for Prior Independent Lower Bounds: Blends

There is a detailed explanation of the high-level technique of lower bounds from Yao’s

Minimax Principle in the textbook by Borodin and El-Yaniv (1998). Regarding a worst-

case perspective (competitive analysis), they write, “. . . to obtain a lower bound. . . it

is sufficient to choose any probability distribution over [the adversary’s choice set] and

to bound from below. . . the ratio of average optimal [“offline” performance to average

performance] of any deterministic online algorithm (where the expectations are taken

with respect to [the adversary’s fixed distribution]).”

This section gives a minimax approach that is specific to prior independent design.

To outline, we: (a) fix a randomization over adversary strategies in advance; (b) prove

an upper bound on the performance of the best-response algorithm from an alternative

description of the adversary’s induced correlated distribution over inputs; and (c) measure

the gap between the adversary’s expected optimal performance and the upper bound on

the expected performance of any algorithm. The key idea is the correlation in (b):

Definition 18. A blend is a distribution-over-distributions δ ∈ ∆(F). (Thus, δ(F ) is

the density at F .) A blended distribution δn ∈ ∆(Vn) is the induced density function of

the correlated distribution resulting from n i.i.d. draws from a common distribution F̂ ,

with F̂ drawn from δ.
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Two blends δ1, δ2 are called dual blends if there exists correlated density function g

such that:

δn1 (v) = g(v) = δn2 (v) ∀ v(4.2)

Each of δ1, δ2 are a side of the dual blend. Finally, define optn,i = EF∼δi [OPTF (F )] to

be the expected performance of an optimal algorithm which knows F over a blend δi.

The point is: an arbitrary blend δ can be “flattened” to describe a specific (symmetric)

correlated distribution δn = g over input space Vn. Now suppose in fact two distinct

blends δ1 and δ2 as choices of the PI adversary induce the same correlated distribution,

i.e., they satisfy Definition 18. Because both induce the same description of input profiles,

every algorithm is limited by the structure of either description. The lower bound of the

technique has the following intuition: the adversary chooses δ2 which fixes the benchmark

of the current scenario to optn,2 = EF∼δ2 [OPTF (F )];1 δ2 induces the correlated distribu-

tion g and the algorithm best responds to g; however the fact that δ1 also induces g means

that every algorithm is upper bounded by optn,1; if this upper bound is strictly smaller

than the benchmark, then a strict gap necessarily ensues.

An important interpretation is: even when the algorithm knows that the adversary has

committed to the mixed action δ2 (and thus the process for how the inputs are generated

is fully revealed), the algorithm can not help but be upper bounded by the information

constraints of δ1. The proof of Theorem 10 appears in Section 4.3.

1 Lemma 10 in Section 4.3 shows that we can set the prior independent benchmark in this way.
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Theorem 10 (The Dual Blends Theorem). Consider a prior independent setting with

input space Vn, class of algorithms A, and class of distributions F . Let Fall be all dis-

tributions. Assume there exist two distinct dual blends δ1 ∈ ∆(Fall) and δ2 ∈ ∆(F) and

correlated density function g (of Definition 18) such that:

δn1 (v) = g(v) = δn2 (v) ∀ v

The optimal prior independent approximation factor αF is at least the ratio optn,2/optn,1:

(4.3) αF = min
A∈A

max
F∈F

OPTF (F )

A(F )
≥

optn,2
optn,1

Definition 19. The Blends Technique is the proof technique for approximation lower

bounds which applies Theorem 10 to a specified prior independent design problem.

A detailed outline of the necessary computations to confirm that descriptions of δ1 and

δ2 are dual blends is given in Section 4.4, which also includes a first non-trivial n = 2

example of a dual blend. Construction of dual blends does not depend on problem domain

– e.g., mechanism design or online algorithms – but which dual blend induces the largest

lower bound does depend on domain. The Blends Technique is inherently an application

of non-unique tensor decomposition. We discuss this connection – including the likely

impossibility of applying the Blends Technique directly for n > 3 – in Section 5.5.

4.3. Proof of The Dual Blends Theorem

For use in this section, recall our notation A(F ) = Ev∼F [A(v)] for the expected

performance of algorithm A on n i.i.d. draws from a distribution F .
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First we state and prove Lemma 10 which shows that for any fixed blend δ̄ (as implicit

choice of the adversary), we can obtain a lower bound on prior independent approximation.

(This lower bound is used as an interim step within the proof of Theorem 10.)

Lemma 10 states that we can replace the adversary’s maximization problem within

prior independent design (for reference see equation (4.4)). In its place, the adversary

effectively sets a benchmark as the expectation of optimal performance over distributions

drawn from δ̄ (thus, the benchmark is EF∼δ̄ [OPTF (F )]). Symmetrically, the algorithm’s

performance is its expected performance over distributions drawn from δ̄ (thus, its per-

formance is EF∼δ̄ [A(v)]).

An algorithm’s approximation of the benchmark is measured as the ratio of this bench-

mark to its performance, i.e., as ratio-of-expectations (ROE). The lower bound results

from the minimum ratio achieved by any algorithm A ∈ A. Practically, this interim lower

bound is only an abstraction because we don’t say anything about how to optimize the

algorithm A.

Lemma 10 is an application of Yao’s Minimax Principle (Yao, 1977) which treats

distributions themselves as the inputs (rather than the subsequent i.i.d. draws). In fact

from this perspective, the standard prior independent benchmark set by OPTF (F ) may

be regarded as the expected performance of the offline optimal algorithm.

Lemma 10 (The Ratio-of-Expectations Benchmark Lemma). Consider a prior in-

dependent setting with input space Vn, class of algorithms A, and class of distributions

F . Let δ̄ ∈ ∆(F) be any fixed blend, i.e., a fixed distribution over the distributions of F .

Then
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(4.4) αF = min
A∈A

max
F∈F

OPTF (F )

A(F )
≥ min

A∈A

[
EF∼δ̄ [OPTF (F )]

EF∼δ̄ [A(F )]

]
, for fixed δ̄

Proof. We start with the prior independent design problem. Explanations for each step

of this sequence are given following.

min
A∈A

max
F∈F

OPTF (F )

A(F )
= min

A∈A
max
δ∈∆(F)

EF∼δ [OPTF (F )]

EF∼δ [A(F )]

≥ max
γ∈∆(∆(F))

min
A∈A

Eδ∼γ

[
EF∼δ [OPTF (F )]

EF∼δ [A(F )]

]
= max

δ∈∆(F)
min
A∈A

[
EF∼δ [OPTF (F )]

EF∼δ [A(F )]

]
= min

A∈A

[
EF∼δ̄ [OPTF (F )]

EF∼δ̄ [A(F )]

]
, for fixed δ̄

• The first line above both relaxes the adersary’s action space to allow a mixture of

distributions – i.e., a blend δ ∈ ∆(F) – and changes the benchmark (numerator)

to be set by the expected optimal performance over distributions from the blend.

It holds with equality because by Lemma 21 (given in Appendix B.2), the

value of the inner maximization program before-and-after this step is the same

for every A – the adversary gains no extra advantage because the ratio on the

right-hand side must always be dominated anyway by the ratio achieved by some

distribution F+ in the support of any chosen δ. (To explain in further detail, the

adversary could choose F+ in the left-hand program and can still choose a point

mass on F+ in the right-hand program.)
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• The second line applies Yao’s Theorem Principle (Theorem 9). Note, the adver-

sary’s choice of actions γ ∈ ∆(∆(F)) represents the exact transformation using

Minimax: the adversary now acts first and plays a distribution over actions in

its support from the initial min−max side. Then:

• The third line holds because the set of all blends over F – namely, ∆(F) – is

closed under convex combination.

• The last line holds because fixing an argument of the outer program can only

impair its objective (in this case by fixing δ = δ̄ for any δ̄ ∈ ∆(F) per the lemma

statement). �

Given Lemma 10, we are prepared to restate and prove The Dual Blends Theorem 10.

Theorem 10 (The Dual Blends Theorem). Consider a prior independent setting with

input space Vn, class of algorithms A, and class of distributions F . Let Fall be all dis-

tributions. Assume there exist two distinct dual blends δ1 ∈ ∆(Fall) and δ2 ∈ ∆(F) and

correlated density function g (of Definition 18) such that:

δn1 (v) = g(v) = δn2 (v) ∀ v

The optimal prior independent approximation factor αF is at least the ratio optn,2/optn,1:

αF = min
A∈A

max
F∈F

OPTF (F )

A(F )
≥

optn,2
optn,1

Proof. We start with the prior independent design problem and apply Lemma 10 (given

above; by assigning δ̄ = δ2). Justifications for the next steps are given afterwards.
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min
A∈A

max
F∈F

OPTF (F )

A(F )
≥ min

A∈A

[
EF∼δ2 [OPTF (F )]

EF∼δ2 [A(F )]

]
= min

A∈A

[
optn,2

Ev∼g [A(v)]

]
= min

A∈A

[
optn,2

EF∼δ1 [A(F )]

]
≥ min

A∈A

[
optn,2

EF∼δ1 [OPTF (F )]

]
=

optn,2
optn,1

(4.5)

• The second and third lines substitute using the definition of optn,i and the as-

sumption in the theorem statement that δn1 (v) = g(v) = δn2 (v).

Note, the adversary’s choice of δ2 is restricted to the set ∆(F) up front in

the prior indepdent problem (i.e., the parameter F is fixed exogenously), and δ2

induces g = δn2 . However given g, there may exist any alternative description δ1

with g = δn1 , including a δ1 ∈ ∆(Fall) that uses distributions outside the original

class F . This freedom to design δ1 is an inherent consequence of nature.

• The fourth line inequality recognizes that expectation over locally optimal per-

formances – each knowing the true F when realized – must weakly dominate

the performance of a single algorithm run against all realizations of F (formally:

Fact 16 after this proof).

• The final equality substitutes and realizes that the algorithm no longer appears

in the function to be minimized, i.e., the objective is constant. �

The following holds because each OPTF algorithm is optimal pointwise per F , whereas

running A against each F is itself immediately upper bounded by OPTF :
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Fact 16. Given an arbitrary prior independent algorithm design setting with class of

distributions F and class of algorithms A, and given δ ∈ ∆(F). For any fixed algorithm

A ∈ A:

EF∼δ [OPTF (F )] ≥ EF∼δ [A(F )]

Towards increased understanding of the result and proof of Theorem 10, we include a

second, informal proof from linear programming in Appendix A.1. It applies to a restricted

family of algorithms problems due to the requirement that there be a linear programming

description of the problem. Additional perspective gained from this approach is outlined

in discussion interwoven with the proof.

4.4. Details of the Blends Technique and a First Simple Example:

Shifted-Exponentials versus Uniforms

The goal of this section is to illustrate (a) the process of proving a dual blends structure

from description of its elements in order to fit into Theorem 10, and then (b) the process of

obtaining an algorithm-specific lower bound on prior independent approximation (which

requires a specific algorithm setting). In addition to working through the process for

(a) in detail in this section, it is fully outlined within Figure 4.1. This section includes

some steps of the general process that do not apply in the case of our example here. As

previously mentioned – both this process and the construction of concrete examples of

dual blends exist independently of algorithm setting. For both (a) and (b) we use a dual

blends example of Shifted-Exponentials-versus-Uniforms.

Looking ahead, the setting for (b) will be an application of mechanism design (which

is introduced in Section 2.2.1). Specifically, the setting for (b) will use a 2-agent truthful
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auction with a revenue objective, which is sufficient description to analyze a revenue gap;

only at the very end will we identify relevant classes of distributions for which the revenue

gap is meaningful and then formalize the gap with Proposition 1.

Dual Blends. We now describe the elements of our example and prove that they describe

dual blends. We assume n = 2 and start with δ1 and δ2 as follows. The δ1 blend

is a mixture restricted to upward-closed Shifted-Exponentials. The shifted exponential

distribution Sedz,1 has PDF sedz,1(x) = e−(x−z) and CDF Sedz,1(x) = 1−e−(x−z) on [z,∞).

The δ2 blend is a mixture restricted to downward-closed Uniforms. The uniform

distribution Ud0,z has PDF ud0,z(x) = 1/z and CDF Ud0,z(x) = x/z on [0, z]. Note

explicitly, each input has support V = [0,∞) and input space is V2.

The weights oF correspond to distributions in δ1 and the weights ωF correspond to

distributions in δ2. We require here that the total weight in the system is W = 1, though

this could be relaxed for general blend examples:

Fact 17. The total weight W of a dual blends analysis may be any positive constant

as long as the total weight is finite – any finite weight will divide-out regardless in the

right-hand side of line (4.5)). The total weight on each side of the dual blend must be

equal.

Further, blends must match up exactly for every measure of density, i.e., in a way that

recognizes the difference between continuous density dv and point masses. The blend

itself is included as a dimension if puts weight on a continuous mix over a parameter z.

Definition 20. Define the count of dimensional density by the number of (axis-

aligned) dimensions i ∈ {1, . . . , n} in which density is continuous: dvi or dz.
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Overview observation:

Blends in this thesis always result from distributions over: i.i.d. draws from a distribution F .
As such, continuous density at any fixed input (v1, v2) is measured per dvi. Measurements
of density must respect the difference between continuous density dvi and point masses.
I.e., regarding total density at a fixed input (v1, v2) (accounting for contributions from all
elements of a blend), it could consist of continuous density in both dimensions (i.e., dv1dv2),
point mass density in both dimensions, or one dimension of each, e.g., point mass density of
v1 multiplied by a continuous density per dv2.

Steps to confirm δ1 and δ2 as dual a blend:

1. Description: Explicitly enumerate the composition of the distributions δ1 and δ2.
2. Pointwise equality: For all inputs v = (v1, v2) ∈ V2, compute the total density result-
ing from each blend for each type of measurement of density at the given v.
3. Finiteness: (if applicable) Compute the total weight over all inputs for each blend to
confirm they are finite; this computation doubles as a sanity check to help confirm that they
are equal.

Identification of sufficient integral endpoints:

When a blend contains an integral over distributions parameterized by a bound z on the
distributions’ respective domains, distributions that contribute 0 at a point v may – without
loss – be excluded by the integral computation of density at v. This can be implemented by
assignment of the integral endpoints because by observation, the ignored distributions are
described by either an upward or downward-closed set over parameters z. E.g. for Uniforms
at input (4, 2), ignore z < 4 because only Ud0,z with z ≥ 4 contribute positive density at
(4, 2); cf. for z = 3, we have ud0,3(4) · ud0,3(1) = 0 · 1/3 dz = 0. Symmetric consequences
apply for z as a parameter for a distribution’s lower bound. See Figure 4.2 for illustration.

Steps to analyze resulting performance gap:

1. Optimal performances: Compute OPTF (F ) for every F with positive weight in either
δ1 or δ2.
2. Blend performance: Compute opt2,1 and opt2,2 as the measures of blend-weighted
expected optimal performance, accounting for both continuous density and point mass blends
weights.
3. Identify lower bound: The ratio of blend performances (arranged to be at least 1)
proves a necessary gap between an adversary’s choice and the performance of any algorithm,
and therefore lower bounds optimal approximation αF .
4. Worst-case: (optional/ if applicable) If the analysis is parameterized, analyze worst-
case assignment of the parameter – e.g., for value space [1, h], consider h→∞.

Figure 4.1. Outline for a Dual Blend Computation

Given class of distributions F and n = 2, this offset provides outlines of required steps
to (a) prove that two distributions over distributions δ1 and δ2 are dual blends (of Defi-
nition 18); and (b) prove a performance gap from Theorem 10 applied to δ1 and δ2.
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Fact 18. For distributions δ1 and δ2 to be dual blends, it is necessary at every input

v that they match up density exactly for every type of measurement of density, in order

to account for the difference between continuous density and point masses.

The weights on the upward-closed Shifted-Exponentials blend (δ1) are as follows:

• point mass of weight opm = 1
2

on the distribution Sed0,1.

• weights oEz = 1
2
e−zdz on all upward-closed distributions Sedz,1 for z ∈ [0,∞).

The weights on the downward-closed Uniforms blend (δ2) are as follows:

• (explicitly) we do not need a point mass;

• weights ωUz = 1
2
z2e−zdz on all downward-closed distributions Ud0,z for z ∈

[0,∞).

Here we observe that none of the distributions composing the blends incorporate point

mass density. Therefore the only type of measurement of density that appears in the

correlated distribution of this example is of the doubly-continuous form dv1dv2. I.e., we

only need to check the 2-D density of g(v) at each v ∈ [0,∞)2. By symmetry we analyze

density in the cone v1 ≥ v2 ≥ 0.

Determination of endpoints of integrals to compute the blends’ densities are both (a)

described in Figure 4.1 as part of procedure, and (b) illustrated in Figure 4.2. Intuitively,

we start with an integral over all z ∈ [0,∞). However, we truncate the integral endpoints

because not all elements of a blend will put positive density on an input (v1, v2 ≤ v1). The

calculations of density – ignoring the continuous density terms dv1dv2 which are implied

by the 2D subscript of g – are given by:
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Figure 4.2. Identification of Positive-Weight Ranges of Blend-parameter z

We illustrate identification of integral endpoints for blends calculations when one side
(left) is a blend over distributions with upward-closed domain [z,∞) for all z and the
other side (right) is a blend over distributions with downward-closed domain [0, z] for all
z. Fix input values, e.g., (v1, v2) = (4, 2). On each side, the shaded region illustrates
a parameter that contributes 0 density (or mass) at the point (4, 2). Observably, the
effective ranges of integration for a blends calculation are respectively [0, 2] and [4,∞).
Generally, they are [0, v2] and [v1,∞).

result of Sedz,1 blend =

∫ v2

0

oEz · sedz,1(v1) · sedz,1(v2) + opm · sed0,1(v1) · sed0,1(v2)

(4.6)

=

∫ v2

0

(
1

2
e−z
)
· e−(v1−z) · e−(v2−z) dz +

1

2
· e−v1 · e−v2

=
1

2
e−v1 = g2D(v)

result of Ud0,z blend =

∫ ∞
v1

ωUz · ud0,z(v1) · ud0,z(v2)(4.7)

=

∫ ∞
v1

(
1

2
z2e−z

)
· 1

z
· 1

z
dz =

1

2
e−v1 = g2D(v)
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This concludes the blending of Shifted-Exponentials on one side and Uniforms on the

other side into the same correlated distribution. The total weight of the system is 1 from

the Sedz,1 side:

opm +

∫ ∞
0

oEz =
1

2
+

∫ ∞
0

1

2
· e−zdz = 1

Total weight is fairly obvious from the Shifted-Exponentials side. To confirm the to-

tal weight from the Uniforms side, we compute the total weight using two iterations of

integration-by-parts:

∫ ∞
0

ωUz =

∫ ∞
0

1

2
z2e−zdz =

1

2

([
−z2e−z

]∞
0

+

∫ ∞
0

2ze−zdz

)
=

1

2

(
0 + 2

[[
−ze−z

]∞
0

+

∫ ∞
0

e−zdz

])
=

1

2
(2 [0 + 1]) = 1

Lower Bound from Revenue Gap. Having Shifted-Exponentials-versus-Uniforms as

an example of dual blends, we now illustrate how to plug them into Theorem 10 for a

mechanism design setting to obtain a lower bound on prior independent approximation

via calculation of opt2,1 and opt2,2. (Mechanism design is introduced in Section 2.2.1.)

The setting is a 2-agent truthful auction with a revenue objective and the specific bound

that we will obtain is αF ≥ 1.1326.

The first step is to compute optimal revenue for each distribution appearing in either

side of the dual blend. Consider the δ2 side – i.e., the Ud0,z side. The optimal revenue

from n = 2 agents drawn i.i.d. from a uniform distribution U [0, z] is known to be 5
12
z.
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This solution completely covers the distributions used on the δ2 side. Therefore we have

(4.8) opt2,2 =

∫ ∞
0

ωUz ·OPTUd0,z(Ud0,z) =

∫ ∞
0

(
1

2
z2e−z

)
· 5

12
z dz =

1

2
· 5

12
· 3! =

5

4

where the factor of 3! results from noting that for positive integers k, after repeated

integration by parts,
∫∞

0
zke−zdz = k!, and in this case we have k = 3.

To analyze the δ1 side – i.e. the Sedz,1 side – it is sufficient to only look at the virtual

value function for arbitrary Sedz,1 because all distributions Sedz,1 can be represented by

draws from [Sed0,1 conditioned on v2 ≥ z > 0]. Later, Fact 2 will state that given

this setup, an observed value v̂ will necessarily have the same virtual value regardless of

which distribution-with-conditioning was used to generate it. In fact this property holds

independently of the hazard rate parameter β > 0:

(4.9) φSedz,β(v) = v −
1−

(
1− e−β(v−z))

β · e−β(v−z) =

(
v − 1

β

)
∀ z > 0, v ≥ z

Fact 19. For all z ≥ 0 in the Sedz,β class of distributions including our specific case

for β = 1, there exists a single mechanism which is optimal for them all: a Second Price

Auction with a reserve price at 1/β.

This simplifies our task to calculate opt2,1 because we can directly add up the revenue of

the globally optimal mechanism across the correlated distribution g(v) = 1
2
e−v1 . Recalling
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v1 ≥ v2, we use symmetry across the line v1 = v2 and calculate this as:

opt2,1

(4.10)

=2

[∫ 1

0

0 · dv1 +

∫ ∞
1

(∫ 1

0

1

2
e−v1 [reserve price] dv2 +

∫ v1

1

1

2
e−v1 [second price] dv2

)
dv1

]
= 2

[∫ ∞
1

(∫ 1

0

1

2
e−v1 · 1 · dv2 +

∫ v1

1

1

2
e−v1 · v2 · dv2

)
dv1

]
=

∫ ∞
1

e−v1

(
1 +

1

2

(
v2

1 − 1
))

dv1

=

[
−1

2
e−v1

(
v2

1 + 2v1 + 3
)]∞

1

=

[(
1

2
· 1

e
· 6
)
− 0

]
=

3

e
≈ 1.1036

Discussion. Having solved for opt2,1 and opt2,2, Theorem 10 gives us a necessary revenue

gap and therefore a lower bound on approximation. The gap is2

(4.11)
opt2,2

opt2,1

=
5/4
3/e

=
5e

12
≈ 1.1326...

and reflects the following intuition. The adversary commits to an action up front, specifi-

cally δ2 the Uniforms distribution. Interpreting this adversary-moves-first choice through

Yao’s Minimax Principle and our Benchmark Lemma 10, this choice sets the benchmark

2 Dual blends analyses generally can depend on difficult and technically tricky computation. Here we
exhibit a quick sanity check on the revenue of the Shifted-Exponentials side. As stated above, the optimal
algorithm is the SPA with a reserve price of 1. Note then that the SPA with no reserve is sub-optimal,
therefore its revenue lower bounds the optimal revenue:

The easiest way to calculate the revenue of the SPA is to note that for each uniform distribution Ud0,z,
the SPA gets 1

3z. Compare this to the optimal auction per uniform distribution, which got 5
12z. From this

we see that the SPA simply gets 4/5ths of the revenue of the optimal mechanisms for each distribution on
the Uniforms side. Because opt2,2 = 5/4, it follows that the SPA gets 1. We confirm that this non-optimal
revenue is less than the optimal revenue for the Shifted-Exponentials side which was opt2,1 ≈ 1.1036.
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(in the numerator) to opt2,2. The designer knows the adversary’s strategy and best re-

sponds. However δ2
2 = g = δ2

1 which shows that even when the designer knows that g was

generated by δ2, the designer can not do better than best responding directly to g, and

further, can not do better than by making a particular assumption that g was generated

by the Shifted-Exponentials blend δ1. However critically by Fact 16, the performance

of any mechanism is upper bounded by opt2,1. Our intermediate conclusion is that our

descriptions of Shifted-Expontials and Uniforms as a dual blend result in a revenue gap

of any mechanism of at least 1.1326.

As previously mentioned, we were in fact able to proceed with analysis to this point

without even specifying a class of allowable distributions F . The lower bound holds for

any class of distributions that includes all uniform distributions Ud0,b. Let F⊇UNIFORM =

{F | all Ud0,b ∈ F} be the (meta)-set of classes of distributions that contain all uniform

distributions (as a subset).

Proposition 1. Given a single-item, 2-agent, truthful auction setting with a rev-

enue objective and with agent values in space [0,∞). For every class of distributions

F ∈ F⊇UNIFORM, the optimal prior independent approximation factor of any (truthful)

mechanism is lower bounded as:

αF ≥ 1.1326

As a corollary, the bound of equation (4.11) holds for two classes commonly used within

mechanism design – it holds for both the regular F reg (Definition 11) and monotone hazard

rate Fmhr (Definition 10) distributions settings,3 and this depends only on the adversary’s

3 For MHR and regular settings, our bound here is generally only illustrative – for V = [0,∞), and
with a restriction to scale-invariant mechanisms which is conjectured to be without loss, Allouah and
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choice of The Uniforms side of the dual blend because all distributions Uda,b are MHR

and also regular (for the revenue objective). I.e., we have both that αF
reg ≥ opt2,2/opt2,1 ≈

1.1326 and – as a stronger result because the MHR class is smaller per Fact 20– that

αF
mhr ≥ opt2,2/opt2,1 ≈ 1.1326.

There is an important observation here (as alluded within the proof of Theorem 10

regarding the implicit relaxation to δ1 ∈ ∆(Fall)). The Shifted-Exponentials comprising

δ1 are also both MHR and regular, but this doesn’t matter – the upper bound on revenue of

any mechanism as results from the Shifted-Exponentials blend-description (of the common

correlated distribution) is a consequence of nature itself as follows solely from the adver-

sary’s choice of the Uniforms blend, and the structure of that “consequence” (namely,

the revenue-upper-bound structure of the Shifted-Exponentials) faces no constraints at

all. The adversary chooses its blend subject to a particular F but the other side of the

dual blend can be composed of any subset of distributions in Fall (and examples exist for

which this is the case).

4.5. A Dual Blend Inducing Novel Mechanism Design Results

The first goal of this section is to exhibit a second concrete example of dual blends. In

contrast to the previous section, the example here proceeds in two steps: (1) we describe

a relaxed solution that allows infinite weight which is not directly usable for lower bounds

but has simpler algebraic form; and (2), we show that this relaxed solution can be modified

to become proper dual blends.

Besbes (2018) show a tight bound for Fmhr of αF
mhr ≈ 1.398 and this thesis (Theorem 5) showed a tight

bound for F reg of αF
reg ≈ 1.907.
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The second part of the section uses the dual blends example to state novel lower bounds

for two distinct problems from mechanism design. Interestingly, the distinct objectives of

these two problems results in the two sides of the dual blends playing opposite roles (as

choice of the adversary versus gap-inducing upper bound). Later in Section 5.4, we discuss

the implications of this observation in terms of precluding Blackwell ordering between the

two sides of the dual blend.

4.5.1. A Dual Blends Example Starting with Infinite Weights

This section provides another explicit example of dual blends – with motivation for the

chosen distributions from themes in mechanism design. First, we will describe a blends-

type solution that has unbounded input support and infinite total weight (so it is not a

probability distribution and it is not possible to re-normalize its weights to become one).4

Second, we modify the infinite-weight solution to have finite weight in a finite input space

(which can be normalized to 1 for any fixed weight).

For this running dual blends example, the δ1 side will be parameterized by a base class

of upward-closed Quadratics (called “equal revenue” in the mechanism design literature),

with PDF given by qudz(x) = z/x2 and CDF given by Qudz(x) = 1 − z/x on [z,∞). The

δ2 side will be a base class of downward-closed Uniforms, with PDF given by ud0,z(x) =

1/z and CDF given by Ud0,z(x) = x/z on [0, z]. (Generally, let Uda,b be the Uniform

distribution on [a, b].)

4 The elements of a blend δ are technically densities but we generally refer to them as weights, i.e.,
the weight corresponding to a distribution within the mixture over F according to δ. We do this to
accommodate a relaxed definition for blend which allows arbitrary total weight (including infinite).
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Infinite-weight Blends. We start by describing the weights oF corresponding to δ1 and

weights ωF corresponding to δ2. Because we first allow the total weight to be infinite, we

only require the function g (relaxed to be a “correlated function” rather than a correlated

distribution) to match up its output mass at every input (cf., density of a correlated

distribution).

The weights of the upward-closed Quadratics blend (δ1) are as follows:

• weights oQz = 2
z
dz on all upward-closed distributions Qudz for z ∈ (0,∞).

The weights of the downward-closed Uniforms blend (δ2) are as follows:

• weights ωUz = 2
z
dz on all downward-closed distributions Ud0,z for z ∈ (0,∞).

Using symmetry, we analyze mass in the cone v1 ≥ v2 ≥ 0. The calculations of total mass

at any point v ∈ (0,∞)2 are confirmed to be equal from either dual blends description of

the common correlated function g.

result of Qudz blend =

∫ v2

0

oQz · qudz(v1) · qudz(v2) =

∫ v2

0

2

z
· z
v2

1

· z
v2

2

dz =
1

v2
1

= g(v)

(4.12)

result of Ud0,z blend =

∫ ∞
v1

ωUz · ud0,z(v1) · ud0,z(v2) =

∫ ∞
v1

2

z
· 1

z
· 1

z
dz =

1

v2
1

= g(v)

(4.13)

The setup of these calculations is expanded in detail in Section 4.4. As desired, each

side of the dual blends describes exactly the same function g over V2. The remaining

issue to be addressed is that the total weight of all included distributions is divergent:∫∞
0

2
z
dz =∞.
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Modification to Finite-weight Blends. Next we show how to modify the infinite-

weight solution above to a proper dual blends solution with approximately the same

elements. Consider input support V = [1, h] for 1 < h < ∞. First we define the weights

oF and ωF , largely informed by the infinite-weight solution. We let the total weight in

the system be any constant and can assume that it gets normalized to 1 later. In fact the

total weight will be: 1 +
∫ h

1
2
z
dz = 1 + 2 lnh.

The Quadratics have the same general description as the infinite-weight case but are

now top-truncated at h, with truncated density moved to a point mass at h.5 Formally,

Quadratics have PDF
←−−
qudh

′
z (x) = z/x2 on [1, h) and point mass

←−−
qudh

′
z (h) = 1/h, correspond-

ingly CDF
←−−
Qudh

′
z (x) = 1− z/x on [1, h) and

←−−
Qudh

′
z (h) = 1.

The Uniforms have the same general description as the infinite-weight case but now

have domain lower bound at 1 and allow top-truncation at h. Formally, Uniforms without

truncation have PDF ud1,z(x) = 1/z − 1 and CDF Ud1,z(x) = x− 1/z − 1 on [1, z]. Uniforms

with truncation have PDF
←−
udh

′

1,b(x) = 1/b− 1 on [1, h) and point mass
←−
udh

′

1,b(h) = b− h/b− 1,

correspondingly
←−
Udh

′

1,b(x) = x− 1/b− 1 on [1, h) and
←−
Udh(h) = 1.

The weights of the upward-closed Quadratics blend (δ1) are as follows:

• point mass of weight opm = 1 on (truncated) distribution
←−−
Qudh

′
1 ;

• weights oQz = 2
z
dz on all upward-closed (truncated) distributions

←−−
Qudh

′
z for z ∈

[1, h].

The weights of the downward-closed Uniforms blend (δ2) are as follows:

• point mass of weight ωpm = (2h−1)2

h2 on (truncated) distribution
←−
Udh

′

1,2h;

5 We briefly explain notation of
←−
F h′ . Let a left-over-arrow modify the domain-upper-bound of F to

be h. The accent in
←−
F h′ indicates that density above h is truncated to h as a point mass, i.e., the original

CDF jumps to 1 at h.
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• weights ωUz = 2(z−1)2

z3 dz on all downward-closed distributions Ud1,z for z ∈ [1, h].

(In fact, we use only one uniform distribution with truncation:
←−
Udh

′

1,2h.) With the intro-

duction of pure point masses into underlying distributions, recall that dual blends must

match up for every dimension count. For convenience we re-state Definition 20. Then we

calculate and confirm all (un-normalized) densities from both sides.

Definition 20. Define the count of dimensional density by the number of (axis-

aligned) dimensions i ∈ {1, . . . , n} in which density is continuous: dvi or dz.

g2D(v) =

∫ v2

1

oQz ·
←−−
qudh

′

z (v1) ·
←−−
qudh

′

z (v2) + opm ·
←−−
qudh

′

1 (v1) ·
←−−
qudh

′

1 (v2)

=

∫ v2

1

2

z
· z
v2

1

· z
v2

2

dz + 1 · 1

v2
1

· 1

v2
2

=
1

v2
1

g2D(v) =

∫ h

v1

ωUz · ud1,z(v1) · ud1,z(v2) + ωpm ·
(←−

udh
′

1,2h(v1)
)
·
(←−

udh
′

1,2h(v2)
)

=

∫ h

v1

2(z − 1)2

z3
· 1

(z − 1)2
dz +

(2h− 1)2

h2
·
(

1

(2h− 1)

)2

=
1

v2
1

g0D(h, h) =

∫ v2=h

1

oQz ·
←−−
qudh

′

z (h) ·
←−−
qudh

′

z (h) + opm ·
←−−
qudh

′

1 (h) ·
←−−
qudh

′

1 (h)

=

∫ h

1

2

z
· z
h
· z
h
dz + 1 · 1

h
· 1

h
= 1

g0D(h, h) =

∫ h

v1=h

ωUz · ud1,z(h) · ud1,z(h) + ωpm ·
(←−

udh
′

1,2h(h)
)
·
(←−

udh
′

1,2h(h)
)

= 0 +
(2h− 1)2

h2
·
(

h

(2h− 1)

)2

= 1

g1D(h, v2) =

∫ v2

1

oQz ·
←−−
qudh

′

z (h) ·
←−−
qudh

′

z (v2) + opm ·
←−−
qudh

′

1 (h) ·
←−−
qudh

′

1 (v2)
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=

∫ v2

1

2

z
· z
h
· z
v2

2

dz + 1 · 1

h
· 1

v2
2

=
1

h

g1D(h, v2) =

∫ h

v1=h

ωUz · ud1,z(h) · ud1,z(v2) + ωpm ·
(←−

udh
′

1,2h(h)
)
·
(←−

udh
′

1,2h(v2)
)

= 0 +
(2h− 1)2

h2
·
(

h

2h− 1

)
·
(

1

2h− 1

)
=

1

h

As desired, each side of the dual blends yields the same function g = (g2D, g0D, g1D).

Calculations to confirm total weight is equal from any description of g or δ1 or δ2 are

given in Appendix B.3.

Observable Structure of Dual Blends. Having completed two finite-weight blends so-

lutions (Shifted-Exponentials-versus-Uniforms in Section 4.4 and now Quadratics-versus-

Uniforms here in Section 4.5.1), we identify the following common structure which is

observed in our example dual blends so far (and which later will be implicated but not

necessary within our general methods of Chapter 5).

Illustrated here on input support V = (0,∞), the observed structure is: the input

size is n = 2; distributions composing δ1 are upward-closed and are parameterized by

z ∈ (0,∞) with domain [z,∞); and distribution in δ2 are downward-closed and are pa-

rameterized by z ∈ (0,∞) with domain (0, z]. In further detail:

• δ1 is a distribution with weights oz over realized values of a single distributional

parameter for a given upward-closed distribution; e.g., δ1 was a distribution over

domain-lower-bounds z of the Shifted-Exponentials in Section 4.4;

• δ2 is a distribution with weights ωz over realized values of a single distribu-

tional parameter for a given x-closed distribution; e.g., δ2 was a distribution over

domain-upper-bounds z of the Uniforms in Section 4.4.
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We conjecture that no dual blends exist for n > 2 from our Blends Technique. For the

intuition of this conjecture, see our discussion of “algebraic consequences of the integral

endpoints” in Section 5.1. We believe that this upward-closed/downward-closed dual

structure is an important property that deserves further study.

4.5.2. Illustrative Results in Mechanism Design

We state two prior independent lower bounds in mechanism design with their proofs

deferred to the following sections.

The results follow from the exact same dual blends solution (using Quadratics-versus-

Uniforms with finite weight of Section 4.5.1 and the Blends Technique of Definition 19).

Revenue and residual surplus are two objectives within mechanism design (Section 2.2.1).

Theorem 11 (below, for a revenue objective) uses an adversarial distribution over the

Uniforms side of the dual blend. By contrast, Theorem 12 (for a residual surplus objective)

uses an adversarial distribution over the Quadratics side. This dichotomy of the respective

adversaries’ choices highlights how even a single example of dual blends can be distinctly

applied to two algorithm settings in order to identify a PI approximation lower bound

within each setting.

A fixed prior independent lower bound is stronger if it holds for a smaller class of

distributions. Let LF be a lower bound on the optimal approximation factor αF for a

class F . Fact 20 makes clear that LF holds additionally for a superclass E :

Fact 20. Given two classes of distributions E and F such that E ⊃ F . Then αE ≥

αF ≥ LF .
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Thus, we give our results for the smallest classes of distributions in order to state the

strongest bounds from our analysis. Define two sub-classes: Uniforms Funif[1, h] =

{
←−
Udh

′

1,b : 1 ≤ b} ≡ uniforms on [1, b] truncated at h; and Quadratics Fquad[1, h] =

{
←−−
Qudh

′
a : 1 ≤ a ≤ h} ≡ quadratics on [a, h] truncated at h. We explain the approach for

both theorems but full proofs are deferred to Section 2.2.

Theorem 11. Given a single-item, 2-agent, truthful auction setting with a revenue

objective and with agent values restricted to support [1, h] for h > 2. For the class of

uniform distributions Funif, the optimal prior independent approximation factor of any

(truthful) mechanism is lower bounded as:

(4.14) αF
unif

h ≥
opt2,2

opt2,1

=
23h
6
− 7

2
− ln(h/2)

3h− 2
= LF

unif

h

The lower bound LF
unif

h → 23/18 ≈ 1.2777 as h → ∞ and this is the supremum of LF
unif

h

over h ≥ 1.

The canonical PI revenue maximization problem measures worst-case approximation with

respect to the class of regular distributions F reg (Definition 11). All of our Uniforms are

regular: F reg ⊃ Funif. As a corollary, we get a lower bound for regular distributions:

αF
reg

h ≥ LF
unif

h .

As already stated, the proof of Theorem 11 follows the script of the Blends Technique

(Definition 19). We set δ2 ∈ ∆(Funif) to be the Uniforms blend with finite weights

(page 99) and we set δ1 ∈ ∆(Fall) to be the corresponding Quadratics dual blend. The

Second Price Auction (SPA; Definition 5) is optimal for all Quadratics in Fquad ⊂ Fall;

the lower bound h > 2 is necessary so that the SPA is not also optimal for all Uniform
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distributions with positive weight in δ2 (otherwise there is no gap: opt2,2/opt2,1 = 1). Given

these, the right-hand side of equation (4.14) is simply the result of evaluating opt2,2/opt2,1

(and recalling from Definition 18 that optn,i = EF∼δi [OPTF (F )]).

Theorem 12. Given a single-item, 2-agent, truthful auction setting with a residual

surplus objective and with agent values restricted to support [1, h] for h ≥ 8.56. For the

class of quadratic distributions Fquad, the optimal prior independent approximation factor

of any (truthful) mechanism is lower bounded as:

(4.15) αF
quad

h ≥
opt2,2

opt2,1

>
4h2 − 2h− h lnh− e lnh− e

4h2 − 3h− h lnh
= LF

quad

h

The lower bound LF
quad

h → 1 as h→∞. As an example bound: for h ∈ N, the maximum

of LF
quad

h is achieved at h = 18 with LF
quad

18 ≈ 1.00623.

The canonical PI residual surplus maximization problem measures worst-case approxi-

mation with respect to the class of all distributions Fall.6 As a corollary, we get a lower

bound for all distributions: αF
all

h ≥ LF
quad

h .

Once again, the proof of Theorem 12 uses the Blends Technique. This time we set

δ2 ∈ ∆(Fquad) to be the Quadratics blend with finite weights and set δ1 ∈ ∆(Fall) to

be the corresponding Uniforms. The Lottery (Definition 9) is optimal for all Uniforms

in Funif ⊂ Fall; the lower bound h ≥ 8.56 is necessary so that the Lottery is not also

optimal for all Quadratics with positive weight in δ2 (otherwise there is no gap). Note,

6 We note the contrast: Fall is standard for prior independent design with a residual surplus objective,
whereas F reg is standard with a revenue objective. As partial explanation: for the class Fall, Hartline
and Roughgarden (2014) show that constant-approximation is possible for residual surplus, and also show
a super-constant lower bound for revenue. Revenue maximization restricts to regular distributions which
satisfy a natural concavity property, and for which constant-approximation is possible (the first upper
bound was from Dhangwatnotai et al. (2015)).
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the right-hand side of equation (4.15) is a simplified lower bound on the ratio opt2,2/opt2,1

as shown in the statement.

Previously for 2-agent auctions for revenue and unbounded value space, with the ad-

ditional restriction to scale-invariant mechanisms, Allouah and Besbes (2018) proved for

monotone hazard rate distributions (Fmhr; Definition 10) that the SPA is optimal and

gave the optimal approximation αF
mhr ≈ 1.398 (Theorem 20); and also proved for regular

distributions (F reg) the first-ever PI lower bound. This thesis gave the optimal mechanism

and approximation αF
reg ≈ 1.907 (Theorem 5). For residual surplus, there is no previous

lower bound. Our mechanism design results have not been optimized in order to identify

best lower bounds from the Blends Technique.

4.5.3. Revenue Gap from Quadratics-versus-Uniforms

The goal of this section is to use the Blends Technique (Definition 19) to prove a revenue

gap for the Quadratics-versus-Uniforms dual blend, resulting in a prior independent lower

bound (summarized in Equation (4.14) in Theorem 11 and copied at the end of this

section).

Recall value space is V2 = [1, h]2 with an assumption that h > 2.7 We still use

symmetry to assume v1 ≥ v2 ≥ 0 in calculations and will then count permutations where

7 The assumption of h > 2 is necessary to make the result interesting. Because of the assumption
that value space has domain lower bound at 1, uniform distributions with domain upper bound at most
2 are trivially optimized by the SPA – which is the same as for the Quadratics in these dual blends – and
thus do not induce an approximation gap (the ratio is 1).
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necessary. For use in this section and the next, we re-summarize the function g:

g2D(v) = result of
←−−
Qudh

′

z blend(4.16)

= result of Ud0,z blend and
←−
Udh

′

1,2h =
1

v2
1

g0D(v) = result of truncation in
←−−
Qudh

′

z blend

= no point mass density from Ud0,z blend, result of
←−
Udh

′

1,2h = 1

g1D(v) = result of exactly one truncation in
←−−
Qudh

′

z blend

= no point mass density from Ud0,z blend, result of
←−
Udh

′

1,2h =
1

h

Also for use in this section, we state the following fact regarding uniform order statistics.

Fact 21. Given (unordered) v = (v1, . . . , vn) which are n i.i.d. draws from the uniform

distribution Ud0,1. Let k = 1 be the first, largest order statistic, and count order statistics

down to k = n the last, smallest order statistic. The expected value of an order statistic

v(k) is given by Ev∼Ud0,1

[
v(k)

]
= n+1−k

n+1
.

4.5.3.1. Expected Optimal Revenue from Quadratics. We calculate the expected

optimal revenue from the Quadratics side opt2,1 using the o weights above. The revenue

of the Quadratics blend is easy to calculate because every distribution that is a component

of the blend is an equal revenue distribution for which offering every price in [v(2), h] to

the largest-valued agent gets the same revenue and is optimal (see Definition 13 and its

surrounding discussion).
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The immediate consequence is that there exists a single mechanism that is optimal

against every distribution in the δ1 Quadratics blend: the anonymous price-posting mech-

anism APh with constant price h is globally optimal. Therefore, opt2,1 = APh(g) which

is the revenue of posting price h against the entire correlated distribution g.

The revenue conditioned on selling is obviously h. The probability of selling can be

obtained from the equations of line (4.16) to determine total density where at least one

agent has value h, which is exactly the total of 0D and 1D density over all of value space:

g0D · 1 + 2 · g1D · (h− 1) = (3h− 2)/h. Revenue from the Quadratics blend δ1 is given by

(4.17) opt2,1 = APh(g) = h · (3h− 2)

h
= 3h− 2

4.5.3.2. Expected Optimal Revenue from Uniforms. Because of the lower bound

of value space at 1, optimal revenue analyses for the Uniforms break down by both dis-

tribution and type of optimal reserve price (which is either the Ud0,z monopoly reserve

price, or the lower bound 1). The way we implement all Uniforms distributions here is

equivalent to conditioning a random draw from Ud0,z to be at least 1. This structure

makes Fact 2 applicable to our distributions, thus we can use virtual values as if the val-

ues were drawn from Ud0,z rather than its respective Ud1,z. By observation, all Uniforms

with positive weight in δ2 are regular. It is a well-known corollary to Theorem 3 that

the optimal mechanism given n agents drawn i.i.d. from a uniform distribution Ud0,z is

the SPA with reserve price at the monopoly price z/2. We have the following summary of

monopoly prices over the distributions in δ1:

• monopoly price h for
←−
Udh

′

1,2h (the truncation at h observably does not affect the

monopoly price);
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• monopoly price 1 for Ud1,z for z ∈ [1, 2] (effectively the SPA);

• monopoly price z/2 for Ud1,z for z ∈ [2, h] (which is the same as the monopoly

price for Ud0,z).

We treat these cases in sequence to compute opt2,2, incorporating the weights ω. The

contribution of the
←−
Udh

′

1,2h distribution is actually the same as the entire revenue opt2,2 =

3h − 2 of the Quadratics. This follows from: its optimal mechanism – post price h – is

the same as the globally optimal mechanism for Quadratics; and, the distribution
←−
Udh

′

1,2h

accounts for every possible realization in which an agent shows up with value h (when

considering any distribution in δ2).

The second and third cases represent revenue from the Uniform blend’s random draw

according to weights ωUz = 2(z−1)2

z3 dz. For the case z ≤ 2, the optimal mechanism is the

SPA, therefore the optimal mechanism always sells and its expected revenue is exactly the

expected value of v2. Using Fact 21, the expected value of v2 is [1 plus 1/3 of the width of

the range [1, z]]. The total contribution from this case z ≤ 2 is:

OPTUd1,z(Ud1,z)(4.18)

=

∫ 2

1

2(z − 1)2

z3
·
(

1 +
z − 1

3

)
dz =

∫ 2

1

2z2 − 4z + 2 + 2
3
z3 − 2z2 + 2z − 2

3

z3
dz

=

∫ 2

1

2

3
− 2

z2
+

4

3z3
dz =

2

3
+

[
2

z
− 2

3z2

]2

1

=
2

3
+

(
1− 1

6

)
−
(

2− 2

3

)
=

1

6

For the remaining case z ≥ 2, the expected revenue conditioned on selling depends on

distribution-specific reserve prices (there is no reduction to the SPA). We separate uniform
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draws of the values v into three natural sub-cases and calculate the optimal revenue

afterwards (given a Ud1,z):
8

• both values are smaller than the reserve; we fail to sell, with probability
( z−2

2
)2

(z−1)2 ;

• (2 permutations of) one value is larger and one smaller than the reserve; we sell

at the reserve price of z/2, each permutation with probability
( z−2

2
)( z

2
)

(z−1)2 ;

• both values are larger than the reserve; we sell at the conditional expected value

of v2 which is Ev∼Udz/2,z
[v2] = 2z/3, with probability

( z
2

)2

(z−1)2 .

The optimal revenue from a distribution Ud1,z for z ≥ 2 is

(4.19) OPTUd1,z(Ud1,z) = 2 ·
( z−2

2
)( z

2
)

(z − 1)2
· z

2
+

( z
2
)2

(z − 1)2
· 2z

3
=

1

(z − 1)2

(
5

12
z3 − 1

2
z2

)

Analogous to equation (4.18), the total contribution from this last case z ≥ 2 results from

a weighted integral and is:

(4.20)

∫ h

2

2(z − 1)2

z3
·OPTUd1,z(Ud1,z) dz =

∫ h

2

5

6
− 1

z
dz =

5

6
(h− 2)− ln h/2

Total revenue from the Uniforms blend adds up as

(4.21) opt2,2 = (3h− 2) +
1

6
+

5

6
(h− 2)− ln h/2 =

23

6
· h− 7

2
− ln h/2

4.5.3.3. The Revenue Gap as Lower Bound. For 2-agent, 1-item prior independent

auctions with a revenue objective, we have now established a necessary revenue gap via

8 Note, the quantity z/2− 1 = (z − 2)/2 is the length of the (uniform) region below the monopoly price
at z/2, versus z/2 is the length above it.
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blends:

(4.22)
opt2,2

opt2,1

=
23h
6
− 7

2
− ln(h/2)

3h− 2
, lim

h→∞

opt2,2

opt2,1

=
23

18
≈ 1.27777

where the limit calculation is trivial from application of l’Hopital’s rule. The appli-

cability of the revenue gap as a prior independent lower bound is subject to the de-

sign problem’s parameter F to describe the adversary’s allowable choice set of distri-

butions. By inspection, all of the Uniforms composing δ2 are included in small-class

Funif[1, h] = {
←−
Udh

′

1,b : 1 ≤ b} ≡ uniforms on [1, b] truncated at h. Putting this together

with equation (4.22) and Theorem 10 gives Theorem 11:

Theorem 11. Given a single-item, 2-agent, truthful auction setting with a revenue

objective and with agent values restricted to support [1, h] for h > 2. For the class of

uniform distributions Funif, the optimal prior independent approximation factor of any

(truthful) mechanism is lower bounded as:

αF
unif

h ≥
opt2,2

opt2,1

=
23h
6
− 7

2
− ln(h/2)

3h− 2
= LF

unif

h

The lower bound LF
unif

h → 23/18 ≈ 1.2777 as h → ∞ and this is the supremum of LF
unif

h

over h ≥ 1.

Further, all Uniforms are regular (for revenue, for which F reg is the standard comparison

class of distributions for prior independent design), thus as a corollary, our bound here

holds for F reg.

Previously in Theorem 5, the optimal prior independent approximation factor was

given for the version of this setting which allowed unbounded values in [0,∞). The optimal
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factor was ∼ 1.907. Note, we should expect the approximation factor of the restricted

value space to be smaller than the unbounded value space, because the mechanism can

specifically take advantage of information relating to scale in the latter case. The optimal

mechanism for unbounded value space was an a priori mixture over v2-markup prices of

1 (the SPA) and ∼ 2.44. Certainly, we would not expect the optimal mechanism to have

the same form for the value space [1, h], because it will not commit a priori to posting a

marked-up price of 2 ·v2 when it could be that v2 ∈ [h/2, h]. This makes prior independent

design in a finite value space setting a distinct problem in terms of analysis, in comparison

to the unbounded value space setting.

4.5.4. Residual Surplus Gap from Quadratics-versus-Uniforms

Paralleling the previous section, the goal of this section is to use the Blends Technique

to prove a residual surplus gap for the Quadratics-versus-Uniforms dual blend, resulting

in a prior independent lower bound (summarized in equation (4.15) in Theorem 12 and

copied at the end of this section). un-normalized densities (which will cancel at the end),

and Fact 21 (which states that the expected value of n order statistics from a distribution

Ud0,z divide the range into n + 1 equal parts). We include here a similar assumption to

the one we had for the revenue gap – we assume h ≥ 8.56 (otherwise our relaxed analysis

does not show a gap).

The residual surplus gap presented here uses the same description of finite-weight

Quadratics-versus-Uniforms dual blends, but the adversary will now in fact choose the

distribution over the Quadratics and use them to set the benchmark, whereas the revenue-

adversary set the benchmark via the Uniforms. (Thus, we reassign δ1 to describe the
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Uniforms side and δ2 to describe the Quadratics side.) As a consequence, we now have

calculation of residual surplus that is “easy” for the Uniforms rather than for the Quadrat-

ics (which is reversed in comparison to revenue calculations). This follows because, for

residual surplus, it is now the Uniforms side for which a single dominant mechanism exists

(the Lottery of Definition 9). We will calculate opt2,1 for the easy Uniforms side first.

Afterwards, the calculation of opt2,2 for expected optimal residual surplus of the

Quadratics faces some technical complexities. For simplicity, we will calculate instead

a lower bound on opt2,2. This is sufficient because we are designing a residual surplus gap

(via the Blends Technique) between the adversary’s benchmark set by the Quadratics and

an upper bound on expected performance of any algorithm as set by the Uniforms. By

using a lower bound on the ratio’s numerator, we will exhibit a weaker – but legitimate

– non-trivial lower bound on prior independent approximation.

4.5.4.1. Expected Optimal Residual Surplus from Uniforms. We calculate the

expected optimal residual surplus from the Uniforms side (opt2,1) using the ω weights

above. The residual surplus of the Uniforms blend is easy to calculate because every

distribution has everywhere decreasing virtual value and therefore it is optimal to iron

the entire region of value space. The immediate consequence is that there exists a single

mechanism that is optimal against every distribution in the δ1 Uniforms blend: the 2-

lottery mechanism LOT2 = AP0 is optimal (see definitions from page 39). I.e., opt2,1 can

be calculated directly from the expectation of one draw v ∼ g (and with price 0).

The probability of selling is obviously 1. In this case, the expected residual surplus

given any distribution can be obtained as the mean of the distribution: OPTUd1,z(Ud1,z) =
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1+(z − 1)/2 = (z + 1)/2. Given the distribution
←−
Udh

′

1,2h, expected residual surplus is calculated

to be:

OPT←−
Udh

′
1,2h

(
←−
Udh

′

1,2h) = h ·
(

h

(2h− 1)

)
+

(
1 +

(h− 1)

2

)
·
(

(h− 1)

(2h− 1)

)
=

(3h2 − 1)

(2(2h− 1))

Residual surplus from the Uniforms blend δ1 (using un-normalized weights) gives:

opt2,1 = ωpm ·
(3h2 − 1)

(2(2h− 1))
+

∫ h

1

ωUz ·
(

(z + 1)

2

)
=

(2h− 1)2

h2
· (3h2 − 1)

(2(2h− 1))
+

∫ h

1

2(z − 1)2

z3
·
(

(z + 1)

2

)
dz

=
(2h− 1) · (3h2 − 1)

2h2
+

[
z − ln z +

1

z
− 1

2z2

]h
1

=
6h3 − 3h2 − 2h+ 1

2h2
+

[
(h− 1)− lnh+

(
1

h
− 1

)
−
(

1

2h2
− 1

2

)]
=

4h3 − 3h2 − h2 · lnh
h2

= 4h− 3− lnh(4.23)

4.5.4.2. Lower Bound on Expected Optimal Residual Surplus from Quadratics.

The goal of the calculations in this section is to quantify a lower bound on the expected

optimal residual surplus from the Quadratics blend δ2. Thus, we want: lb2,2 < opt2,2.

We do this in place of calculating opt2,2 which is more complicated technically. Further,

the lower bound lb2,2 must be strictly larger than opt2,1 (equation (4.23) just above), in

which case we can exhibit a prior independent approximation lower bound from the ratio

lb2,2/opt2,1 (see the proof of Theorem 12 below).

This section only includes high-level introduction of the structures that are necessary

to calculate lb2,2 and state that it is a lower bound. Therefore we only give here: the
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residual surplus curve for the Quadratics (recall – as a function of quantile); the definition

for the quantity lb2,2; and Lemma 11 which shows that lb2,2 is an appropriate lower

bound for our purposes. Supporting material for this section – including explanations,

sub-calculations, and proofs – is provided in Appendix A.2.

First we give the un-ironed residual surplus curve for the Quadratics disributions with

CDF of the specific distribution
←−−
Qudh

′
z=1 given by

←−−
Qudh

′
1 (x) = 1 − 1/x on x ∈ [1, h], and

←−−
Qudh

′
1 (x) = 1 for x ≥ h. Explanation are given in Appendix A.2.1 (page 197). The

residual surplus curve is

(4.24) R←−−
Qudh

′
1

(q) =



0 for q ∈ [0, 1/h]

ln(q · h) for q ∈ [1/h, 1)

[lnh, 1 + lnh] for q = 1

Next, recall, we have the definition opt2,2 = EF∼δ2 [OPTF (F )], which embeds the weights

o (from δ2). At a high level, the quantity lb2,2 is similarly a calculation of weighted

residual surplus, according to weights o. With explanation to follow, we formally define:

lb2,2 := opm ·Mopm(
←−−
Qudh

′

1 ) +

[∫ h

1

oz · LOT2(
←−−
Qudh

′

z )

]
(4.25)

= 1 ·Mopm(
←−−
Qudh

′

1 ) +

[∫ h

1

2

z
· LOT2(

←−−
Qudh

′

z ) dz

]

Specifically, lb2,2 is calculated using the residual surplus of the 2-lottery (on the corre-

sponding distributions) for all weights oz = 2/z · dz making up the integral part of the δ2
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blend. (We do this for simplicity even though the 2-lottery is sub-optimal for a range of

z-parameters of distributions within this component of the blend.)

The only element of δ2 for which it does not use the 2-lottery is
←−−
Qudh

′
1 (with weight

opm = 1) where it uses the residual surplus Mopm(
←−−
Qudh

′
1 ) for a specially constructed

mechanism Mopm (for which we defer presentation to Definition 37 in Appendix A.2.2).

The point is that while the lottery is not necessarily optimal where we use its per-

formance, this relaxed lower bound simplifies our calculation generally to only require

calculating expected residual surplus for a single Quadratic distribution, in particular the

performance of Mopm on distribution
←−−
Qudh

′
1 . Note, the total quantity lb2,2 is for compar-

ison only – there is no prior independent mechanism that can commit to this behavior

(which varies by distribution) and achieve this precise performance.

The expected residual surplus Mopm(
←−−
Qudh

′
1 ) is stated in Lemma 11, though its proof

is also deferred to Appendix A.2.2.

Lemma 11. The residual surplus of mechanisms Mopm and LOT2 given 2 agents with

values drawn i.i.d. from
←−−
Qudh

′
1 are calculated as

Mopm(
←−−
Qudh

′

1 ) =
((2 + lnh)h− (1 + lnh)e)

h

LOT2(
←−−
Qudh

′

1 ) = 1 + lnh

The following lemma states that the quantity lb2,2 is strictly upper bounded by opt2,2 and

strictly lower bounded by opt2,1. Its proof is deferred to Appendix A.2.3.

Lemma 12. Given opt2,1 and opt2,2 resulting from the finite-weight Quadratics-versus-

Uniforms dual blends (along with the rest of the local assumptions of this section), and
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lb2,2 as defined in equation (4.25). Then we have

opt2,2 > lb2,2 > opt2,1

We now have the outline and justification to calculate the quantity lb2,2 as a meaningful

lower bound for opt2,2 towards using the Blends Technique to prove a non-trivial residual

surplus gap. The calculation of lb2,2 is a simple adjustment from opt2,1 which runs the

2-lottery everywhere, versus, the quantity lb2,2 is calculated from running the 2-lottery

everywhere except with weight opm = 1 it measures performance Mopm(
←−−
Qudh

′
1 ) rather than

LOT2(
←−−
Qudh

′
1 ). Therefore we have:

lb2,2 =
[
opt2,1

]
+ opm

(
Mopm(

←−−
Qudh

′

1 )− LOT2(
←−−
Qudh

′

1 )
)

= [4h− 3− lnh] + 1 ·
(

((2 + lnh)h− (1 + lnh)e)

h
− (1 + lnh)

)
=

4h2 − 2h− h lnh− e lnh− e
h

(4.26)

4.5.4.3. The Residual Surplus Gap as Lower Bound. For 2-agent, 1-item prior

independent revenue auctions, we have now established a necessary residual surplus gap

via blends:

(4.27)
opt2,2

opt2,1

>
lb2,2

opt2,1

=
4h2 − 2h− h lnh− e lnh− e

4h2 − 3h− h lnh
, lim

h→∞

lb2,2

opt2,1

= 1

where the limit calculation is obvious from observing highest-order terms (equivalently,

from repeated application of l’Hopital’s rule). Evaluation in the limit makes clear that

ratio-gaps from our loose calculations for any finite h are the result only of differences in

lower order terms.
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The applicability of the residual surplus gap as a prior independent lower bound is

subject to the design problem’s parameter F to describe the adversary’s allowable choice

set of distributions. However for residual surplus problems, there is precedent to allow the

full set of distributions Fall. Putting this together with equation (4.27) and Theorem 10

gives the following theorem to exhibit an approximation lower bound, which parallels

Theorem 11 for revenue.

Theorem 12. Given a single-item, 2-agent, truthful auction setting with a residual

surplus objective and with agent values restricted to support [1, h] for h ≥ 8.56. For the

class of quadratic distributions Fquad, the optimal prior independent approximation factor

of any (truthful) mechanism is lower bounded as:

αF
quad

h ≥
opt2,2

opt2,1

>
4h2 − 2h− h lnh− e lnh− e

4h2 − 3h− h lnh
= LF

quad

h

The lower bound LF
quad

h → 1 as h→∞. As an example bound: for h ∈ N, the maximum

of LF
quad

h is achieved at h = 18 with LF
quad

18 ≈ 1.00623.

As a corollary, our bound here holds for Fall.

4.6. Further Example Dual Blends from Optimal Mechanism Design

Theorem 5 in Section 3.4 gave the optimal prior independent 2-agent, single-item,

scale-invariant mechanism with a revenue objective for the class regular distributions

F reg. An analogous result for the more-restricted prior independent setting of MHR

distributions Fmhr – showing that the SPA is optimal – was proved by Allouah and Besbes

(2018) and this result is given in Theorem 20 in Appendix A.3. This thesis includes
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examples of dual blends based on the worst-case distribution of each distribution-class

environment, i.e., dual blends (modified) from exclusively distributions which are used by

optimal adversaries in these specific mechanism design settings.

We move presentation of this section to the appendix due to its technical complexity.

Appendix A.3 provides infinite-weight and finite-weight dual blends motivated by the

strategy of the optimal adversary of Theorem 20 (for Fmhr). Appendix A.4 gives analogous

dual blends descriptions from the adversary of Theorem 5 (for F reg).

4.7. Comparative Context of Lower Bounds from the Blends Technique

Given a prior independent algorithm design problem, the key inequality to describe

the lower bound of the Blends Technique is copied here as:

αF = min
A∈A

max
F∈F

OPTF (F )

A(F )
≥

optn,2
optn,1

In fact, the denominator optn,1 in the right-hand side may be the expected optimal perfor-

mance over distributions which represent any decomposition of the correlated distribution

g(·) as induced by δ2. This generalization may indicate a stronger lower bound, but only

abstractly – there still remain the questions of (1) identifying a better decomposition and

(2) calculating its expected optimal performance to upper bound the performance of any

algorithm. In particular, not every decomposition is useful. As an extreme example, the

decomposition of g into point masses on every fixed profile v will almost certainly have

expected optimal performance that is greater than optn,2 in the numerator, resulting in

an innocuous “lower bound” which is smaller than the trivial bound at 1. The point is

that good decompositions of g are difficult to find.
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Two significant benefits of focusing the search over alternative-decompositions to dis-

tributions over i.i.d. product distributions (represented by the blend δ1 as a mixture over

the class Fall) are:

• earlier in this chapter, we have identified dual blends for which the δ1-side has

opt2,1 = EF∼δ1 [OPTF (F )] =

∫
Fall

OPTF (F ) · δi(F ) dF

which is tractable, in particular because we only need to solve one or two closed-

form evaluations of OPTF (F ) due to our ability to parameterize these perfor-

mance functions by z;

• and, as we will be formalized in the next chapter, the (near)-symmetrical struc-

ture of our dual blends gives us access to tools in other established fields – we

will emphasize connections to the economics topic of information design (Sec-

tion 5.4); and the mathematics (and algorithms) topic of tensor decomposition

(Section 5.5).
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CHAPTER 5

Mathematical Structure of Dual Blends

This chapter describes a suite of broad approaches for infinite-weight dual blends

solutions that may be useful for identifying good lower bounds for problems of interest,

i.e., within a search over dual blends for the one that yields the best lower bound. To do

so, this chapter analyzes the fundamental mathematical structure of general dual blends

construction and design.

First, this chapter identifies and proves existence of classes of solutions based on key

properties.One key property is order-statistic separability (Definition 21, Theorem 13)

in Section 5.1, i.e., the common function g can be written as multiplicatively-separable

functions per order-statistic of the inputs (for n = 2). Another pair of key properties with

interwoven effect are inverse-distributions (Definition 23), Theorem 14) in Section 5.2, i.e.,

one side of the dual blend by parameterizing over scales of a fixed, base function F , and the

other side is then automatically generated by parameterizing over scales of the inverse-

distribution of F . The example of Section 4.5.1 is a special case of both approaches.

Within the theme of general solutions, Section 5.3 presents the straightforward result

that dual blends maintain their definition under additive-shifts of their domains. For

simplicity, we describe these constructions allowing for infinite-weight blends. Similar

methods as used in the example of Section 4.5.1 can modify them to proper probability

distributions. Further examples of modification from infinite to finite-total weight are

given in Appendix A.3 and Appendix A.4.
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Second, for any given prior independent algorithm problem, this chapter considers

the theoretical question of optimal lower bounds as may be generated by The Blends

Technique. Section 5.4 shows that the search for an optimal dual blend may be sepa-

rated into a high-level search for an optimal correlated distribution g, for the search for

the optimal dual blend given any candidate g reduces to two independent questions of

information design. Thus, the overall process is information-design-design. Section 5.4.3

assesses the comparative information content of the two sides of a dual blend in terms

of Blackwell ordering (Blackwell, 1953), a perspective which arises naturally within the

topic of information design.

Lastly, Section 5.5 provides a quick outline of the connection between blends and

tensors with dual blends effectively as non-unique continuous-tensor decompositions.

Material in this chapter is largely drawn from Hartline and Johnsen (2021).

5.1. A Class from Order-statistic Separability

This section introduces order-statistic-separable functions and subsequently describes

a class of dual blends based on these functions. Fix n = 2 and our inputs in the cone

v1 ≥ v2 ≥ 0 in which v1 represents the first (largest) order statistic and v2 the second

(smaller) order statistic.

Definition 21. Given n = 2. An order-statistic-separable function (with domain V2)

is symmetric across the line v1 = v2 and for inputs subject to v1 ≥ v2 ≥ 0, has the form:

g(v) = g1(v1) · g2(v2)

for which both g1 and g2 adopt the domain V.
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To be clear, the separate functions g1 and g2 are not independent factors of g because of

the condition v1 ≥ v2. The function g is correlated and is not a product itself. Let G1(z) =∫∞
z
g1(y)dy and G2(z) =

∫ z
0
g2(y)dy be respectively upward-cumulative and downward-

cumulative functions. (Intuitively, ifG1(z) is finite, then a “normalized” function g1(x)/G1(z)

gives the PDF of a conditional probability distribution parameterized by z, on domain

[z,∞); and the same is true for finite G2(z) on domain (0, z].)

Before stating a formal result in Theorem 13 to construct dual blends, we show that the

Quadratics-versus-Uniforms example of Section 4.5.1 exhibits order-statistic separability.

The blends’ correlated density at every point v ∈ R2
+ for v1 ≥ v2 was calculated in

equations (4.12) and (4.13) to be g(v) = 1/v2
1. It is easy to verify that g1(v1) = 1/v2

1 and

g2(v2) = 1 satisfy Definition 21.

Theorem 13. Consider non-negative functions g1(·) and g2(·) each with domain

(0,∞). For every z > 0, let g1,z be g1 restricted to the domain [z,∞) and g2,z be g2

restricted to the domain (0, z].

Each δi blend is a distribution over the set {gi,z : z > 0}. Let og1(z) and ωg2(z)

be functions (as free parameters which we may design) to describe weights corresponding

respectively to each g1,z and to each g2,z.

First, assume g1(·) and g2(·) satisfy the following conditions:

(1) The function χ(z) = g1(z)
g2(z)

evaluated in the limit at ∞ is 0, i.e., limz→∞ χ(z) = 0;

(2) the function ψ(z) = g2(z)
g1(z)

evaluated in the limit at 0 is 0, i.e., limz→0 ψ(z) = 0;

(3) χ(z) must be weakly decreasing, equivalently, ψ(z) must be weakly increasing;
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Then the weights functions og1(z) = dψ(z) and ωg2(z) = −dχ(z) give a dual blends solution

with:

g(v) = g1(v1) · g2(v2) for v = (v1, v2 ≤ v1)

If the following condition additionally holds:

(4) the integrals G1(z) =
∫∞
z
g1(y) dy and G2(z) =

∫ z
0
g2(y) dy are positive and finite

for all z ∈ (0,∞);

then for the same function g, there exists a dual blends solution (by modification from the

original solution) for which all of the g1,z and g2,z functions are distributions.

Proof. At a high level, the proof is constructive: it is possible to back out weights

functions og1(z) and ωg2(z). Per the statement, let χ(z) = g1(z)
g2(z)

. Choose

(5.1) ωg2(z) = (−1) · dχ(z)

such that the upwards-closed integral over all g2,z (where g2,z(v1) is positive) gives1

∫ ∞
v1

ωg2(z) · g2,z(v1) · g2,z(v2) = (g2(v1) · g2(v2))

∫ ∞
v1

(−1) · dχ(z)

= (g2(v1) · g2(v2))

[
(−1) · g1(z)

g2(z)

]∞
v1

= g1(v1) · g2(v2)(5.2)

1 Note within the sequence of equation (5.2) that function g2,z is used in the starting evaluation,
where its domain informs the integral endpoints; after the endpoints are fixed however, we have g2,z = g2

everywhere. Thus the first step can simplify to the common function g2 and pull multiplicative constants
out of the integral.
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where Condition (1) in the theorem statement is sufficient for the final equality. Similarly,

let ψ(z) = g2(z)
g1(z)

and choose

(5.3) og1(z) = dψ(z)

such that the downward-closed integral over all g1,z (where g1,z(v2) is positive) gives

∫ v2

0

og1(z) · g1,z(v1) · g1,z(v2) = (g1(v1) · g1(v2))

∫ v2

0

dψ(z)

= (g1(v1) · g1(v2))

[
g2(z)

g1(z)

]v2

0

= g1(v1) · g2(v2)(5.4)

where Condition (2) is sufficient for the final equality.

By implicit assumption throughout this thesis, the weights og1 and ωg2 (and the func-

tion g) must be non-negative everywhere. Observing weights definitions in equations (5.1)

and (5.3), Condition (3) is sufficient to meet these high-level assumptions.2 This com-

pletes the proof of the main theorem statement. To prove the distributions-special-case

using Condition (4), we show how to use definitions in the theorem statement to modify

the ωg2-side calculations above (and leave the og1-side to follow from symmetry, similar to

the symmetry above between the two sides). For this setting, we have a modified blends

solution. Critically, we have g̃1,z(x) = g1,z(x)/G1(z) and g̃2,z(x) = g2,z(x)/G2(z). Condition

(4) is sufficient to guarantee that all of the functions g̃1,z and g̃2,z are in fact probability

distributions. Choose

(5.5) ω̃g2(z) = (−1) · dχ(z) · (G2(z))2

2 Without our global assumptions on weights here, Condition (3) could be relaxed.
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which “corrects for the normalization” within each g̃i,z by re-factoring the weights, such

that the same effective calculation as before goes through. I.e., the following upward-

closed integral gives

∫ ∞
v1

ω̃g2(z) · g̃2,z(v1) · g̃2,z(v2) =(5.6)∫ ∞
v1

ω̃g2(z) ·
(
g2,z(v1)

G2(z)

)(
g2,z(v2)

G2(z)

)
= (g2(v1) · g2(v2))

∫ ∞
v1

(−1) · dχ(z)

= (g2(v1) · g2(v2))

[
(−1) · g1(z)

g2(z)

]∞
v1

= g1(v1) · g2(v2)

again relying on Conditions (1) and (3). Condition (2) is sufficient for the og1-side to work

out symmetrically, which uses the modification õg1(z) = dψ(z) · (G1(z))2. �

We illustrate the math of Theorem 13 for our main example of Quadratics-versus-Uniforms

in Appendix B.4. We give a second example in Appendix B.5, for which G2(z) =∫ z
0
g2(x) dx evaluates to ∞ and therefore the functions g2,z can not possibly be converted

to probability distributions by trying to normalize their total weights.

Through the rest of this section, we discuss a number of intuitive observations regard-

ing the structure of Theorem 13.

The gi functions as “un-normalized” density functions. The proof of Theorem 13

makes clear how a function like g2(v2) = 1 is the common function representing un-

normalized density of every downward-closed uniform distribution Ud0,z. I.e., a process

to generate any downward-closed uniform distribution is to start with g2(v2) = 1 on

[0,∞), restrict it to the domain [0, z], and then divide by the total area under the curve∫ z
0
g2(y) dy = z. This gives the PDF ud0,z(y) = 1/z.
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Similarly, the function g1(v1) gives the un-normalized density of every upward-closed

quadratic distribution Qudz. To normalize g1 to become distribution Qudz, we divide by

the tail area
∫∞
z
g1(y) dy = 1/z and the resulting PDF is exactly qudz(y) = z/y2.

Application to distributions requires finite tails. In the statement of Theorem 13,

the special case for which we construct g̃1,z and g̃2,z to necessarily be probability distribu-

tions required additionally Condition (4) which states, “the integrals G1(z) =
∫∞
z
g1(x)dx

and G2(z) =
∫ z

0
g2(x)dx are positive and finite for all z.” This is necessary because, e.g.,

g̃1,z(x) = g1,z(x)/G1(z) would otherwise be not well-defined or 0. See the previous example

in Appendix B.5.

The interpretation of Condition (4) is that g1 must be everywhere “upward-finite” and

g2 must be everywhere “downward-finite.”

Definition 22. Given a non-negative function gi(x) with domain (0,∞). The function

gi(·) is upward-finite if
∫∞
z
gi(x) dx is finite for every z, and it is downward-finite if∫ z

0
gi(x) dx is finite for every z.

We identify a couple consequences of this structure. First, it makes permanent the setting

of integral endpoints when calculating density at a fixed input (v1, v2 ≤ v1) from each

side of the dual blends (recall Figure 4.2 in Section 4.4). Second, it allows us to write

any number of simple corollaries to state existence of classes of dual blends that have

distributions as elements of the blends, for example:

Corollary 1. Consider parameterized functions gη(x) = 1/xη for any η ∈ R. Setting

g1 = gη+ for η+ > 1 and g2 = gη− for η− < 1 will meet all conditions (1) through (4) of
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Theorem 13. Thus, there is a dual blends solution for which the elements are distributions

from any gη+ and gη−.

Algebraic consequences of the integral endpoints in the construction. The

assigned integral endpoints of the dual blends calculations – as resulting from Definition 22

– are critical to making the algebra work out. Specifically, each side observably employs

an integral endpoint to “correct” the gi(vj 6=i) term which originally appears inside the

integral, as a “constant” given the integration per dz.

E.g., the equation in line (5.6) at the end of the proof of Theorem 13 makes this clear:

both gi(vi) and gi(vj) terms get pulled out. After this step, the evaluation of the integral

given its endpoints is needed to both construct gi(vi) and cancel gi(vj) – there are no other

algebraic tools available to construct the function g. In fact, we can’t change gi(vi) and it

passes intact as a factor of g. Evaluation of the integral must replace the gi(vj) term with

a gj(vj) term which is the second factor of g. Then the weights terms are designed to get

the overall integrand correct so that the anti-derivative function evaluates the “extreme”

endpoint (at 0 or ∞) to 0 and the other endpoint at vj to convert an original gi(vj) term

to gi(vi) as needed within the order-statistic-separable function g.

With this algebraic set up in mind, it should now be clear why we should not expect

a direct extension of The Blends Technique (or general dual blends solutions) for n ≥ 3.

For example, consider trying to construct dual blends for the function

g(v1, v2, v3) = g1(v1) · g2(v2) · g3(v3)
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by direct analogy to the n = 2 case. The problem for generalization is that the design for

n = 2 gives each side exactly two “degrees of freedom” to set g1 and g2. To attempt the

same design for n = 3, let i, j be distinct elements of the set {1, 2, 3}. Each side of the

(supposed) dual blend must be symmetric from a functional starting point:

gi(v1) · gi(v2) · gi(v3)

∫ b

0

(·) dz = g(v) = g1(v1) · g2(v2) · g3(v3)

= gj(v1) · gj(v2) · gj(v3)

∫ ∞
a

(·) dz

but there is no way to evaluate the integrals – no matter what their integrands are

or what their endpoints are – to combine with each of
∏

k gi(vk) and
∏

k gj(vk) to get

g1(v1) · g2(v2) · g3(v3). The only solution is gi = gj.

The Gi(·) functions as continuous scalars. By inspection of equation (5.6), the (finite)

functions Gi(x) can in fact be set to any function that is strictly positive (or even more

generally, non-zero) as long as they are still offset by Gi(·) terms in the weights functions.

Therefore, the gi(·) functions only need to be subject to the restrictions on χ(·) and ψ(·)

(and be non-zero and finite) for a blend g(v) = g1(v1) · g2(v2) to be induced.3

Corollary 2. Consider non-negative functions g1(·) and g2(·) which each have domain

(0,∞). Let g1,z be g1 restricted to the domain [z,∞) and g2,z be g2 restricted to the domain

(0, z]. Assume there exists a dual blends solution

g(v) = g1(v1) · g2(v2) for v = (v1, v2 ≤ v1)

3 The example applying Theorem 13 to the infinite-weight Quadratics-versus-Uniforms dual blends
in Appendix B.4 exhibits this type of “forward construction” of its intended function g.
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using weights og1(z) and ωg2(z).

Then for any finite, positive functions G1, G2, the weights õg1(z) = og1(z) ·G1(z) and

ω̃g2(z) = ωg2(z)·G2(z) applied to functions gi,z/Gi(z) describes the same dual blends solution

from g1, g2.

There exists a comparison here to nth-order tensors. The specific observation here is

that this Corollary 2 is analogous to dividing a symmetric tensor’s element-vector az by

a factor κz and multiplying its scalar lz by κnz . In the same way that we can multiply-

and-divide by the respective Gi with no effect on g, these multiplicative factors cancel

and have no effect on nth-order tensor T = lz · (az ⊗ . . .⊗ az). Exploring the connection

between blends and tensors is the focus of Section 5.5.

5.2. A Class from Inverse-distributions

It is a remarkable feature of the infinite-weight Quadratics-versus-Uniforms dual blends

that both sides use the exact same weights parameters per z, namely oQz = ωUz = 2/z · dz.

This structure is not an anomaly – it is indicative of a class of infinite-weight dual blends

solutions which we formalize in Theorem 14 (and give the key definitions and proof below).

The critical structure is the multiplicative inverse ‘1/z.’ Its importance is highlighted

from two perspectives: inverse-distributions and arbitrary distribution rescaling. Notably,

Quadratics and Uniforms are inverse-distributions to each other, which we see directly

from Qud1(x) = 1−1/x on [1,∞) for which the inverse-distribution CDF is 1−Qud1(1/x) =

1− (1− 1/1/x) = x = Ud0,1(x) on [0, 1]. Additionally, the Quadratics blend assigns weights

to all rescalings of Qud1 and the Uniform blend assigns weights to all rescalings of Ud0,1.
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Fundamentally, Theorem 14 shows that there is a duality between distribution values and

distribution scales, as can be observed in equation (5.7).

Theorem 14. Given distribution F, define members Fy of its parameterized class of

all possible rescalings y > 0, and its inverse-distribution i-F by

(5.7) Fz(x) = F(x/z) = 1− i-F(z/x) = 1− i-Fx(z)

For n = 2, Fz and i-Fz give classes that are dual blends using weights oz = ωz = 1/z, i.e.,

they describe a common function g at every v = (v1, v2 ≤ v1):

(5.8)

∫ ∞
0

1

z
· fz(v1) · fz(v2) dz = g(v) =

∫ ∞
0

1

z
· i-fz(v1) · i-fz(v2) dz

Definition 23. Given a distribution F with domain [a, b] (or domain [a,∞)), i.e.,

F (a) = 0 and F (b) = 1. The inverse-distribution of F is defined by the CDF function

i-F (x) = 1 − F (1/x) on domain [1/b, 1/a] (respectively domain (0, 1/a]). The PDF of the

inverse-distribution is denoted i-f . (Fact: as an operation, distribution inversion is its

own inverse, i.e., it respects the identity i-(i-F ) = F .)

Recall Fact 15, copied here from Section 3.2:

Fact 15. Given a distribution Fz=1 with default scaling parameter z = 1 and with

domain [a, b] (or domain [a,∞)). The distribution F1 can be arbitrarily re-scaled for

z ∈ (0,∞) to Fz(x) = F1(x/z) with domain [z · a, z · b] (respectively domain [z · a,∞)).

These concepts come together in Theorem 14 which proves that an infinite-weight blends

solution always exists effectively from fixing symmetric weights oz = ωz = 1/z · dz and
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then choosing the g1 and g2 as inverse-distributions of each other. In Theorem 13 by

comparison, g1 and g2 were (relatively) free parameters to be chosen first, for which

weights could then be identified to complete a dual blends solution. We give a concise

proof of Theorem 14 from the key ideas of this section (inverse-distributions and rescaling):

Proof. Given distribution F and its inverse-distribution i-F, the rescaled CDFs and

PDFs are:

Fz(x) = F(x/z) i-Fz(x) = i-F(x/z) = 1− F(z/x)

fz(x) =
1

z
· f(x/z) i-fz(x) =

z

x2
· f(z/x)

Starting from the right-hand side of equation (5.8), the following sequence completes the

proof:

∫ ∞
0

1

z
· i-fz(v1) · i-f(v2) dz =

∫ ∞
0

[
1

z
· dz
]
·
(
z

v2
1

· f(z/v1)

)
·
(
z

v2
2

· f(z/v2)

)
(here we perform calculus-change-of-variables using z = ζ(y) = v1·v2

y
; recall that part of

the substitution is dz = ζ ′(y) · dy, and integral endpoints get mapped by ζ−1(·))

=

∫ 0

∞

[
1

v1·v2

y

·
(
−v1 · v2

y2
· dy
)]
·
( v1·v2

y

v2
1

· f(v2/y)

)
·
( v1·v2

y

v2
2

· f(v1/y)

)

=

∫ ∞
0

[
1

y
· dy
]
·
(

1

y
· f(v2/y)

)
·
(

1

y
· f(v1/y)

)
=

∫ ∞
0

1

y
· fy(v2) · fy(v1) dy �

An interesting property of (infinite-weight) dual blends from Theorem 14 that emerges

from the proof is: we don’t have to solve for a closed-form expression for the function

g in order to prove equality of its dual descriptions. As a consequence, the process of
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obtaining lower bounds from dual blends may reduce to computation of expectations over

optimal performances OPTF (F ).

5.3. Additive Shifts of Dual Blends

This section identifies a straightforward technique to generalize the solution of any

(finite-weight) dual blends solution when the input space is unbounded (positive) reals

R+. The technique simply additively shifts the density. We state this formally with

Proposition 2 and give a natural example of the technique following from Quadratics-

versus-Uniforms as used in the previous two sections.

Proposition 2. Given a dual blends solutions described δn1 = g = δn2 for (symmetric)

correlated distribution g and blends δn1 , δ
n
2 respectively described according to weights oz

on distributions Foz and weights ωz on distributions Fωz with input domain a subset of

[a,∞) for a ≥ 0. For every ε ≥ −a, the following is also a dual blends solution with input

domain a subset of [0,∞):

(5.9) δnε,1 = gε = δnε,2

for correlated distribution gε and blends δnε,1, δ
n
ε,2 respectively described according to weights

ŏz = oz−ε on distributions Fŏz ,ε defined by PDF fŏz ,ε(x) = foz(x−ε) and weights ω̆z = ωz−ε

on distributions Fω̆z ,ε defined by PDF fω̆z ,ε(x) = fωz(x− ε).

We now outline the following positive example. Consider the 2-input Quadratics-

versus-Uniforms solution of Section 4.5. We substitute t + 1 into the maximum value

h and then shift the coordinates Quadratics-versus-Uniforms solution using parameter
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ε = −1 via Proposition 2. This puts the (still finite-weight) solution into the value

space [0, t]2 for t > 0. With inputs shifted down by 1, the class of Quadratics
←−−
Qudh

′
z

becomes exactly a class of Shifted-Quadratics generally described by
←−−
Sqdt

′
z,−1 with weights

ŏz. The original class of Uniforms generally used domain lower bound 1, which after the

downward shift is more naturally realized at 0, and generally they become the class of Ud0,z

distributions with weights ω̆z. The weights are assigned to their respective appropriately-

shifted distributions. Obviously the total weight remains the same and we can normalize

later. To re-summarize the total weight here, we have 1 +
∫ t

0
2
z+1

dz = 1 + 2 ln(t+ 1).

The weights on the upward-closed Shifted-Quadratics blend (δ2
ε,2) are as follows:

• point mass of weight ŏpm = 1 on (truncated) distribution
←−−
Sqdt

′
0,−1;

• weights ŏQz = 2
z+1

dz on all upward-closed (truncated) distributions
←−−
Sqdt

′
z,−1 for

z ∈ [0, t].

The weights on the downward-closed Uniforms blend (δ2
ε,1) are as follows:

• point mass of weight ω̆pm = (2t+1)2

(t+1)2 on a distribution defined by
←−
Udt

′
0,2t+1;

• weights ω̆Uz = 2z2

(z+1)3dz on all downward-closed distributions Ud0,z for z ∈ [0, t].

We have the following types of density that will match: 2-D dv1dv2, 0-D pure point mass

at input (t, t), and 1-D dv2 at inputs (t, v2). Because these calculations are simple additive

shifts of previous calculations, we believe it is sufficient to write down the solution from
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one side only and without showing all steps (cf., calculations on page 101).

g2D(v) = result of
←−−
Sqdt

′

z,−1 blend =
1

(v1 + 1)2
(5.10)

g0D(v) = result of truncation in
←−−
Sqdt

′

z,−1 blend = 1(5.11)

g1D(v) = result of exactly one truncation in
←−−
Sqdt

′

z,−1 blend =
1

t+ 1
(5.12)

5.4. Dual Blends Design is Information-Design-Design

This section connects theoretical optimization of the Blends Technique to the econom-

ics topic of information design, specifically as a procedure of information-design-design

(IDD). For a given prior independent problem (parameterized by class of distributions

F), the main idea is to separate into modular problems the search for the optimal dual

blend (which yields the largest lower bound of any dual blend). (1) An “outer” problem

identifies an optimal correlated distribution g∗ ∈ G = {δn | δ ∈ ∆(F)}. The outer prob-

lem searches over: (2) for any exogenous g ∈ G, an “inner” problem identifies two blends

that induce g – respectively from F and Fall – to maximally separate the ratio of optimal

performances given each blend (cf., the Blends Technique).

Effectively, the distributions that compose each blend acts as signals to which each

corresponding optimal algorithm OPTF may respond. If signals can be designed as out-

puts of a mapping from underlying inputs as fixed states, then such signal-response games

are called information design. (We can design signals in this way for our problems, see

Lemma 13 based on Bayes Law.) We exhibit the separation of problems first and defer

the presentation of information design.
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Describing the sequence of inequalities below, the first line starts with a prior inde-

pendent problem and its right-hand side optimizes over lower bounds from the Blends

Technique. This step removes the algorithm design problem of the min-player and gives

a new problem (which is constrained with respect to the original, possibly with loss).

Next where an adversary optimizes both steps of a sup− sup program, we rearrange

these two successive choices to: (a) optimize the correlated distribution g which represents

both (flattened) sides of the dual blends simultaneously; and then (b) optimize over sets

of blends which induce g to maximize the numerator (using F) and minimize the denom-

inator (using Fall).4 The final line is a reorganization using independence of numerator

and denominator which now each comprise a sub-problem of the Blends Technique.

αF = min
A∈A

max
F∈F

OPTF (F )

A(F )
≥ sup

δ2∈∆(F)

[
sup

δ1∈{δ | δ∈∆(Fall) and δn=g=δn2 }

[
EF∼δ2 [OPTF (F )]

EF∼δ1 [OPTF (F )]

]]

= sup
g∈G

 sup
δ2∈{δ | δ∈∆(F) and δn=g}
δ1∈{δ | δ∈∆(Fall) and δn=g}

[
EF∼δ2 [OPTF (F )]

EF∼δ1 [OPTF (F )]

]
= sup

g∈G

[
supδ2∈{δ | δ∈∆(F) and δn=g} (EF∼δ2 [OPTF (F )])

infδ1∈{δ | δ∈∆(Fall) and δn=g} (EF∼δ1 [OPTF (F )])

]
(5.13)

Definition 24. The optimization problem of equation (5.13) is Information-Design-

Design. Within the brackets, we refer to the optimizations respectively as the Numerator

and Denominator Games.

4 This optimization may be non-trivial – for a single exogenous g, there are generally multiple can-
didate blends which induce g. Intuitively, this is true because the set {δ | δn = g} is closed under
convex combination. As illustration, first consider two distinct dual blends examples ga = δn1 = δn2 and
gb = δn3 = δn4 as may be generated per the large class of Theorem 14. Then gab = ga/2 + gb/2 has four
blends solutions: δ

n
i /2+δnj /2 for all i ∈ {1, 2}, j ∈ {3, 4}. (We count here the four combinations of “corner”

descriptions of gab. We ignore that, e.g., the δni /2 term may mix over δn1/2 and δn2/2 – an optimization
never needs this mix by linearity of expectation.) To generalize, the convex set {δ | δn = g} is generally
a Hilbert space, e.g., if g is a continuous mixture over a continuum of dual blends.
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Thus, when g is fixed exogenously by an outer maximization, there is a reduction to

diametrically-opposite questions of constrained information design (Proposition 3 next).

Constraining the design is the key step – informally information design is a signalling

game and we require that signals be distributions F ∈ F (or F ∈ Fall; which each induce

an i.i.d. product distribution). Thus, (a) the marginal distribution over signals is a blend,

and (b) an optimal algorithm can be run in response to a given signal F̂ (cf., the use of

distributions-as-signals in optn,i = EF∼δi [OPTF (F )]).

Proposition 3. Consider the prior independent design problem (Definition 2) given

a class of distributions F , a class of algorithms A, and n inputs. Optimization of the

Blends Technique approach to prior independent lower bounds is described by:

αF ≥ sup
g∈G

[
supδ2∈{δ | δ∈∆(F) and δn=g} (EF∼δ2 [OPTF (F )])

infδ1∈{δ | δ∈∆(Fall) and δn=g} (EF∼δ1 [OPTF (F )])

]

Further, its Numerator Game and its Denominator Game can be independently instanti-

ated as problems of constrained information design.

This section additionally evaluates dual blends from the perspective of Blackwell (partial)

ordering, which compares two designs of signalling strategies equivalently in terms of both

a strong measure of their information content, and a strong measure of their usefulness

for arbitrary optimization objectives. In our case, signalling strategies correspond to

blends, and the IDD Numerator Game searches for the best signals using F while its

Denominator Game searches for the worst signals using Fall. We will show that our

finite-weight Quadratics-versus-Uniforms dual blend (of Section 4.5.1) is an example for

which there is no relationship according to Blackwell ordering (Corollary 3).
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An outline for this section is: Section 5.4.1 gives an introduction to information de-

sign. Section 5.4.2 gives an intuitive explanation of the reduction of the Numerator and

Denominator Games within equation (5.13) to information design; it includes Lemma 13

which shows that the crux of the reduction is a straightforward application of Bayes

Law. Section 5.4.3 introduces Blackwell ordering and observes that our dual blends in the

Quadratics-versus-Uniforms example of Section 4.5.1 do not have a Blackwell ordering.

Related Work for Information Design. The canonical model of information design

with a single sender and single receiver was introduced by Rayo and Segal (2009) and

Kamenica and Gentzkow (2011). A few points of context with this literature are as

follows. In our setting the allowable posterior distributions are constrained. The early

work of Glazer and Rubinstein (2004) – in which the sender can only present certain kinds

of evidence – can be viewed as a posterior-constrained setting of information design. In

our mechanism design applications, the receiver is a seller and faces a number of potential

buyers. Bergemann et al. (2015) previously studied information design in such a scenario

with only one buyer, with the goal of characterizing the feasible outcomes that a regulator

(the sender) can obtain in terms of the tradeoff between revenue and residual surplus.

While it is not directly related to the methods of this thesis, there is a literature starting

with Dughmi et al. (2019) that shows that some problems of information design are

computationally tractable. See Bergemann and Morris (2019) for a more complete survey

of the breadth of literature on information design.
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5.4.1. Introduction to Information Design

From economics, information design is a game between two players – a Sender and a

Receiver – who have unaligned objective functions. There is an unknown state of the

world θ from a set of states Θ. Realized state θ̂ is Bayesian and is drawn from a prior π̄

that is common knowledge.

The Sender observes θ̂ and sends a signal s from the signal space S. This is imple-

mented by: up front, the Sender commits to a signalling strategy σ : Θ→ ∆(S) that maps

states to distributions over signals, with σ ∈ Σ the space of (possibly restricted) strate-

gies.5 Strategies σ implicitly lead to information structures because of the existence of the

prior π̄ – information structures describe the ex ante correlated distribution over paired

state-and-signal. The takeaway is that information structures represent strategic design

by the Sender to convert the prior π̄ into a structured system of posteriors (conditional

for each s) for specific use by the Receiver.

Definition 25. An information structure I : Θ×S → [0, 1] is a correlated probability

distribution over state and signal.

We make two critical observations: an information structure is induced from a given prior

π̄ over state and a signalling strategy σ; and in turn, an information structure induces a

posterior distribution over states (conditioned on a realized output signal ŝ).

After the Sender commits to σ, the Sender observes θ̂ and sends a signal ŝ to the

Receiver as randomly drawn from σ(θ̂). The Receiver sees ŝ and chooses an action ω from

5 In the context of a fixed prior, there is a bijection between signalling strategies and information
structures as we define them. The economics literature may use the term “information structure” for our
signalling strategies.
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its action space Ω. Finally, each player has utility functions respectively as S : Θ×Ω→ R

and R : Θ× Ω→ R.

It is standard to assume that the Receiver plays a best-response action: given the

context of knowing π̄ and σ, it uses ŝ to get a posterior distribution over state and then

simply optimizes against the posterior. This leaves the Sender’s construction of σ as the

unique strategic consideration, called information design. The utility functions S and R

typically embed a degree of objectives being orthogonal – or adversarial. If the utility

functions are aligned (which will be true for one of our cases), information design is trivial

unless the Sender’s signal space is restricted to not be able to fully reveal the realized

state.

5.4.2. Reduction of Blends Technique Sub-problems to Information Design

This section explains the reduction from the Numerator and Denominator Game sub-

problems within the reorganized Blends Technique in equation (5.13), to constrained

information design. I.e., this section proves Proposition 3.

The key element of the reduction is to carefully constrain the Sender’s space of sig-

nalling strategies to blends-revelation signalling strategies, defined as follows. Effectively,

we implement a Revelation Principle for information design which states that the Sender’s

signal may as well be a correct posterior over state space – which we further require to be

a symmetric product distribution – so that the Receiver only needs to best respond to the

posterior-signal.

Definition 26. Within information design, we define a blends-revelation signalling

strategy (BRSS) to be a signalling strategy σbr in which:
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• signals are distributions;

• the marginal distribution over signal-distributions resulting from σbr as a blend

induces g;

• the Receiver’s posterier given any signal-distribution F is in fact F n.

Fixing a prior independent design problem (PIP), the instantiation of its Numerator and

Denominator Games (equation (5.13), Definition 24) as information design problems is

now from the following reduction. The reductions are the same with the exception of the

Sender’s objective function (described in the last point).

• Θ = Vn; state space is the input space of the prior independent algorithm;

• π̄ = g; the prior over states is equal to the correlated distribution g (for any g as

fixed by the outer program in equation (5.13));

• S = F ; signal space is restricted to be the PIP’s allowable class of distributions

F ;

• Σ = {σbr | σbr is a BRSS}; the key element of the reduction: signalling strat-

egy space Σ is the set of blends-revelation signalling strategies of Definition 26;

note that at least one such signalling strategy must exist because π̄ = g was con-

structed up front from a blend and can in fact be implemented (see Lemma 13

below);

• Ω = A; the Receiver’s action space is naturally the algorithm space A from the

PIP, and

• R(v, A) = A(v); the Receiver’s utility is equal to the objective of the algorithm

designer in the PIP;
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• the Sender’s utility S is either perfectly aligned with the Receiver’s objective

(Numerator Game) or perfectly adversarial to it (Denominator Game):

– Numerator Game: S(v, A) = A(v) = R(v, A);

– Denominator Game: S(v, A) = −A(v) = −R(v, A);

but note how in both cases, because the Sender’s signal is always a correct poste-

rior (per Definition 26), it must be that the marginal distribution over posteriors

has exactly the structure of a blend.

The challenge for the Sender is how to produce and optimize strategies that meet Defi-

nition 26. From application of Bayes Law, it turns out that the Sender is able to design

a signalling strategy in advance that, ex post observing state, simulates a random latent

variable distribution to provide as signal to the Receiver, in a way that the Receiver will

use the distribution-signal as if it is correct.

The Sender chooses a signalling strategy σ using the following outline. Similar to the

PIP’s adversary, the Sender optimizes over δ ∈ ∆(F) such that δn = g. It uses observed

state v to do Bayesian updating on the distribution δ (over distributions F ∈ F) and

then randomly draws F̂ from the posterior to send as the signal.

As the final key piece which we state next and prove, this Sender’s choice of randomized

σ yields a “correct” posterior (for every realized F̂ as signal), thereby satisfying the last

requirement of Definition 26. The proof makes clear that lem:iolemma is an application

of Bayes Law.

Lemma 13. Given state space Θ equal to algorithm input space Vn and prior π̄ over

stats as a blend g = δ ∈ ∆(F). Given realized v ∼ g, let the Sender’s signalling strategy



142

draw distribution-signal F̂ from the posterior of δ (given v). Then the Receiver’s induced

posterior over state is F̂ n and the distribution over induced posteriors is δ.

Proof. Given correlated g, it is equivalent to assume that inputs were drawn from

a two-step procedure: first draw F ∼ δ ∈ ∆(F) and then draw n inputs i.i.d. from F .

Consider from this perspective that density in the original function g is further broken

down for each input to reflect density of its latent variable F , i.e., consider correlated

density g+ over Vn × F . (Note, we can recover the function g by fixing each v and

integrating over F .)

Given the definition of the Designer’s signalling strategy, the correlated distribution

over (state, signal) is exactly equal to g+. The reason is that given g+ the final correlated

description over Vn ×F , for every (v, F ), Bayes Law states that the following quantities

are equal: Pr[v | F ] · Pr[F ] = Pr[F | v] · Pr[v]. Thus our problem’s equivalence is:

• The left-hand side of our Bayes-Law-equation gives an unfalsifiable description

of how inputs were generated (see the first sentence of proof).

• The right-hand side describes how (state, signal) pairs are generated within the

Information Design game: first there is a randomly revealed state; and second,

per the pre-committed signalling strategy, there is a random mapping from state

to signals using a posterior distribution (from updating δ given v).

We claim that the Receiver’s posterior over state from a realized signal-distribution F̂ is

F̂ . Consider the correlated distribution g+ as an abstraction of a matrix: values v are

rows and distributions F are columns. Given a true state of a realized v̂-row the Sender
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produces a signal F̂ from the posterior over distributions. Observing F̂ , the Receiver’s

posterior over values is exactly the column corresponding to F̂ , which is exactly F̂ itself.

The final point is: receiving a specific signal F̂ , the Receiver’s posterior over Vn is

obtained from conditioning g+ given F̂ and then the Receiver’s posterior is exactly F̂ n

as desired. Note for this last point, the Receiver has access to g+ because the Designer’s

choice of δ is known. �

5.4.3. Assessment of Blends’ Blackwell Ordering

This section considers if dual blends have the property that one side of the dual blend is

“strictly more informative” than the other side (per Blackwell (1953)), as part of under-

standing what is driving prior independent lower bounds that follow from dual blends. It

introduces Blackwell (partial) ordering and shows that the two sides of a dual blend do

not generally have a Blackwell ordering: for our main example of (Section 4.5.1), there is

no informational relationship.

Blackwell Ordering: Global Usefulness and Garbles. Blackwell (1953) proposed a

framework of partial ordering between the distributions over signals – and their respective

systems of posteriors – of two information structures I1 and I2 to reflect a notion of

information-dominance called Blackwell ordering. It is based on two strong properties

being equivalent. According to one description, there is an ordered relationship between

the information structures based on global usefulness, i.e., if one information structure I1 is

preferred to I2 for every possible utility function (by an optimizer using a random signal).

The equivalent descriptive property is called a garbling and it applies when the signals of
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I2 can themselves be interpreted as obfuscating mixtures over the signal probabilities of

I1 while maintaining exactly the same induced prior over state.

The next two definitions are presented within the context of the problem statement

of information design: we are given an information design problem with fixed prior π̄

over state space Θ, and two feasible information structures I1 : Θ × S1 → [0, 1] and

I2 : Θ × S2 → [0, 1] for respective signal spaces S1 and S2, and a class of allowable

Receiver-algorithms A.

Fact 22. Given π̄ and an information structure I2, the signalling strategy σI2 (which

induces I2 starting from π̄) can necessarily be reverse-engineered.

Definition 27 (Blackwell, 1953). Let σI1 , σI2 be the signalling strategies induced

by π̄ and the respective information structures (per Fact 22). Let A∗1, A
∗
2 be optimal

algorithms given respective information structures. Information structure I1 has greater

global usefulness than I2 if for every (Borel-measurable) Receiver’s utility function R,

expected optimal utility is weakly greater when signals are drawn given σI1 compared to

signals drawn given σI2 (i.e., if I1 is preferred to I2):

(5.14) Eθ̂∼π̄, ŝ∼σI1 (θ̂)

[
R(θ̂, A∗1(ŝ))

]
≥ Eθ̂∼π̄, ŝ∼σI2 (θ̂)

[
R(θ̂, A∗2(ŝ))

]
Definition 28 (Blackwell, 1953). The information structure I2 is a garble of I1 if

there exists a mapping η : S1 × S2 → [0, 1] such that
∫
S2
η(si, sj) dsj = 1 for all si ∈ S1;

and for every sj ∈ S2 and every state θ ∈ Θ we have

(5.15) I2(θ, sj) =

∫
S1

η(si, sj) · I1(θ, si) dsi
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i.e., we identify I1 as being more informative (per garbling order) in comparison to I2.6

We now give Blackwell’s classic theorem which states equivalence of Definition 27 and

Definition 28.

Theorem 15 (Blackwell, 1953). An information structure I1 has greater global use-

fulness than I2 if and only if I2 is a garble of I1.

As contrapositive (in one direction), if there exist two distinct utility functions R1 and

R2 such that I1 is strictly preferred to I2 for R1 but I2 is strictly preferred to I1 for R2,

then there can not be a garbling order relationship between the information structures.

The “strictly different” preferences of distinct information structures given distinct utility

functions is necessary to apply the contrapositive. Motivated by Theorem 15, the common

ordering from global usefulness and garbles is called Blackwell ordering.

Dual Blends Do Not Generally Have Blackwell Ordering. Dual blends are

represented by simple information structures when their common correlated distribution

g (over inputs in Vn) is interpreted as the prior π̄ over state and when signalling strategies

are designed as in Section 5.4.2 using Lemma 13.

When message space S is set equal to distribution class F (as support for elements

of the blends), it is clear that blends properly define an information structure (of Defini-

tion 25) as a distribution over paired message-and-state. For example, describe a blend

by I2(Fz,v) = oz ·
∏

k fz(vk). These are “simple” because the blend already describes

posteriors which are independent given a signal Fz as: n i.i.d. draws from Fz.

6 An intuitive explanation of garbles is: each signal sj ∈ S2 can be interpreted as a distribution over
the signals of si ∈ S1. In response to each signal sj ∈ S2, we respond with a single optimal algorithm for
the posterior given sj , which may not be optimal given each signal si ∈ S1 in the implicit distribution;
hence, I2 has “garbled” I1.
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Describing blends as information structures aligns exactly with the calculations of

lower bounds in the Blends Technique. Recall for blends δn1 , δ
n
2 , expected “optimal per-

formance” within an algorithm setting is given by optn,i = EF∼δni , v∼F [OPTF (v)], and

then a lower bound is given by optn,2/optn,1. Each blend is a possible information structure

to represent the same underlying correlated distribution over states, and for each blend

the quantity optn,i is the optimal performance in expectation over state, as the algorithm

knows the realized distribution-signal.

We are ready to state by counterexample that dual blends do not generally have

Blackwell ordering, using the Quadratics-versus-Uniforms example of Section 4.5.1 and

Definition 25). Recall Theorem 11 for revenue auctions used an adversary choosing the

benchmark from the Uniforms side of the dual blends but Theorem 12 for residual surplus

used the Quadratics side, and that the settings have distinct objective functions.

Theorem 11 and Theorem 12 each show strict performance gaps for their respective

settings. Thus, these results give an immediate example meeting the condition of the

contrapositive statement in Theorem 15, because a “Receiver” strictly prefers distinct

information structures depending on the auction objective.

Corollary 3. Finite-weight Quadratics-versus-Uniforms dual blends are an example

for which there is no relationship according to Blackwell ordering.

5.5. Dual Blends are Non-unique Tensor Decompositions

In this section we examine how the Blends Technique is an application of the math-

ematical technique of tensor decomposition which is of great importance in a number
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of computer science fields, e.g., signal processing, machine learning, and computer vi-

sion. Usually in these fields, studies of tensor decomposition are interested in uniqueness

of decomposition – and especially uniqueness of approximate, constrained optimization –

rather than multiple, exact solutions which can not be distinguished. This puts our interest

in tensor decomposition via blends at a cross-purpose to previous literature, and for an

intuitive reason: existing studies are mostly interested in systems of “positive” commu-

nication (e.g., electronic signals and robust coding alphabets which desire that unique,

correct messages get through) whereas we are interested in systems of obfuscation: our

adversary uses dual blends to strictly impair interpretation of the true signal structure.

Specifically, our interest ignores the standard question of minimal description (as mea-

sured by rank) and focuses on identification versus non-identification of symmetric, con-

tinuous tensors. The goal of this section is to highlight an obvious connection between

the Blends Technique and the existing, deep field of tensor analysis, whose tools may be

utilized to further the study of our dual blends. We do not claim new results within tensor

decomposition.

Related Work is included next but otherwise this simple, exploratory section is deferred

to Appendix A.7.

Related Work for Tensor Decomposition. There exist an abundance of techniques

for the special case of matrix decomposition. A survey is given by Plassman (2005).

Whereas our blends describe decompositions of non-negative values in the specific case

of mechanism design (and other algorithm domains), Donoho and Stodden (2004) give

sufficient conditions for a geometric interpretation of non-negative matrix factorization in

terms of unique, “simplicial cones.” Relating to the continuous-weights description of our
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blends, Townsend and Trefethen (2015) partially or fully extend the matrix-decomposition

techniques of singular value decomposition (SVD), QR, LU and Cholesky factorizations

to “cmatrices” (continuous in both dimensions).

Sidiropoulos et al. (2017) give a thorough primer to tensor decomposition, in which

they reference Anandkumar et al. (2014) who study tensor decomposition from topic

models, i.e., from a perspective of tensor scalars as latent variables over parameters of

underlying distributions (e.g., Gaussians). Cf., our blends are effectively distributions over

distribution-signals as latent variables. Whereas we may be able to exhibit dual blends

with one side a mixture over Gaussians in one real dimension (likely from Theorem 14),

there is a line of work in machine learning regarding mixtures of high-dimensional, axis-

aligned Gaussians from Dasgupta (1999), Feldman et al. (2006), Hsu and Kakade (2013),

and Bhaskara et al. (2014). Feldman et al. (2008) prominently give an algorithm to learn

mixtures of product distributions, which compare to our blends defined from symmetric

product distributions.
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CHAPTER 6

Benchmark Design and Prior Independent Optimization

This chapter expands this thesis’ study of Bayesian-robustness beyond optimal algo-

rithm description (of a mechanism; Chapter 3) and lower bounds on prior independent

algorithm design (per the Blends Technique; Chapter 4 and Chapter 5) to make a connec-

tion to the worst-case-over-inputs setting. Prior free is an alternative information setting

in which to measure algorithm robustness – the n inputs are selected arbitrarily from a

known support and an algorithm’s performance is measured in worst-case over inputs as

its ratio against a benchmark performance function which is evaluated for each input.

Critically within the prior free setting, choice of the benchmark function itself is ef-

fectively a free parameter. Consider a comparison between the prior independent setting

which is measured in worst-case over distributions in expectation given the distribution,

versus the prior free setting which is measured in worst-case over inputs pointwise. De-

spite the higher-precision measurement of prior free approximation (per input rather than

per distribution), it is in fact not possible to determine which setting provides a stronger

guarantee of robustness without reference to the prior free benchmark.

A formal approach to benchmark design will seek out the existence of guiding principles

to inform and measure the design of the benchmark, motivated by the heuristic narrative

that intuitively we must guard both against designing benchmarks that are too small

or too big. A common heuristic benchmark across both mechanism design and online
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algorithms is to use the offline optimal performance, i.e., the optimal performance if the

inputs were known in advance.

Hartline and Roughgarden (2014) propose a property of benchmarks called normal-

ization (paramterized by a reference class of distributions F ; see Definition 31), which

ties prior free benchmark design back to Bayesian settings in a way that benchmarks are

justifiably not too small, specifically, it guarantees that if an algorithm A approximates a

normalized prior free benchmark, then A is Bayesian-robust because it must have at most

the same prior independent approximation (for distributions in F).

Hartline (2020) proposes a second property resolution for measurement of normalized

benchmarks to describe intuitively: how well a benchmark may distinguish between good

and bad algorithms. (Benchmarks may inherently induce lower bounds on prior free

approximation from various lower-bounding techniques, and smaller lower bounds allow

for magnified distinction between the approximation factors of candidate algorithms.) Of

particular relevance, resolution is a measurement that can be subjected to optimization.

As the main result of this chapter – for a general algorithms setting and not restricted

to e.g. mechanism design – we show an equivalence between the questions of prior in-

dependent design and benchmark design for the prior free setting. To do this, we will

abstract the definition of Hartline (2020) for resolution1 to a definition of resolution mea-

sures (Definition 32) and choose for our analysis a novel measure (best-response resolution;

Definition 34).

1 We give the definition for normalization-symmetric resolution as the original resolution measure of
Hartline (2020) in Definition 35, which induces a lower bound from the intuition: it measures in worst-
case over distributions how big a benchmark is – versus – how big it minimally needs to be to simply
meet the definition of normalization.



151

Technically, consider a benchmark design problem (BDP; Definition 33) as the following

min−max operation: for use in a prior free setting, choose the “optimal” benchmark as

the normalized one with smallest resolution (minimization); with the resolution measure

set as an exogenous parameter (worst-case maximization). We will show that with best-

response resolution as the choice for this parameter, the solution to describe the optimal

benchmark is “the same” as the solution for the problem of finding the optimal prior

independent algorithm and approximation factor – for every input vector v, the optimal

benchmark function is set by the minimal scaling-up of the performance function of the

optimal prior independent algorithm on v to be big enough to meet the definition of

normalization (Theorem 16).

Subsequently however, we will use the canonical problem of expert learning within

the broad field of online algorithms to identify a challenge to the approach to benchmark

design which uses our best-response resolution measure. The objective within expert

learning is to minimize average regret over n sequential online inputs. Specifically, the

optimal algorithm for k-expert learning is the intuitive follow-the-leader algorithm (FTL;

Definition 36; Theorem 18). Thus as a corollary from the equivalence in Theorem 16

(described above), the optimal benchmark using best-response resolution is the adjusted-

up performance of FTL,2 for which FTL is naturally the optimal prior free algorithm. By

contrast, FTL is known to be a linear approximation in worst-case to the canonical prior

free best-in-hindsight benchmark (BIH) for expert learning.3

2 We use “adjust up” rather than ”scale up” for expert learning because its approximation-objective
regret is measured additively rather than multiplicatively; otherwise we largely ignore this distinction,
our results go through for either approach with correct technical modification.

3 We summarize some intuition because our benchmark design and algorithm behavior are alien to
standard approaches of analysis for expert learning. Our approach here is prior free (i.e., worst-case)
and the objective remains regret-minimization. The benchmark function within the calculation of regret
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This chapter is laid out as follows. Section 6.1 gives preliminaries for the prior free

setting, in particular, definitions for the prior free algorithm design problem, benchmark

properties of normalization and resolution, and our benchmark design problems. Sec-

tion 6.2 proves that for our best-response resolution measure, the optimal normalized

benchmark is set as the adjusted-up performance of the corresponding optimal prior in-

dependent algorithm and thus the optimal benchmark’s resolution is equal to optimal

prior independent approximation. Lastly, Section 6.3 gives a sufficient introduction to

the problem of expert learning for which it then shows that FTL is prior independent

optimal and thus informs the optimal prior free benchmark (from best-response resolu-

tion); further, it discusses the conflicting assessment of FTL’s prior free performance, as

measured by competing prior free benchmarks for expert learning.

Material in this chapter is largely drawn from Hartline et al. (2020a).

6.1. Prior Free Design and Benchmark Design

This section provides the preliminaries for the prior free information setting which

measures approximation pointwise in worst-case over input space against a benchmark

function. Benchmarks are a free parameter of prior free design and thus we also introduce

preliminaries for an embedded question of benchmark design. A main goal of this chapter

generally is to propose first principles of optimal benchmark design.

is evaluated pointwise over input histories. The idea is, our designed benchmark function (adjusted-
up-FTL) will depend itself on the pointwise performance of the FTL algorithm. Thus, on sequences of
inputs for which it is well-known that FTL does poorly when the benchmark is set according to BIH, our
alternative prior free benchmark function sets a target performance for these sequences that “does-not-
punish” the FTL algorithm, effectively by self-referential design given the context of characterization of
our optimal benchmark.
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Section 6.1.1 introduces the prior free algorithm design problem. In Section 6.1.2, we

introduce and motivate economic properties of benchmarks in order to justify a framework

in which to consider optimal benchmark design. One of the key properties that we identify

is a benchmark’s ability to guarantee a lower bound on the approximation of any algo-

rithm to the benchmark. Abstractly we call this property resolution, however there exist

multiple, formally-definable, computational techniques to guarantee a lower bound and

we call these techniques resolution measures. Section 6.1.2 end with the general definition

of a benchmark design problem (Definition 33). Section 6.1.3 and Section 6.1.4 define

benchmark design problems paramaterized respectively by two such resolution measures.

6.1.1. Robust Algorithm Design Problem Statements

The goal of this section is to define the prior free algorithm design problem. For con-

venience and clarity of comparison, we will restate the algorithm design problems for

Bayesian and prior independent settings from Section 2.1 as a lead up.

Definition 1. The Bayesian optimal algorithm design problem is given by a distribu-

tion F and class of algorithms A; and solves for the algorithm OPTF with the maximum

expected performance:

OPTF = argmaxA∈AA(F ).(OPTF )

Settings of incomplete information like prior independent and prior free measure the

performance of algorithms by their worst case approximation to the benchmark, on any

input of the benchmark’s domain (thereby guaranteeing an approximation against every
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input and justifying the description of the analysis as “robust”). A function B : Ω→ R+

is the benchmark function. The abstract definition for approximation to a benchmark is:

Definition 29. For a benchmark function B : Ω→ R+ (with domain Ω equal to either

an input space Vn, or a class of distributions F), an algorithm A is an α-approximation

to B if

α ≥ B(ω)

A(ω)
∀ ω ∈ Ω(α)

Where a benchmark function is defined on inputs, i.e. for Ω = Vn, we use notation

that is analogous to notation for algorithm performance in Section 2.1: let B(v) be an

expected performance of a benchmark (which may rely on internal randomization4) and

let B(F ) = Ev∼F [B(v)]. (We only use a benchmark function defined on distributions,

i.e. Ω = F , for the prior independent problem for which we reduce: OPTF (F ) = B(F ).)

Definition 2. The prior independent algorithm design problem is given by a class of

algorithms A and a class of distributions F ; and searches for the algorithm that minimizes

its worst-case approximation:

αF = min
A∈A

[
max
F∈F

OPTF (F )

A(F )

]
= min

A∈A

[
αFA
]

(αF)

4 Algorithms are evaluated in expectation over possible internal randomization. Benchmark functions
may be defined by similar processes, in particular when they depend on sub-functions with internal
randomization, e.g., they may depend on an algorithm’s performance.
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where the value of the program αF is the optimal prior independent approximation factor

for class F and class A (which we leave implicit). The bracketed term is the prior inde-

pendent approximation guarantee of a fixed algorithm A given F and is denoted by αFA

(as shown on the right).

Definition 30. The prior free algorithm design problem is given by a class of algo-

rithms A and a benchmark B; and searches for the argmin of the min−max program

αB = min
A∈A

[
max
v∈V

B(v)

A(v)

]
= min

A∈A

[
αBA
]

(αB)

where the value of the program αB is the optimal prior free approximation factor for

benchmark B and class A (which we leave implicit). The bracketed term is the tight prior

free approximation guarantee of a fixed algorithm A given B and is denoted by αBA (as

shown on the right).

6.1.2. Benchmark Properties: Normalization and Resolution

Benchmark design should follow from principles which (a) represent economic justifica-

tion, and (b) efficacy to distinguish good algorithms from bad. This section starts with

definitions for normalization and resolution as such principles. Normalization provides a

guarantee that benchmarks are not too small, in a way that directly connects the prior

independent and prior free settings. Resolution measures benchmarks in a way that they

can be optimized to be small (constrained by normalization). From these simple motiva-

tions, we will subsequently formulate two benchmark design problems.
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Prior Free Related Work. Specifically for mechanism design, in Appendix A.5 we

describe some commonly used benchmarks from the historical literature and also give

some of the most pertinent existing results from related work.

Normalization. The first part of this section relates the prior independent and prior free

settings – which are both searching for algorithms with robust performance guarantees

– in a way that motivates a framework for benchmark design. In theory, prior free

guarantees can provide more robustness than prior independent guarantees because the

approximation is required to hold pointwise on all inputs rather than in expectation

according to each distribution. Intuitively, an algorithm with a prior free guarantee can

not “cheat” and ignore an input and make it up elsewhere given the weighting of a

distribution.

This observation only holds “in theory” because, for the prior free setting, the degree

to which its guarantee is meaningful depends on the choice of benchmark. Practically,

both the prior free benchmark B and the prior independent comparison class F are free

parameters in separate problems (and they are independent parameters), and there is no

immediate connection between the prior independent and prior free settings. We desire a

property that guarantees: prior free approximation necessarily implies prior independent

approximation.

With this in mind, Hartline and Roughgarden (2008) recommend restricting attention

to benchmarks that satisfy the following normalization property which requires that the
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benchmark be lower-bounded by the performances of optimal algorithms.5 By intention,

the consequence of this definition is Proposition 4 below.

Definition 31 (Hartline and Roughgarden, 2008). A benchmark B is normalized for

a class of distributions F and class of algorithms A if for every distribution in the class

the expected benchmark is at least the optimal expected performance, i.e.,

B(F ) ≥ OPTF (F ), ∀F ∈ F .

Denote the class of normalized benchmarks for F by NBF .

A benefit of the structure of Definition 31 is that OPTF takes into account the constraints

on the algorithm, i.e., that OPTF (F ) ∈ A. As previously suggested, the normalization

property implies a strong guarantee. An algorithm A that is an α-approximation to a

normalized benchmark B ∈ NBF guarantees a prior independent α-approximation for

the class F (for “approximation” of Definition 29). Thus we have αFA ≤ αBA . Formally:

Proposition 4 (Hartline and Roughgarden, 2008). If algorithm A is a prior free

α-approximation of a benchmark B normalized to distributions F , then its tight prior

independent approximation for distributions in F is at most α, i.e., αFA ≤ αBA ≤ α.

Note, given B, the first inequality holds in particular from the optimal prior free algorithm

A∗ and optimal approximation factor αB, i.e., αFA∗ ≤ αBA∗ = αB.

5 Notably, the normalization property does not measure optimal performance pointwise per input
(which is how prior free algorithms are measured against benchmarks). Rather, Hartline and Roughgarden
(2008) recommend measuring this optimal performance in expectation with respect to any distribution
in a class of distributions F – theoretically the same F as used for the base prior independent design
problem for which approximation-by-extension is desired.
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Resolution. The ultimate goal of algorithm design is a principled method for choosing

one algorithm over another. Normalized benchmarks of Definition 31 embed an economic

justification that they are not too small, however, arbitrarily large benchmarks will qualify

as normalized. No algorithm will have good approximation against a prior free benchmark

that is too large, and thus good algorithms will not necessarily be separated from bad

ones. Generically, the ability of a benchmark to discriminate between good and bad

algorithms is its resolution, by which we will define something specific. A resolution

property of a benchmark is a formal measurement of an approximation lower bound that

is guaranteed to hold from a proven, specified description of a lower-bounding technique

on any algorithm in comparison to B. Consistent with our purposes, we give a definition

specifically within the context of a normalized benchmark B:

Definition 32 (Hartline, 2020). Given a class of distributions F and the space of nor-

malized benchmark functions NBF , a resolution measure µB : NBF → R+ is a function

on benchmarks B ∈ NBF to formally measure a guaranteed, functional lower bound on

the approximation of B by any algorithm.

Thus, resolution is a necessary performance gap over a domain Ω. The lower bound on

approximation is not necessarily tight. Regardless, given a defined measure of resolution,

we can optimize over normalized benchmarks: small measures of resolution represent

good, “high-quality-resolution.” (Our Chapter 1 described philosophical and technical

justification for resolution.)
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Benchmark Design. Having identified and motivated properties of normalization and

(abstract) resolution, the objective and formulation of benchmark design becomes straight-

forward.

Definition 33 (Hartline, 2020). A benchmark design problem (BDP) is given by

a class of distributions F , a class of algorithms A, and a resolution measure µB, and

searches for the normalized benchmark with minimum resolution as

γFµ = min
B∈NBF

[
µB
]

(γFµ )

(with an embedded assumption that the resolution measure µB is a lower bound on algo-

rithm approximation to B, from Definition 32).

The next two sections each define a resolution measure to parameterize a corresponding

benchmark design problem.

6.1.3. Resolution and Design from Best Response Algorithms

One way to quantify the ability of a benchmark to discriminate is by considering the

approximation factor of the optimal algorithm as best response to the benchmark. For

any benchmark B, we refer to ρB as the best-response resolution of benchmark B, and

it has a special structure. Because it simply measures optimal approximation, we have

ρB = αB from the prior free algorithm design problem (Definition 30). The following

program formally optimizes ρB subject to normalization (by minimizing over B ∈ NBF).
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Definition 34. The best-response resolution benchmark design problem (brBDP) is

given by a class of distributions F , a class of algorithms A, input space Vn, and best-

response resolution measure ρB = αB, and searches for the argmin of the min−min−max

program

γFρ = min
B∈NBF

[
ρB
]

= min
B∈NBF

[
αB
]

= min
B∈NBF

[
min
A∈A

max
v∈Vn

B(v)

A(v)

]
(γFρ )

Lemma 14 (Hartline, 2020). The best-response resolution measure of benchmark B

gives a lower bound on the approximation of any algorithm to B.

Proof. By setting resolution measure ρB = αB, the brBDP inherits the (tight) lower

bound on approximation of any algorithm that is implicitly present in the value αB of the

prior free design problem given B. �

Remarkably, Theorem 16 next states that this best-response resolution benchmark de-

sign problem (brBDP) is equivalent to the prior independent algorithm design problem

(Definition 2). We defer proof and discussion of Theorem 16 to be the focus of Section 6.2.

Theorem 16. Given a class of distributions F and a class of algorithms A, the

best-response resolution benchmark design problem (brBDP) is equivalent to the prior

independent algorithm design problem.

Specifically, consider optimal benchmark B∗ with optimal resolution γFρ and optimal

prior independent algorithm A∗ with approximation αF . Then B∗(·) = αF · A∗(·) and

γFρ = αF .
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6.1.4. Resolution and Design from Symmetry to Normalization

Before getting into the details of this section, we note: the approach of this section is

inherently connected to our Blends Technique for lower bounds on prior independent

approximation. An explicit study of this connection is deferred to Appendix A.6 along

with some supporting material for this section.

Philosophically, the brBDP of the previous section embeds “accommodative” design

by choosing a benchmark within the context of existence of a good algorithm for ap-

proximation – benchmark and algorithm are optimized together. This can be observed

from the successive min−min optimizations in Definition 34. By contrast, a disinterested

benchmark designer might do optimization in a vacuum, and leave algorithm designers to

optimize responses against the resulting benchmark in a second, independent step.

Hartline (2020) proposed a definition for resolution measurement of normalized bench-

marks to describe intuitively: how big they are – versus – how big they need to be to

simply meet the definition of normalization. I.e., when benchmarks are normalized, a

second way to quantify the ability of a benchmark to discriminate is by considering in

worst-case over distributions the expectation of the benchmark over each distribution F ,

versus optimal algorithm performance OPTF (F ) which appears in a constraint of the nor-

malization property.

Thus, we intuitively consider the perspective of a myopic benchmark designer, who

defines and minimizes resolution as a standalone endeavor. Given our existing framework

for benchmark design, if normalization is all that is necessary to provide economic justifi-

cation that a benchmark is not too small, then loose “normalization constraints” represent

potentially excessive performance targets and the “worst” excesses should be reduced if
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possible. As we explain next, loose constraints induce lower bounds and thus inform a

resolution measure. The algorithm designer is still implicitly benefited when we minimize

resolution up front (as a lower bound on approximation) but this is not the priority of

our benchmark design here. For this second measure of resolution, we formulate a second

benchmark optimization problem.

For any benchmark B, we refer to σB as the normalization-symmetric resolution of

benchmark B. Like best-response resolution of the previous section, σB also has spe-

cial structure. The technical definition is σB = maxF∈NBF
B(F )

OPTF (F )
(given formally in

Definition 35 below). Because σB is calculated in worst-case over distributions – and in

particular, with direct symmetry to the normalization constraints – when the resolution-

optimizing program is written as a linear program, its system of constraints exhibits an

elegant symmetry (see Linear Program 6 in Appendix A.6.2).

Similar to the brBDP, the following program formally optimizes σB subject to nor-

malization. In contrast to the brBDP, σB is calculated in worst-case over distributions

(the brBDP was worst-case pointwise over inputs v).

Definition 35 (Hartline, 2020).6 The normalization-symmetric resolution benchmark

design problem (nsBDP) is given by a class of distributions F , a class of algorithms A,

and resolution measure σB; and searches for the argmin of the min−max program

γFσ = min
B∈NBF

[
σB
]

= min
B∈NBF

[
max
F∈F

B(F )

OPTF (F )

]
(γFσ )

6 This benchmark design problem depends on V implicitly through F .
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The following lemma is sufficient to prove that normalization-symmetric resolution is a

lower bound on approximation (in order to meet Definition 32 for a resolution measure;

a version of this lemma was first given by Goldberg et al. (2006)).

Lemma 15 (Goldberg et al., 2006). For any benchmark B, the class of distributions

Fall (given input space Vn), and class of algorithms A which induce OPTF , the optimal

prior free approximation αB is at least

ᾰB = max
F∈Fall

B(F )

OPTF (F )
(ᾰB)

Proof. Let A∗ be the prior free optimal algorithm for benchmark B with optimal

approximation αB, and let F ∗ be the distribution that optimizes the lower bound pro-

gram (ᾰB) with distribution support V(F ∗). With the second inequality here following

from Fact 27 in Appendix B.2, we have

αB = max
v∈V

B(v)

A∗(v)
≥ max
v∈V(F ∗)

B(v)

A∗(v)
≥ B(F ∗)

A∗(F ∗)
≥ B(F ∗)

OPT(F ∗)
= ᾰB �

Remarkably for the nsBDP, its value γFσ necessarily lower bounds γFρ as the value of the

brBDP in Definition 34. We state this next in Proposition 5 (with its proof given as part

of proving a stronger statement: Proposition 7 in Appendix A.6.3). Further, we are able

to identify a setting for which the inequality is strict (Theorem 17 below).

Proposition 5. Given a class of distributions F and a class of algorithms A, the

value of the nsBDP γFσ lower bounds the value of the brBDP γFρ and the approximation
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factor of the prior independent optimal algorithm for F :

(6.1) γFσ ≤ γFρ = αF

Proposition 5 illustrates an interesting divergence between resolution measures. On one

hand, γFρ and its corresponding optimal benchmark B∗rs from the brBDP are specifically

designed to minimize the optimal algorithm’s approximation of B∗rs in response. On the

other hand, the nsBDP achieves weakly smaller (absolute) resolution measure γFσ ≤ γFρ .

From this we observe: despite the optimal benchmark B∗ns of the nsBDP having smaller

resolution than B∗rs, its design precludes algorithms with strictly smaller approximation

(otherwise B∗ns and the optimal algorithm against it as arguments to the brBDP would

strictly improve the objective and replace B∗rs).

We defer broader study of normalization-symmetric resolution to Appendix A.6. There

we explain how the nsBDP is an interesting design implicated by Theorem 25 (Chen et al.,

2014) and describe a natural extension of the nsBDP. We write the nsBDP as a linear

program and show its connection to the Blends Technique. Finally, as mentioned above,

we give the proof of Proposition 7 in Appendix A.6.3.

6.2. Best-response Resolution is Equivalent to Prior Independent

Approximation and Dominates Normalization-symmetric Resolution

Theorem 16 was first stated in Section 6.1.3 where we pointed out that this statement

holds for an arbitrary algorithm setting (with the assumption that the same class of

distributions F parameterizes both problems). It should be noted that this result exists
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independent of the fact that it may not be understood how to generally solve these

problems for arbitrary algorithm settings.

Theorem 16. Given a class of distributions F and a class of algorithms A, the

best-response resolution benchmark design problem (brBDP) is equivalent to the prior

independent algorithm design problem.

Specifically, consider optimal benchmark B∗ with optimal resolution γFρ and optimal

prior independent algorithm A∗ with approximation αF . Then B∗(·) = αF · A∗(·) and

γFρ = αF .

Theorem 16 follows from the next two results:

• (αF ≤ γFρ ) from Corollary 4 which follows from Proposition 4 (page 157), and

• (γFρ ≤ αF) from Lemma 16.

Corollary 4 (Hartline, 2020). Given a class of distributions F and a class of algo-

rithms A, the prior independent optimal ratio αF is at most the optimal benchmark ratio

γFρ , i.e., αF ≤ γFρ .

Proof. From Definition 34 for the brBDP with value γFρ , the optimal algorithm A∗ for

the optimal benchmark achieves a prior free approximation factor of γFρ . By Proposition 4

and the normalization of the optimal benchmark, A∗ also achieves a prior independent

approximation factor of γFρ . Approximation of the optimal prior independent algorithm

is at least as good, i.e., αF ≤ γFρ . �

Lemma 16. Given a class of distributions F and a class of algorithms A, the optimal

benchmark ratio γFρ is at most the prior independent optimal ratio αF , i.e., γFρ ≤ αF .
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Proof. Consider the prior independent optimal algorithm A∗ (i.e., the argmin of

the prior independent min−max program) with optimal approximation αF . Define the

benchmark

B∗(v) = αF · A∗(v)(6.2)

i.e., the benchmark is the performance of the prior independent optimal algorithm scaled

up by its approximation factor. Taking the expectation of v drawn from any distribution

F , we have

B∗(F ) = αF · A∗(F )(6.3)

First, notice that B∗ is normalized. Because A∗ is a prior independent αF -approximation,

it follows that A∗(F ) ≥ 1
αF

OPTF (F ) for all F ∈ F the class of distributions. Multiplying

through by αF and applying equation (6.3) shows that the benchmark meets the definition

of normalization.

Second, equation (6.2) implies that A∗ is a prior free αF -approximation of the bench-

mark B∗. Therefore, (A∗, B∗) is in fact a solution to the brBDP (γFρ ) with ratio αF . The

optimal solution to the program is no larger. Therefore γFρ ≤ αF . �

Specifically note that the proof technique of Lemma 16 was to strategically define a

benchmark using the performance function of the argmin A∗ of the prior independent

program, and then assign the resulting benchmark along with algorithm A∗ into the

arguements of the brBDP. Combined with Corollary 4, this further shows that the bench-

mark B∗ = αF · A∗ is in fact optimal.
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Corollary 5. Given a class of distributions F and a class of algorithms A, and

consider the best-response resolution benchmark design problem (brBDP). The optimal

benchmark B∗ is given by αF · A∗ which is the performance of the prior independent

optimal algorithm scaled up by its optimal approximation αF .

The relaxation from best-response resolution to normalization-symmetric is not generally

tight. In particular, the optimal benchmark for the nsBDP can have γFσ < γFρ . The

following theorem states this strict inequality for an example from mechanism design

using the Triangle revenue-curve distributions F trv from Theorem 6 in Section 3.3. The

technical proof of Theorem 17 is deferred to the reference paper.

Theorem 17. Given a single item, 2-agent auction with a revenue objective, the class

of truthful and scale-invariant mechanisms Mmark, and the class of default-scaled Trian-

gles F trv. The nsBDP (γFσ ) has a strictly smaller objective value than the brBDP (γFρ )

and the optimal prior independent approximation αF , i.e., γFσ < γFρ = αF .

6.3. Prior Free versus Prior Independent Expert Learning

The previous section showed that optimal benchmark design using best-response res-

olution is equivalent to prior independent optimization. Moreover, the optimal prior free

algorithm for the optimal benchmark is the optimal prior independent algorithm. A con-

sequence of these results is that there is no added robustness from the prior free framework

over the prior independent framework. In this section we observe, from an example of

expert learning, that this potential lack of robustness is serious and the optimal prior

independent algorithm can perform much worse than the standard algorithms that are

known to approximate the standard prior free best-in-hindsight benchmark.
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These observations are straightforward from the perspective of the expert learning

literature. We discuss them and outline key results statements so as to map them onto

the framework of Section 6.1. Otherwise however, we omit technical proofs and some

supporting lemma statements (for full proofs see the reference paper: Hartline et al.

(2020a)). As the last in our list of results, we include a statement that the relaxation of

benchmark design (from brBDP to nsBDP) is not without loss for expert learning (which

is thus a parallel to Section 6.2).

Introduction to Expert Learning. We consider the binary-reward variant of the

canonical online expert learning problem. A single player plays a repeated game against

Nature for n rounds. In each round t ∈ {1, . . . , n}, each expert j from a discrete set

{1, . . . , k} will receive a binary reward vt,j ∈ {0, 1}. Thus, each input has support {0, 1}k

and the input space is V = [{0, 1}k]n.

Before rewards are realized in each round, the player chooses to “follow” a (possibly

randomized) expert for the round, and receives a reward (possibly in expectation) equal

to the reward of the followed expert. When the round concludes, the player gets to

observe the rewards of all experts, including those not followed by the player. The player’s

algorithm is A which outputs distributions At(v) over experts using only the history

(v1, . . . , vt−1) in each round t. The class of all such online algorithms is denoted by Aonl

and the performance of an online algorithm A ∈ Aonl on input v is:

A(v) =
∑n

t=1
Ej∼At(v) [vt,j] .
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To simplify analysis of the example in this section, we restrict the prior independent

comparison class of distributions. Consider the following family of binary independent

stationary distributions Fbis for the Bayesian variant of the expert learning problem. For a

distribution F ∈ Fbis, each expert j’s reward in each round is a Bernoulli random variable

with mean Fj = E [vt,j]. The class Fbis is composed of all possible k-permutations over

means Fj ∈ [0, 1] for each expert j. In each round t, the rewards are drawn independently

from each other and from other rounds. Importantly, the distribution and mean of each

expert’s reward is identical across rounds.

As outlined in Section 6.1.1 we can define Bayesian, prior independent, and prior free

versions of the expert learning problem. We summarize as follows:

• In the Bayesian model, the optimal algorithm is OPTF = argmaxA∈Aonl A(F ).

For a known, binary independent stationary distribution F ∈ Fbis, the optimal

algorithm picks the expert with the highest ex ante probability j∗ = argmaxj Fj

and follows expert j∗ in each round; its expected performance (over n rounds) is

OPTF (F ) = n maxj Fj.

• In the prior free model, the optimal algorithm is the one that minimizes regret

in worst-case over inputs v ∈ A against a given benchmark B defined as

αB = min
A∈Aonl

max
v∈A

[B(v)− A(v)].
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The best-in-hindsight benchmark BBIH for any reward profile v ∈ A is the total

reward of any fixed expert, i.e.,

BBIH(v) = max
j∈{1,...,k}

∑n

t=1
vt,j.

The canonical approach to online expert learning measures performance in terms

of worst-case regret with respect to this prior free benchmark: BBIH.

• In the prior independent model, the optimal algorithm is the one that minimizes

regret in worst-case over distributions F ∈ F against the optimal algorithm for

the distribution

αF = min
A∈Aonl

max
F∈F

[OPTF (F )− A(F )].

We will be considering this question for the class of binary independent stationary

distributions Fbis where OPTF (F ) is from the Bayesian model above.

Specifically, the natural follow-the-leader algorithm, which in round t chooses a uniform

random expert from the set of experts with highest total reward from the first t−1 rounds,

is the prior independent optimal algorithm (Theorem 18).

Definition 36. The follow-the-leader algorithm (FTL) selects an expert uniformly at

random from the set of experts with highest total reward from previous rounds:

Aftl
t (v) = Uniform over

{
argmaxj

∑
t′<t

vt′,j

}
Theorem 18. For binary independent stationary distributions, the follow-the-leader

algorithm is the prior independent optimal online learning algorithm.
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FTL further directly informs the optimal bsBDP benchmark (from Theorem 16). Recall

that by design, adjusting-up the performance of FTL by its prior independent regret is

the minimal adjustment needed to satisfy normalization.

Corollary 6. The optimal benchmark from best-response resolution is calculated as

the performance of FTL adjusted up additively by its regret-approximation of the prior

independent benchmarks set by the respective performances OPTF (F ) for each F ∈ F bis.

The optimal prior free algorithm against this benchmark is FTL.

The rest of this section covers two key ideas: (1) FTL does quite poorly against the BIH

benchmark which is the standard prior free benchmark for expert learning and thus we

recognize that our model requires further study; (2) we state strict inequality between

optimal resolution measures of the brBDP and nsBDP for expert learning.

Follow-the-leader is a Linear Approximation of Best-in-hindsight. We observe

that the BIH benchmark is normalized. In fact, it is analogous to the optimal-Bayesian-

optimal benchmark (OBO) for evaluating prior free mechanisms (Hartline and Roughgar-

den (2008), see page 243). Thus, an algorithm that is a prior free approximation of BIH

is also a prior independent approximation algorithm (with the same bound on regret, cf.

Proposition 4).

Lemma 17. For inputs from binary independent stationary distributions F bis, the

best-in-hindsight benchmark BBIH is normalized, i.e., BBIH(F ) ≥ OPTF (F ), ∀F ∈ F bis.

From Corollary 6, the optimal prior free benchmark is the performance of the follow-

the-leader algorithm adjusted up by its prior independent regret-approximation. More-

over, the optimal algorithm for the optimal benchmark is the follow-the-leader algorithm
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itself. While we may have hoped for the prior free analysis to lead to strictly more ro-

bust algorithms than the prior independent analysis, by optimizing benchmarks in the

framework provided in Section 6.1.3, we have lost all of this potential robustness. Specif-

ically, the standard expert learning algorithms that have low worst-case regret against

the best-in-hindsight benchmark exhibit robustness that the follow-the-leader lacks. This

observation is formalized in the following lemma which contrasts with the optimal regret

of standard algorithms like randomized weighted-majority (Littlestone and Warmuth,

1994). The optimal worst-case regret against best-in-hindsight is Θ(
√
n ln k) for k ex-

perts, n rounds, and binary rewards (Haussler et al. (1995); or [0, 1] rewards: Kalai and

Vempala (2005)).

By comparison, FTL gets linear regret Θ(n) against the BIH benchmark (Fact 23).

This follows from a well-known example of “bad” worst-case inputs designed to alternate

according to:

• odd round payoffs: (1, 0, . . . , 0) ∈ {0, 1}k

• even round payoffs: (0, 1, . . . , 1) ∈ {0, 1}k

FTL chooses a uniform random expert for odd rounds and obtains expected payoff 1/k

and chooses expert 1 for even rounds and obtains expected payoff of 0, however, the BIH

benchmark increases linearly on average (by 1 every 2 rounds).

Fact 23. The prior free regret of follow-the-leader against the best-in-hindsight bench-

mark with n rounds is Θ(n).

The observations of this section suggest that further study of the formulation of the

benchmark optimization problem is necessary to better understand the trade-offs between
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prior free and prior independent robustness. This assessment in turn serves as justification

for our inclusion of the definition of normalization-symmetric resolution as an alternative

measure of normalized lower-bounds in Section 6.1.4. Recall, there is extended analysis

of its nsBDP in Appendix A.6 (which in particular includes a direct connection to our

Blends Technique).

Benchmark Design Gap for Expert Learning. Finally, we simply state that the in-

equality γFσ ≤ γFρ of Proposition 5 is strict for expert learning (cf., the same observation for

an example from mechanism design in Theorem 17). I.e., the nsBDP has strictly smaller

value than the brBDP for expert learning (albeit, the nsBDP may be the more-economic

benchmark design framework, see the discussion after Proposition 5 on page 164).

Theorem 19. Given the expert learning problem with the class of with k experts, finite

time horizon n ≥ 2, and the class of binary independent stationary reward distributions

Fbis. The nsBDP (γFσ ) has a strictly smaller objective value than the brBDP (γFρ ), i.e.,

γFσ < γFρ .
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CHAPTER 7

Conclusion

We start this Conclusion with an overview of the holistic, thematic perspectives which

couched this thesis, towards identifying promising directions of future research as both

implicated and inspired by its main results. Subsequently we summarize the main contri-

butions of this thesis together with next objectives for new work by theme.

The theories of economics and computer science are inherently and essentially related.

On one side solutions for models and games within economics require computational

tractability to be practically relevant. On the other side there is a reduction from the

analysis of robustness for arbitrary algorithms questions to a fundamental two-player

game (effectively, Yao’s Minimax Theorem 3). The result is the broad field of algorithmic

game theory. We largely considered agnostic analyses that are appropriate for at least

two major branches of algorithms questions: mechanism design and online learning.

The main concern of this thesis has been Bayesian-robustness of algorithms though a

spectrum of information settings have received attention (see Section 6.1.1). In studying

robustness, a number of natural perspectives arise and lead to entire fundamental sub-

topics. This Conclusion will organize around the following themes of this thesis:

(1) Foundations of Benchmark Design. Benchmark functions describe target

performance. The benchmark can theoretically be set too low, or too high.

Benchmarks themselves can and should be subject to scientific inquiry.
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(2) Adversarial Play as Information-Design-Design. Benchmark approxima-

tion is measured against a worst “test case” as if chosen by an omniscient adver-

sary, playing against the algorithm in a zero-sum game. Independent of algorithm

setting, the Blends Technique follows from analysis of the adversary’s play with

connections to information design and non-unique tensor decomposition.

(3) Scalability of Inputs. Any distribution can be re-scaled by composing its CDF

with fk(x) = x/k. When inputs come from the unbounded set of (positive) reals,

algorithms must handle all scales; versus, algorithms can take advantage of inputs

having bounded support.

(4) Econometric Inference in Auctions. Loosely related to robustness, we add

one more theme related to private information in mechanism design:1 there is a

question of econometric inference, i.e., identifying auction inputs from its rules

and its outcomes. Counterfactual estimation considers the question offline, and

dashboard mechanisms online.

Benchmark Design. A formal approach to benchmark design will seek out the existence

of guiding principles to inform and measure the design of the benchmark, motivated by

the heuristic narrative that intuitively we must guard both against designing benchmarks

that are too small or too big. Hartline and Roughgarden (2014) proposed normalization

(Definition 31), which ties prior free benchmark design back to Bayesian settings in a way

that benchmarks are justifiably not too small. Hartline (2020) proposes a second property

resolution (Definition 32).

1 This direction follows from two of the author’s other published joint-works which were otherwise
excluded from this thesis: Hartline et al. (2019) and Hartline et al. (2020b).
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For a general algorithms setting, Theorem 16 connected the prior independent and

prior free settings together. Further, the optimal benchmark is set by scaling up the

performance of the optimal prior independent algorithm to be big enough to meet the

definition of normalization.

Future work. Whereas Theorem 16 solves the best-response benchmark design prob-

lem (brBDP; Definition 34) for the optimal benchark – insofar as it describes it in terms

of the prior independent optimal algorithm – the normalization-symmetric benchmark

design program (nsBDP; Definition 35) remains unsolved. This question is of increased

interest because it relates directly to optimization of lower bounds from The Blends Tech-

nique (more from dual blends below), and remains interesting for each distinct algorithms

problem because the quantities OPTF (F ) are distinct to each problem.

A second, orthogonal direction for next research on benchmark fundamentals is the

following. The combination of the normalization and best-response resolution properties is

elegant, but has known drawbacks. First, there is the concern in this thesis that the brBDP

does not increase robustness in the prior free setting beyond the prior independent setting.

Further, there is actually no constraint on the benchmark design (for either brBDP or

nsBDP) to prevent the optimal benchmark from being set larger than the offline optimal

performance at a specific input v, effectively a pointwise unachievable target.2 Thus, the

optimal benchmark may be increased (above offline optimal) on inputs where it is not

tight to resolution, simply in order to help meet the requirement of normalization. The

question is to identify what pertinent new property on benchmarks can address this most

effectively, and what new scientific benchmarks result.

2For a single-item auction with a revenue objective and 2 agents, consider setting the benchmark
greater than 1 when the value-profile input is (1, 1).
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Adversarial Play. Lower bounds on approximation may be identified from fixed adver-

sary strategies (Yao’s Minimax Principle, Theorem 9). With an optimal such adversarial

strategy, we can measure the tight approximation factor of an optimal prior independent

algorithm. This thesis developed the following novel method to prove lower bounds for

an arbitrary algorithm question, in the prior independent setting.

The adversary picks a blend δ2 ∈ ∆(F) which induces a correlated distribution g

over input space Vn and thus sets the prior independent benchmark to be the expected

optimal performance over this blend (Lemma 21). By design, there exists a second blend

to describe the same correlated distribution, namely δ1 ∈ ∆(Fall) (which may use any

distribution as an inherent consequence of nature). I.e., the same correlated distribution is

described by n inputs drawn either i.i.d. as vi ∼ (F2 ∼ δ2), or drawn i.i.d. as vi ∼ (F1 ∼ δ1).

From this set up, the ratio of optimal performances (in expectation over distributions of

the respective blends) optn,2/optn,1 is a necessary lower bound on approximation of the

original prior independent problem.

The technique is information design of a different flavor than is standard (Section 5.4).

In our analysis, the adversary fully reveals the choice of δ2 but the designer is powerless to

use it directly. Instead the correlated distribution is like a continuous-dimension tensor,

symmetric, with factors as probability distributions and weights on factors also as a prob-

ability distribution (Section 5.5).3 In this stylized tensor setting, it is the non-uniqueness

of decomposition of the tensor that leads to necessary gaps in performance between the

benchmark and any algorithm.

3 This thesis presented a number of these dual blends, e.g., in Section 4.4 and Section 4.5.1.
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Future work. There are many research directions following from blends, such that

they are presented only at a high level. The Blends Technique itself ties into the dual

program description of the nsBDP (as mentioned above). A first pressing question within

prior independent analysis is to determine for what classes of algorithms questions does

there exist a lower bounds from blends that is tight to the optimal prior independent

approximation. More generally there is a question of how to optimize lower bounds from

dual blends (cf. Section 5.4). The Blends Technique as exhibited in this thesis applies

directly for n = 2 inputs, but for more inputs the Blends Technique seems to face a

likely impossibility result (alternatively from algebra of dual blends for order-statistic

separability (Section 5.1) or from general uniqueness of third-order tensor decomposition

(Appendix A.7.1).) We propose here a partial extension for n ≥ 3 using an idea to

project away all but the two largest order statistics and only requiring that the “common

correlated distribution” g(1),(2) match up at each input when reduced to two (largest)

coordinates.4

Individual algorithms problems have the potential to realize first-ever or improved

lower bounds on approximation from the Blends Technique, after which characteriza-

tions of classes of algorithms can be studied. The method generally can be framed as

information-design-design and connections to existing work on information design can be

strengthened. Finally, it may give rise to new special-case questions within the study of

non-uniqueness of matrix decomposition, for example, we described a nice class of n = 2

4 In fact this direction succeeds and is currently being developed. Extensions to n ≥ 3 would benefit
in particular settings such as online algorithms.
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dual blends solutions which were characterized as having their two sides of blends gener-

ated each by one of a pair of distributions which are inverse-distributions to each other

(Theorem 14 in Section 5.2).

Scale-Invariant Design (or lack thereof). This thesis solved a simple variant of the

longstanding open question of the optimal prior independent truthful mechanism for 2

agents with unbounded value support, a revenue objective, and all regular distributions

as the comparison class (Theorem 5). Specifically, the variant adds a restriction to only

consider scale-invariant mechanisms. Remarkably, the description of the optimal prior

independent mechanism is not the result of some complicated equation, as might be feared.

It is a simple mix over the Second Price Auction, and an auction posting approximately

2.447-times the second price to the largest-valued agent.

Future work. A top priority is to establish an argument that it is sufficient to restrict

attention to scale-invariant algorithms; and further, the argument should hopefully exist

from first principles, and apply very broadly to algorithms questions with ideally no

assumptions on the setting. The rest of this discussion of future work regarding the

scale-invariance property focuses on mechanism design as the main application of this

thesis.

Our optimal prior independent mechanism solution is specifically for 2 agents. Initial

attempts to extend to n > 2 agents show that further technical tools will be needed for a

solution. Additionally, there is the question of solving for the optimal prior independent

mechanism in the single-item, 2-agent setting for the residual surplus objective, with or

without scale-invariance.
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(We return the discussion to the revenue objective.) Perhaps more interestingly, scale-

invariance of the optimal mechanism is likely to be a sufficient assumption when values

are unbounded, and becomes possibly its most prevalent feature. Two follow up questions

in the same prior independent space become quite interesting. First, note that within the

context of scale-invariant mechanisms, the optimal auction (of Theorem 5) only posts

two prices to the largest agent, conditioned on the second price: a price “marked up”

by factors of 1 or 2.447. At this point, the mechanism is taking quite specific actions

with small total support. It makes sense to additionally consider the robustness theme of

minimizing regret with respect to these markup factors. Related, note that the standard

question of prior independence allows the benchmark performance to be set by an optimal

mechanism that knows the distribution. In the case that we solved, the optimal auction

knows the scale of the distribution. The first follow up perspective considers changing

the benchmark to only be set by the optimal performance of a respectively scale-invariant

mechanism. Thus, the distribution’s scale is meaningless and only its shape matters.

The second perspective considers an assumption of hard bounds on the support of value

space, for example [1, h]n. In this case, the idea of scale-invariant design has no relevance,

as inputs observed to be close to the boundaries will have material, scale-dependent effects

on optimal design. A gap in prior independent approximation between unbounded and

finite-support cases would represent a price of scale-anonymity. Of note, lower bounds on

approximation from the Blends Technique of the Adversarial Play section may become

directly relevant. An intuition for this possibility is: (a) input space and thus adversary-

blends-space being compact and convex Hilbert spaces suggests that mixed Nash may

necessarily exist from fixed-point theorems in which case, (b) dual blends which have one
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side as a blend over specifically equal revenue distributions (Definition 13) would make

the optimal mechanism design indifferent over all lookahead-posted-prices (Definition 6)

which is a common theme of equilibrium (make the opponent indifferent over all played

actions) and thus worth investigating.

Applications of Inference in Auctions. We end with a summary of another direction

of the author’s research in auction theory. The predominant setting is prior free: agents’

values are fixed constants, unknown by the designer. The theme is econometric inference,

including results for both “offline” estimation and “online” implementation. Generally

implicit in the setting is a repeated auction: observations of historical agent behavior

inform decisions by the auction designer in the future.

Hartline et al. (2020b) addresses a first question of offline econometric inference

– the goal is to identify the agents’ private values. The setting is truthful single-item

auctions with proportional weights allocation rules, and charging winner-pays prices to

(stochastic) winners. The perspective is that of an outsider to the auction who can

not observe the agents’ reports, but rather can observe the payments made by winners.

This work’s two main results are: (1) that Myerson’s payment function (Theorem 1) in

this setting is one-to-one and therefore it can be theoretically inverted; and (2) a given

algorithm to compute the inversion arbitrarily to within ε.5 Its supporting proofs include

new results of independent interest. In particular, it extends uniqueness of pure Nash

equilibrium in “concave games” of Rosen (1965), using a related definition of concavity

based on Gale and Nikaido (1965).

5The algorithm has running time that is polynomial in the number of agents n, the upper bound of
the support of value space h, ln 1/ε, and the number of calls to the agents’ weights functions (embedding
dependence on the complexity of computing them).
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Hartline et al. (2019) explores the potential use of a bidding dashboard by a designer

in a repeated non-truthful auction setting (with all-pay semantics) to facilitate agents’

understanding and computation of optimal play. For simplicity, assume a benevolent

designer who wants to maximize the total surplus of the auction. Having assumed a

non-truthful setting, the VCG-mechanism is not available.

Two key complications are introduced with non-truthful settings. First, equilibrium is

likely to have a complicated description of agents’ jointly-optimal strategies, which implies

that real world agents are unlikely to be able to compute and execute the bids of theoretical

equilibrium, regardless of other considerations. Second, there might be multiple equilibria,

with the price of anarchy ratio (Koutsoupias and Papadimitriou, 1999; Papadimitriou,

2001; Roughgarden, 2009) between welfare of the worst equilibrium and the offline-optimal

welfare being possibly quite large asymptotically (Dütting and Kesselheim, 2015). Thus,

even if agents are able to self-direct themselves towards an equilibrium, it might have

decidedly poor welfare performance.

Bidding dashboards are estimated price-allocation curves published by the platform

in advance of an auction, with one individually-tailored curve given privately to each

agent. Their use is considered in a many-round analysis, for which the main result is to

show that a sequential-non-truthful auction gets almost exactly the same performance as

a comparative sequential-truthful auction, in the long-term.

Future work. Hartline et al. (2020b) solved price inversion under a number of re-

strictive assumptions (single-item, proportional weights allocation, fixed agent values),

each of which can potentially be generalized. Its results related to Rosen’s concave

games connect to the emerging field of “learning in games as a computational tool” (e.g.,
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Daskalakis and Panageas (2018); Abernethy et al. (2021)) and some of its pursuits like

fast convergence (Syrgkanis et al., 2015), and the possibility of convergence of learning

in games to smaller classes of equilibrium than is guaranteed by the existing literature

(Blum et al., 2008).Hartline et al. (2019) describes a mechanism that could potentially

run in the real world; its theoretical analysis would benefit from empirical study of its

implementation – even initially with offline simulation – to help understand its inherent

convergence properties and parameter tuning.
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APPENDIX A

Deferred Analyses and Proofs

A.1. An Alternative Proof of The Blends Technique from Linear

Programming

(from page 87) We give a second, informal proof of The Blends Technique (which

implements Theorem 10) for algorithms settings in which it is possible to explicitly model

the prior independent problem (Definition 2) as a linear program, in particular in which

the algorithm’s performance is a linear combination over variables. We use a specific

example of truthful auctions within mechanism design but it will be clear where algorithm-

specific considerations “disappear” and we are left with an alternative proof for the Blends

Technique. The techniques and principles of linear programming that we apply here follow

from Vohra (2011).

To summarize, this section re-proves the Blends Technique using an example problem

(a simple auction) in a restricted analytical setting (linear programming). We identify

two prominent structures:

(1) The Blends Technique describes lower bounds by measuring the prior independent

approximation of an “algorithm” that – rather than choosing assignments of

problem-specific variables – can directly choose its pseudo-performance outcome

on every input v independently of problem-specific constraints, as long as for

every distribution F ∈ Fall, its expected pseudo-performance on inputs drawn
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from F does not exceed the optimal algorithm’s performance OPTF (F ). This

structure is observed in Linear Program 4 below, which is a relaxation of the

initial problem’s LP.

(2) Linear Program 5 is the dual program of the primal in the previous point. Crit-

ically, our dual blends (of Definition 18) give feasible solutions for this dual pro-

gram. The Blends Technique for obtaining lower bounds on prior independent

approximation then follows from the inequality between the optimal value of the

primal program and the value of the objective of the dual for feasible solutions.

Regarding specifics of mechanism design: we write a program to describe the prior in-

dependent truthful mechanism design problem, for which it is sufficient to use virtual

value maximization and characterization of truthful mechanisms (Theorem 2, Myerson

(1981)). Note that we can write the program once and it applies for each objective using

the corresponding virtual value function. Further, the linear programming approach – in

conjunction with Myerson’s characterization – uses the fact that optimization over truth-

ful mechanisms M = (x,p) reduces to optimization over implementable allocations x (cf.

Theorem 1). Thus, the arguments of the initial linear program are (monotone) allocations

x. Let M(F ) be the expected performance of mechanism M on n i.i.d. draws from F .

In order to write the problem as a linear program, we define α̌F = 1/αF to be the

multiplicative inverse of our standard approximation factor. Thus, we may think of α̌F ∈

[0, 1] as the largest (max−min) fraction of OPTF that optimal M∗ can guarantee in

worst-case (i.e., M∗(F ) ≥ α̌F ·OPTF (F ) ∀ F ∈ F).

We need to write a linear program with a single objective. The technique to “unravel”

the max−min formulation (of prior independent design) in order to remove the embedded
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adversarial-min-objective relies on moving it into a constraint (see the “approximation”

line below) and optimizing an approximation-ratio variable α̌ as the value of the program.

The optimal factor α̌F is necessarily at most 1 and we copy this fact into the objective

function line. Let f(v) =
∏

i f(vi).

Linear Program 1 (The Prior Independent Truthful Mechanism Design Program).

Given a class of distributions F and any auction objective – along with its corresponding

definition of the virtual value function – the optimal single-item, n-agent truthful mecha-

nism (described by x∗) and its optimal approximation factor αF = 1/α̌F are given by the

argmax of the following program:1

α̌F = max
x, α̌

α̌ ≤ 1(A.1)

s.t.

∫
Vn

(∑
i

φFi (v) · xi(v)

)
· f(v) dv ≥ α̌ ·OPTF (F ) ∀ F ∈ F (approximation)

∑
i
xi(v) ≤ 1 ∀ v ∈ Vn (single-item feasibility)

xi(vi,v−i) ≤ xi(v
′
i,v−i) ∀ i, vi, v′i > vi, v−i (monotonicity)

xi(v) ≥ 0 ∀ i, v (non-negativity)

1 The left-hand side of each approximation constraint is equivalently described as expected sum-total
virtual value because: ∫

Vn

(∑
i

φFi (v) · xi(v)

)
· f(v) dv = Ev∼F, x

[
φFi (v)

]
We expand the expectation to its integral form because it gives an explicit description of the constraint
in terms of the variables of the program.



192

(From now on, we assume non-negativity without writing it.) Starting from Linear Pro-

gram 1, we provide a sequence of modifications in order to reprove Theorem 10 for linear

prior independent algorithm design problems. The goal from here is to obtain a linear

program for which we can assign weights of a dual blend to its variables as a feasible

solution, and then analysis of an identifiable bound on the objective function implies the

desired inequality: αF ≥ optn,2/optn,1.

The key observation for the first modification step is that without loss we can add to

the program a constraint of non-super-optimality, and not only with respect to F but

with respect to all distributions (represented by the class Fall):

Linear Program 2 (The Appended Program). This program adds a non-super-

optimality constraint to Linear Program 1 without loss. We give only the new constraint:

∫
Vn

(∑
i

φFi (v) · xi(v)

)
· f(v) dv ≤ OPTF (F ) ∀ F ∈ Fall (non-super-optimality)

The new constraint is without loss because no prior independent algorithm can do strictly

better given F than the optimal algorithm OPTF which knows F (Fact 16), and further,

this is true regardless of any restrictions imposed on the distribution by the class F . The

next step is to in fact drop all of the setting-specific constraints within the linear program,

giving us a program whose optimal value α̌Flax upper bounds the previous program (i.e.,

the maximum may now be larger):
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Linear Program 3 (The Appended-Relaxed Program). This program relaxes Linear

Program 2 by dropping its mechanism-design-setting-specific constraints. We are left with:

α̌F ≤ α̌Flax = max
x, α̌

α̌ ≤ 1(A.2)

s.t.

∫
Vn

(∑
i

φFi (v) · xi(v)

)
· f(v) dv ≥ α̌ ·OPTF (F ) ∀ F ∈ F (approximation)

∫
Vn

(∑
i

φFi (v) · xi(v)

)
· f(v) dv ≤ OPTF (F ) ∀ F ∈ Fall (non-super-optimality)

Of course, the bound α̌F ≤ α̌Flax holds if and only αF = 1/α̌F ≥ 1/α̌Flax, therefore 1/α̌Flax is a

lower bound on the prior independent approximation factor of the original problem. The

next step is to notice that without coordinate-specific constraints on the variables x, each

parenthetical term may in fact be replaced by a pair of variables Ã(v) and B̃(v), which

together represent a measure of algorithm pseudo-performance on input v that is locally

unconstrained. (We use Ã(v)− B̃(v) everywhere, effectively as one variable that may be

positive or negative.)

The only remaining constraint on the assignment of the variables Ã = {Ã(v) : v ∈

Vn} and B̃ = {B̃(v) : v ∈ Vn} is: the expectation of pseudo-performance on any distri-

bution F must not exceed the optimal algorithm given F (which retains all constraints),

i.e., per the non-super-optimality constraint which remains.

We make one more modification to the linear program in this step: we multiply its

objective by a positive constant κ. For now, we leave κ to-be-defined but we will use it

later to help short-cut the analysis. This modification is obviously benign in terms of
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the argmax. (Note that if we want to ignore κ, we set κ = 1 and the objective line here

satisfies α̌F ≤ α̌Flax = maxÃ, B̃, α̌ α̌ ≤ 1.)

Linear Program 4 (The Appended-Relaxed-Simplified Program (ARS)). This pro-

gram simplifies the variable-space of Linear Program 3 without loss by replacing the origi-

nal allocation variables x with algorithm pseudo-performance variables Ã and B̃, i.e., by

substituting Ã(v)− B̃(v) =
(∑

i φ
F
i (v) · xi(v)

)
:2

κ · α̌F ≤ κ · α̌Flax = max
Ã, B̃, α̌

κ · α̌ ≤ κ(A.3)

s.t.

∫
Vn

(
Ã(v)− B̃(v)

)
· f(v) dv ≥ α̌ ·OPTF (F ) ∀ F ∈ F (approximation)∫

Vn

(
Ã(v)− B̃(v)

)
· f(v) dv ≤ OPTF (F ) ∀ F ∈ Fall (non-super-optimality)

At this point, no structure of the original mechanism design setting remains in Linear

Program 4 – thus, any algorithm setting may continue from this point if its prior inde-

pendent program can drop setting-specific constraints and write pseudo-performance as

a single variable (because also: any algorithm setting may add non-super-optimality).

We now convert Linear Program 4 to its dual program. (The value of the dual program

is at least the value of the primal program and we write this into the objective line.) Each

constraint-line of the dual is assigned an intuitive label to describe its behavior within the

program; and the dual has the following variables (one per primal constraint):

2 The left-hand side of each approximation constraint is equivalently described as expected pseudo-
performance, cf. the explanation in footnote 1 on page 191.
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approximation:: ωF ∀ F ∈ F

non-super-optimality:: oF ∀ F ∈ Fall

Linear Program 5 (The Dual of the ARS Program).

κ · α̌Flax ≤ min
ω, o

∫
Fall

oF ·OPTF (F ) dF(A.4)

s.t.

∫
F
ωF ·OPTF (F ) dF ≥ κ (for α̌) (scale-setting)∫

Fall

(oF − ωF ) · fn(v) dF ≥ 0 ∀ v ∈ Vn (for Ã(v)) (density-matching-A)∫
Fall

(−oF + ωF ) · fn(v) dF ≥ 0 ∀ v ∈ Vn (for B̃(v)) (density-matching-B)

The final point is to choose (a) dual arguments ω = {ωF : F ∈ F} and o = {oF : F ∈

Fall} such that these variables describe a finite-weight dual blend with ω the weights for

distributions in a blend δ2 ∈ F and o the weights for distributions in a blend δ1 ∈ Fall;

and (b) choose κ =
∫
F
ωF · OPTF (F )dF . Making all of these substitutions into Linear

Program 5, we see that this assignment of dual arguments gives a feasible solution to the

dual constraints:

• this assignment meets density-matching with equality by definition of a dual

blend which is in fact a necessary structure to satisfy both constraints (and

further, note that equality is necessary per complimentary slackness wherever we

need to allow strictly positive assignment to the corresponding primal variables

Ã(v) and B̃(v));
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• and, it meets scale-setting with equality by choice of κ (which makes it is easy

to verify).

An assignment to variables that satisfies all constraints gives an upper bound on the

optimal value of a minimization LP. Thus, substituting, re-arranging the objective of

Linear Program 5, and incorporating relationships stated previously gives

α̌Flax ≤
∫
Fall oF ·OPTF (F ) dF∫
F ωF ·OPTF (F ) dF

=
optn,1
optn,2

⇓

optn,2
optn,1

≤ 1

α̌Flax

≤ 1

α̌F
= αF

which finishes the re-proof of Theorem 10 for linear algorithm settings.

A.2. Supporting Work for Quadratics-versus-Uniforms Residual Surplus Gap

This section provides material to support Section 4.5.4.2. The presentation generally

assumes its terms, assumptions, and context while only restating the most important

definitions here.

• Appendix A.2.1 justifies the residual surplus curve of
←−−
Qudh

′
1 , stated previously in

equation (4.24).

• Appendix A.2.2 defines Mopm and calculates its residual surplus on
←−−
Qudh

′
1 .

• Appendix A.2.3 calculates the residual surplus of the 2-lottery on
←−−
Qudh

′
1 to show

that Mopm has better performance, and concludes that we have strictly opt2,2 >

lb2,2 > opt2,1.
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• Appendix A.2.4 gives further supporting analysis for completeness, for example

it explains the choice to use lb2,2 rather than calculating opt2,2 and describes the

un-ironed residual surplus curve for
←−−
Qudh

′
1 and the design of Mopm .

One critical assumption that we do repeat is h ≥ 8.56. Copying equation (4.25) for local

reference, we have

lb2,2 = 1 ·Mopm(
←−−
Qudh

′

1 ) +

[∫ h

1

2

z
· LOT2(

←−−
Qudh

′

z ) dz

]

A.2.1. The Residual Surplus Curve for the Quadratic on [1, h]

This section explains the un-ironed residual surplus curve for
←−−
Qudh

′
z=1. Recall, the CDF

of the specific distribution
←−−
Qudh

′
z=1 is given by

←−−
Qudh

′
1 (x) = 1 − 1/x on x ∈ [1, h], and

←−−
Qudh

′
1 (x) = 1 for x ≥ h. I.e., the CDF has a vertical line segment at x = h where it maps

to the set-value [1 − 1/h, 1], because the distribution is top-truncated with a point mass

at h. With explanation to follow, we restate the residual surplus curve:

R←−−
Qudh

′
1

(q) =



0 for q ∈ [0, 1/h]

ln(q · h) for q ∈ [1/h, 1)

[lnh, 1 + lnh] for q = 1

This residual surplus curve R←−−
Qudh

′
1

is illustrated in Figure A.1. We proceed to justify this

equation.

The residual surplus curve R←−−
Qudh

′
1

(·) is defined piece-wise including (a) a piece that

is identically 0 for quantiles q ∈ [0, 1/h] (from top-truncation); and (b) a piece that is

a vertical line segment at q = 1 of length z = 1 (from consideration of price-posting in
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[0, 1]). The lower endpoint of this vertical line segment is identified by the residual surplus

curve at quantile q = 1 corresponding to the lower bound on the distribution’s domain in

value space, in this case value v = 1. We will show next that the height of the residual

surplus curve corresponding to this point is in fact lnh. The expected residual surplus

from one agent value drawn from
←−−
Qudh

′
1 with a posted price of 1 is:

AP1(
←−−
Qudh

′

1 ) = E
v∼
←−−
Qudh

′
1

[v − 1] =

[
1

h
· h+

∫ h

1

1

z2
· z dz

]
− 1 = lnh

Thus, the exact description of the vertical line segment is the set-valued output range of

[lnh, 1 + lnh] at input q = 1. We now show that generally, the residual surplus curve for

quantiles q ∈ [1/h, 1] is described by R←−−
Qudh

′
1

(q) = ln(q · h). (Combined with line-segment-

pieces (a) and (b) which have already been explained, this completes the description of

the residual surplus curve of
←−−
Qudh

′
1 .)

Given the distribution
←−−
Qudh

′
1 and the residual surplus objective, as functions of value

inputs v ∈ [1, h], and then as functions of quantiles q ∈ [1/h, 1], the virtual value function

and quantile/value functions are

φ
←−−
Qudh

′
1 (v) =

1−
←−−
Qudh

′
1 (v)

←−−
qudh

′
1 (v)

=
1− (1− 1/v)

1/v2
= v

Q←−−
Qudh

′
1

(v) = 1−
←−−
Qudh

′

1 (v) = 1− (1− 1/v) = 1/v

φ
←−−
Qudh

′
1 (q) = 1/q, V←−−

Qudh
′

1
(q) = 1/q

Using the identity φF (q) = R′F (q) from Fact 4 and then integrating the function φ
←−−
Qudh

′
1

just given (
∫ q

1/h
1/z dz), we confirm the case for q ∈ [1/h, 1] of equation (4.24) that states:
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the residual surplus curve is described by R←−−
Qudh

′
1

(q) = ln(q · h) on this sub-domain of

quantile space.

A.2.2. Definition and Residual Surplus of the “Two-piece-iron” Mechanism

The goal of this section is to define the special mechanism Mopm as needed by Sec-

tion 4.5.4.2 for the calcuation of lb2,2, and calculate its expected residual surplus given 2

agents with values drawn i.i.d. from
←−−
Qudh

′
1 within the deferred proof of Lemma 11. Note,

the presentation is within the context of proving that the residual surplus Mopm(
←−−
Qudh

′
1 )

is strictly more than the residual surplus LOT2(
←−−
Qudh

′
1 ) of the 2-lottery.

For use in this section, we need to extend the definition of an ironed residual surplus

curve to allow arbitrary ironing.3 LetQ be any possibly-non-optimal set of non-overlapping

ranges to be ironed (thus each element of Q is a subset of [0, 1] ∈ R). Given a distribution

F , define R̄F,Q to be the residual surplus curve given base-distribution F and its residual

surplus curve RF , and then accounting for Q as the given list of ironed regions.

Call the mechanism Mopm the two-piece-iron mechanism. Its definition depends on

a critical quantile q∗ = e/h. Specifically motivated by
←−−
Qudh

′
1 , the mechanism irons two

regions: (1) large values below and (2) small values above this quantile. Ultimately,

the mechanism Mopm runs an ironed second price auction on the two inferred types (one

common type for each ironed region). For illustration of Mopm applied to R←−−
Qudh

′
1

, see

Figure A.1. Formally, define the following sets of ironed ranges which will be used by our

subsequent analysis:

• Q∗ = {[0, q∗ = e/h]}; corresponding to value-range [h/e, h];

3 The original definition for an ironed residual surplus curve was derived from the definition of an
ironed revenue curve, specifically in the context of optimal ironing. See page 44.
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11
h
q∗

0

lnh

1+lnh

1 ln(qh) for q ∈ [1/h, 1]

Residual surplus curve R←−−
Qudh

′
1

11
h

e
h

0

lnh

1+lnh

1

Ironed curve R̄←−−
Qudh

′
1 ,Q+

Figure A.1. Residual Surplus Curve and Ironing of [1, h] Truncated-Quadratic

We illustrate the effect of ironing on our truncated quadratic distribution (defined by
equation (4.24) below). The left-hand side shows the residual surplus curve R←−−

Qudh
′

1
. The

right-hand side shows the ironing of R←−−
Qudh

′
1

according to the description of mechanism

Mopm , resulting in R̄←−−
Qudh

′
1 ,Q+ . The example is graphed for h = 20. Note: q∗ = e/h; the

left figure indicates that ironing the interval q ∈ [0, e/h] is tangent to the original curve
and therefore optimal on this region; the right figure makes clear that the point (e/h, 1) is
above the line that represents ironing everywhere (for sufficiently large h).

• Q+ = {[0, q∗], [q∗, 1]}; corresponding to value-ranges [h/e, h] and [0, h/e] (where

identifying the lower bound of the second value range to be 0 is a necessary

distinction because R←−−
Qudh

′
1

is set-valued at q = 1);4

• Q1 = {[0, 1]} corresponding to value-range [0, h] (which is effectively the lottery).

Definition 37. Define the two-piece-iron mechanism Mopm for n = 2 agents to be the

ironed second price auction which respects the ironed ranges Q+ = {[0, q∗], [q∗, 1]}.

Equivalently, Mopm irons the regions of value space [maxval/e, h] and [0, h/e] and runs the

second price auction on these two inferred types.

Thus, when agent values are drawn i.i.d. from
←−−
Qudh

′
1 , the residual surplus Mopm(

←−−
Qudh

′
1 )

may be calculated using the ironed residual surplus curve R̄←−−
Qudh

′
1 ,Q+(·). (See Figure A.1.)

4 We get v∗ = h/e as the solution of q∗ = e/h = 1−
←−−
Qudh

′

1 (v∗) = 1− (1− 1/v∗).
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In fact for h ≥ 8.56, ironing the region [0, q∗ = e/h] is optimal given the underlying

distribution
←−−
Qudh

′
1 ; and ironing the region [e/h, 1] is strictly suboptimal (for intuition for

this, see Figure A.2).

We conclude this section with the deferred proof of Lemma 11, which depends on

Lemma 18 below as an extension of Lemma 1 (Dhangwatnotai et al., 2015).

Lemma 11. The residual surplus of mechanisms Mopm and LOT2 given 2 agents with

values drawn i.i.d. from
←−−
Qudh

′
1 are calculated as

Mopm(
←−−
Qudh

′

1 ) =
((2 + lnh)h− (1 + lnh)e)

h

LOT2(
←−−
Qudh

′

1 ) = 1 + lnh

Proof. Using Lemma 18 below (which extends Dhangwatnotai et al. (2015) to allow

ironing and any auction objective, in our case residual surplus) and the definition of Mopm ,

the residual surplus Mopm(
←−−
Qudh

′
1 ) is calculated as twice the area under the ironed residual

surplus curve R̄←−−
Qudh

′
1 ,Q+ . This area is calculated from

area under R̄←−−
Qudh

′
1 ,Q+ = area in quantile range [0, e/h] + area in quantile range [e/h, 1]

= 1/2 · R̄←−−
Qudh

′
1 ,Q+(e/h) ·

( e
h
− 0
)

+
1

2
·
(
R̄←−−

Qudh
′

1 ,Q+(e/h) + R̄←−−
Qudh

′
1 ,Q+(1)

)(
1− e

h

)
=

1

2
· 1 · e

h
+

1

2
· (1 + (1 + lnh)) · h− e

h

=
1

2
· (2 + lnh)h− (1 + lnh)e

h
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where the residual surplus at the endpoints of the ironed ranges – namely, quantiles

q = e/h and q = 1 – are from the definition of R←−−
Qudh

′
1

(equation (4.24) earlier). Therefore

the residual surplus of the mechanism is Mopm(
←−−
Qudh

′
1 ) = ((2 + lnh)h− (1 + lnh)e)/h.

Using Lemma 18 and equation (4.24) again – this time applied to ironed revenue

curve R̄←−−
Qudh

′
1 ,Q1 , i.e., with respect to the lottery’s ironing Q1 – the residual surplus of the

2-lottery is LOT2(
←−−
Qudh

′
1 ) = 1 + lnh. �

For completeness, we prove the extension of Lemma 1 (Dhangwatnotai et al., 2015) to

apply both (a) for an arbitrary auction objective, and (b) to allow arbitrary ironing.

In the case of ironing, the SPA must be interpreted as treating each ironed range as a

single value space type – it allocates all agents in an ironed range uniformly.5 Define this

mechanism as the Ironed Second Price Auction.

Let Q be a set of ironed ranges (in quantile space; as defined on page 199), and let

φ̄F,Q be the ironed virtual value function given an underlying distribution F that has been

ironed on ranges according to Q.

Lemma 18. In i.i.d. two-agent single-item settings given distribution F , for any auc-

tion objective let RF be the performance curve in quantile space and R̄F,Q be an ironed

performance curve given a set of ironed ranges Q.

The expected performance of the ISPA subject to R̄F,Q – assuming uniform allocation

to agents within each ironed range as if the range was one type – is twice the area under

the curve R̄F,Q.

5 Recall, this type of treatment is a necessary condition to apply the technique of ironing – see the
introduction of ironing in discussion on page 43 and its conditional use in Theorem 3.
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Proof. We note the following up front. Without loss of generality, our 2 agents have

ordered values v(1) ≥ v(2), equivalently, ordered quantiles q(1) ≤ q(2). The ISPA mechanism

of the statement is symmetric.

The technique of this proof is to sum up the performance of the ISPA mechanism

(for arbitrary ironing) by calculating expected performance over the distribution of the

smaller quantile-order-statistic q(1). To outline, we: identify this conditional performance

as a function of virtual value; and then insert this quantity into the existing proof of

Lemma 1 (Dhangwatnotai et al., 2015).

For agents labeled according to order statistic i, define x(i) = xISPA
(i) (VF (q(i)), VF (q(j 6=i))).

Define R(q1) to be the expectation of the winning agent’s virtual value conditioned on

the smaller quantile being q1. (Note, the winner is not necessarily the agent i = 1.) Thus,

we have:

R(q1) = Eq2∼Udq1,1

[
x(1) · φ̄F,Q(q1) + x(2) · φ̄F,Q(q2)

]
= φ̄F,Q(q1) = R̄′F,Q(q1)

We get the second equality here because the following holds for all inputs q1 into function

R: pointwise within the expectation: either x(1) = 1, or otherwise x(1) + x(2) = 1 and

φ̄F,Q(q1) = φ̄F,Q(q2). In any case, Eq2∼Udq1,1

[
x{1} · φ̄F,Q(q1) + x{2} · φ̄F,Q(q2)

]
= φ̄F,Q(q1).

We can now effectively implement the proof of Lemma 1 which did not accommodate

ironing and which was stated for the specific objective of revenue.

Let osd(q) = 2(1−q) be the density function of the smallest order-statistic q(1) out of 2

agents’ quantiles drawn i.i.d. from Ud0,1. (Note, for simplicity, we dropped all parameters

from the distribution name ‘osd.’)
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We are now prepared to evaluate ISPA(F ) using R̄F,Q and osd:

ISPA(F ) =

∫ 1

0

osd(q) · R̄′F,Q(q) dq

=

∫ 1

0

2 · 1 · (1− q) · R̄′F,Q(q) dq

= 2 · R̄F,Q(1)− 2 ·
∫ 1

0

q · R̄′F,Q(q) dq

= 2 · R̄F,Q(1)− 2 ·
[
q · R̄F,Q(q)

]1
0

+ 2 ·
∫ 1

0

R̄F,Q(q) dq = 2 ·
∫ 1

0

R̄F,Q(q) dq �

A.2.3. The “Two-piece-iron” Mechanism is Sufficient for a Lower Bound

In this section we show that the residual surplus Mopm(
←−−
Qudh

′
1 ) = ((2 + lnh)h− (1 + lnh)e)/h

of Lemma 11 is strictly worse than optimal and strictly better than the 2-lottery given

h ≥ 8.56. The main goal is to give the deferred proof of Lemma 12 which states that

opt2,2 > lb2,2 > opt2,1.

Lemma 19. Given h ≥ 8.56. The mechanism Mopm is strictly sub-optimal:

OPT←−−
Qudh

′
1

(
←−−
Qudh

′
1 ) > Mopm(

←−−
Qudh

′
1 ); and the mechanism Mopm strictly dominates the lottery:

Mopm(
←−−
Qudh

′
1 ) > LOT2(

←−−
Qudh

′
1 ).

Proof. First, we prove the lower bound on Mopm(
←−−
Qudh

′
1 ) in the lemma statement. We

use Mopm(
←−−
Qudh

′
1 ) = ((2 + lnh)h− (1 + lnh)e)/h and LOT2(

←−−
Qudh

′
1 ) = 1 + lnh from Lemma 11.
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We reduce the condition that the difference is positive:

Mopm(
←−−
Qudh

′

1 )− LOT2(
←−−
Qudh

′

1 ) =
(2 + lnh)h− (1 + lnh)e

h
− (1 + lnh)

=
h− (1 + lnh)e

h
> 0

⇔ h− (1 + lnh)e > 0(A.5)

Treating the left-hand side of the inequality in line (A.5) as a function of h, it is negative

and decreasing for h ∈ [1, e], it is increasing for all h > e, and it has a 0 within the range

h ∈ [8.55, 8.56] (and then is positive for h > 8.56 because it is increasing). Therefore the

lower bound h ≥ 8.56 is sufficient for the lowerbound on Mopm(
←−−
Qudh

′
1 ).

For the upper bound in the lemma statement, the analysis and discussion surrounding

equation (A.9) below in Appendix A.2.4 are sufficient to show that the ironing by Mopm

of the range [e/h, 1] is strictly suboptimal (given h ≥ 8.56, which infers the lower endpoint

of this range is upper bounded as e/h < 0.31). It is dominated specifically in comparison

to ironing the quantile-space upward-closed range [q&, 1] for the optimal value of q& ∈

[0.31, 0.32] defined and proved in Appendix A.2.4. �

Lemma 12. Given opt2,1 and opt2,2 resulting from the finite-weight Quadratics-versus-

Uniforms dual blends (along with the rest of the local assumptions of this section), and

lb2,2 as defined in equation (4.25). Then we have

opt2,2 > lb2,2 > opt2,1

Proof. Lemma 19 states that if h ≥ 8.56, then (a) OPT←−−
Qudh

′
1

(
←−−
Qudh

′
1 ) > Mopm(

←−−
Qudh

′
1 )

and (b) Mopm(
←−−
Qudh

′
1 ) > LOT2(

←−−
Qudh

′
1 ). Following directly from these and from definitions
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we have:

opt2,2 = opm ·OPT←−−
Qudh

′
1

(
←−−
Qudh

′

1 ) +

[∫ h

1

oz ·OPT←−−
Qudh

′
1

(
←−−
Qudh

′

z )

]
> lb2,2 = opm ·Mopm(

←−−
Qudh

′

1 ) +

[∫ h

1

oz · LOT2(
←−−
Qudh

′

z )

]
> opt2,1 = opm · LOT2(

←−−
Qudh

′

1 ) +

[∫ h

1

oz · LOT2(
←−−
Qudh

′

z )

]

where the definition of opt2,1 may use the weights o and the distributions in δ2 rather than

its original definition which respectively used ω and δ1. This last point holds because it

runs the constant lottery mechanism on all inputs anyway and δ2
1 = g = δ2

2. �

A.2.4. Complexities and Technicals of the Quadratics Residual Surplus Blend

The definition of Mopm was given in Definition 37. For completeness, here we build up

the motivation for it – effectively reverse-engineering it to be sufficient for the residual

surplus gap which is our goal (of equation (4.27) of Section 4.5.4.3). Here is an outline of

this section:

(1) identify technical difficulties of residual surplus curves R←−−
Qudh

′
z

(·) for arbitrary z

and motivate the relaxation to lb2,2 and the assumption of h ≥ 8.56 for simplicity;

(2) given h ≥ 8.56, determine that [0, e/h] is an element of the set of optimal ranges

to iron, by analyzing slopes of possible quantile-downward-closed ironed ranges;

(3) from slopes of respective ironed ranges of Mopm and LOT2, re-confirm the state-

ment of Lemma 19 with dependence on equation (A.5) in its proof;

(4) identify the optimal quantile-downward-closed range to iron, which is indepen-

dent of h.
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(1) Explanation of the choice to simplify from opt2,2 to lb2,2 and h ≥ 8.56. This

is a discussion of the difficulties of revenue curves for the class of Quadratics
←−−
Qudh

′
z (with

positive weight in δ2). Generalizing equation (4.24), residual surplus curves for Quadratics

and arbitrary z are described by:

(A.6) R←−−
Qudh′z

(q) =



0 for q ∈ [0, z/h]

z ln(q · h
z
) for q ∈ [z/h, 1)

[z ln h
z
, z + z ln h

z
] for q = 1

The first challenge is that for “large” z → h, the optimal mechanism for
←−−
Qudh

′
z is the

lottery. There is a threshold for z above which this becomes true (see point (4) below

and also Figure A.2 which illustrates the threshold-change in the ironing structure of the

residual surplus curve).

We greatly simplify this complication as follows: with an assumption of h ≥ 8.56, then

for z = 1, the lottery mechanism for
←−−
Qudh

′
1 is strictly not optimal. The calculation of the

lower bound quantity lb2,2 uses the performance of the lottery on all other distributions,

even though the lottery is sub-optimal for many of these distributions. Critically however,

for “small” z – and specifically for z = 1 where there is a point mass opm, and relying on

our assumption of “large” h ≥ 8.56 – the optimal mechanism in response to distribution

←−−
Qudh

′
z will not use the lottery to iron the entire region of values, and rather, a distinct

mechanism is strictly preferred.

The calculation of expected performance for the optimal mechanism for
←−−
Qudh

′
z is itself

complicated. To simplify, we relax the optimal mechanism to Moopm which irons on just
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h

= 1
20
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lnh

1+lnh

ln(qh) for q ∈ [1/h, 1]

Residual surplus curve R←−−
Qudh

′
1

1z
h

= 1
5

0

4 lnh

4+4 lnh

z ln(q h
z
) for q ∈ [z/h, 1]

Residual surplus curve R←−−
Qudh

′
4

Figure A.2. Effect of z → h for [z, h] Truncated-Quadratics

The dashed lines show the ironing of the lottery mechanism. As z → h, there is a threshold
beyond which the lottery mechanism becomes optional. Both graphics depict h = 20, but
note their vertical scales are not equal. The left side uses z = 1 for which the lottery is
not optimal. The right side uses z = 4 for which the lottery is optimal. Setting h ≥ 8.56
is sufficient to guarantee that at least for the relevant corner case which has z = 1, the
lottery is not optimal.

two regions, an optimal region over small quantiles and “all other large” quantiles (see

Figure A.1 for illustration).

(2) The optimal region for partial (downward-closed) ironing. Now we find the

optimal value v ∈ [1, h] to iron all values above it, equivalently, the optimal downward-

closed region of quantile space. This is a step towards motivating the definition of Mopm

as chosen in Definition 37.

Given the graph of the residual surplus curve, we find this optimal quantile range by

considering a line segment with one endpoint as the origin (q = 0, R←−−
Qudh

′
1

(0) = 0), and the

other endpoint on the revenue curve at R←−−
Qudh

′
1

(q) = ln(q ·h)) for q ∈ [1/h, 1]. We search for

the line segment of this type with largest slope. Directly from “change in y over change
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in x,” the slope function and its derivative are given by: 6

ζ(q) =
ln(q · h)

q
on [1/h, 1](A.7)

q2 · ζ ′(q) = q · 1

q
− (ln(q · h) · 1 = 1− ln(q · h)

such that the derivative shows that the slope function achieves its maximum at q∗ = e/h:

ζ ′(q∗) = ζ ′(e/h) = 0(A.8)

The optimal range for ironing of small quantiles is [0, e/h]. Letting ζ∗ be the optimal slope

of the ironed region and recalling φ
←−−
Qudh

′
1 (q) = 1/q, we have

ζ∗ = ζ(q∗) = ζ(e/h) =
ln (e/h · h)

e/h
=
h

e

(3) Ironed slopes confirm equation (A.5) is sufficient for Lemma 19. Lemma 18 in

Appendix B.4 shows that residual surplus is proportional to area under an ironed residual

surplus curve. From the geometry of the ironed curves used respectively by Mopm and

LOT2, it is clear that the question of which has larger area under the curve reduces to

the question of which has the larger slope on the range [0, e/h].

Consider comparing (a) the ironed slope ζ∗ = h/e just calculated in (3) as used by

Mopm ; to (b) the slope ζ1 = 1 + lnh of the 2-lottery which irons everywhere. Per the

reduction just mentioned, we have Mopm > LOT2 if h/e > 1 + lnh which is equivalent to

equation (A.5).

6 In fact, by continuity of the derivative of the residual surplus curve in this region, the line segment
will be tangent to the residual surplus curve if the optimal quantile is interior, i.e., in (1/h, 1).
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(4) The optimal region for partial (downward-closed) ironing. To end this section,

we show that the optimal set of ironed ranges for
←−−
Qudh

′
1 is Q& = {[0, e/h], [q&, 1]}, with

q& identified below, and the optimality of the set Q& self-evident from inspection of the

geometry of the residual surplus curve R̄←−−
Qudh

′
1

. We do this by finding the quantile q&

at which the tangent line intersects the point (1, 1 + lnh) in the residual surplus curve

graph (i.e., the top right corner point). The correct quantile q& is the one – observably

independent of h – that satisfies the equality:

ln
(
q& · h

)
+ (1− q&) · 1

q&
= 1 + lnh

⇔ ln q& +
1

q&
= 2(A.9)

which is a unique q& ∈ (e/8.56, 0.32] (where we chose the lower endpoint as motivated by

h ≥ 8.56).

We end with the following notes. Naturally for h& representing its threshold value in

[8.55, 8.56] at which lb2,2 = opt2,1, this critical h& sets q∗ = e/h& = q&. Increasing h above

h&, we still have that q& is constant but q∗ = e/h is decreasing. Therefore the optimal

ironing leaves the range [e/h, q&] un-ironed for h > h&.

A.3. Monotone Hazard Rate Dual Blends

The goal of this section and the next one is to give further examples of dual blends.

The examples are both motivated by optimal prior independent characterizations of single-

item, 2-agent, truthful and scale-invariant mechanisms for the revenue objective. This

section considers the prior independent class of MHR distributions Fmhr (Definition 10).
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The optimal mechanism for this class is given below and this section constructs a finite-

weight dual blend using its worst-case distribution to parameterize one side.

(Appendix A.4 will consider the larger prior independent class of regular distributions

F reg. The optimal mechanism for this class was given in Theorem 5 and its worst-case dis-

tribution was a specific instance of a Triangle revenue curve distribution (Definition 16).

Triangles are truncations of the class of constant negative virtual value distributions

(CNVVs, Definition 15; which are themselves a sub-class of the Shifted-quadratics). Ap-

pendix A.4 will construct finite-weight dual blends using the class of CNVVs.)

Allouah and Besbes (2018) showed that the SPA is the optimal prior independent

mechanism for the class of MHR distributions Fmhr. The worst-case distribution for the

problem is a truncation of the standard exponential distribution Exd1 which has CDF

Exd1(x) = 1 − e−x on [0,∞) and PDF exd1(x) = e−x. The quantile 1/e is the monopoly

reserve quantile of Exd1 (without truncation; see Figure A.3). The optimal adversarial

truncation is identified by Allouah and Besbes (2018) at quantile q∗m ≈ 0.42659, which is

the monopoly quantile of the new distribution post-truncation (as a result of regularity

and q∗m > 1/e). In value space, the truncation point – equivalently, the monopoly price – is

VExd1(q∗m) ≈ 0.851935. Therefore the worst-case distribution is
←−−
Exd.852′

1 (within which we

allow the approximation 0.852 of VExd1(q∗m) to represent the exact optimal truncation).

Theorem 20 (Allouah and Besbes, 2018). Given a single item, 2-agent auction with

a revenue objective, the optimal truthful, scale-invariant mechanism (from the class Msi)

against MHR distributions Fmhr for the prior independent design program (αF
mhr

) is

the Second Price Auction. The worst-case MHR distribution for this mechanism is the
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truncated-exponential
←−−
Exd.852′

1 with its monopoly quantile q∗m ≈ 0.426 and its approxima-

tion ratio is αF
mhr ≈ 1.398.

The following discussion motivates construction of blends as informed by
←−−
Exd.852′

1 which

is the worst-case distribution of Theorem 20

Because the SPA is scale-invariant, all re-scalings of the worst-case distribution
←−−
Exd.852′

1

are elements of the worst-case set of distributions (per Fact 15). Further, while Allouah

and Besbes (2018) do not formally state the following, the techniques of their proof of

Theorem 20 indicate that the class of all scalings of
←−−
Exd.852′

1 represents an exhaustive

description of worst-case distributions. I.e., ignoring scale, the shape of the resulting

revenue curve is uniquely worst-case for MHR distributions.

At this point, there exists a connection to the property of mixed Nash equilibrium

described in Corollary 7 (and generally cf., Yao’s Minimax Principle (Theorem 9) in

Section 4.1).

Corollary 7 (Yao, 1977). Given a 2-player game G in which player 1 chooses action

ω1 ∈ Ω1, then player 2 chooses action ω2 ∈ Ω2, and respective cost functions C1 and C2.

The game G is subject to Yao’s Minimax Principle:

inf
δ1∈∆1(Ω1)

sup
ω2∈Ω2

C1(δ1, ω2) ≥ sup
δ2∈∆2(Ω2)

inf
ω1∈Ω1

C1(ω1, δ2)

If mixed Nash strategies exist for G – equivalently, if there exists a profile of mixed actions

(δ∗1, δ
∗
2) ∈ ∆1(Ω1) × ∆2(Ω2) which are respectively optimal for the left-hand and right-

hand outer objective functions – then the set of all actions with positive support in δ∗1

is necessarily a subset of the inner, non-empty arginf on the right-hand side, and vice
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versa, the set of all actions with positive support in δ∗2 is necessarily a subset of the inner,

non-empty argsup on the left-hand side.

Corollary 7 states that if mixed Nash exists, then all actions with non-zero probability

of being played are best responses to the opponent’s mix over actions, and in particular,

all actions with positive support have the same expected performance. The consequence

for the MHR result of Allouah and Besbes (2018) here in Theorem 20 is: if mixed Nash

exists and if
←−−
Exd.852′

1 is the unique worst-case distribution, then the adversary’s mixed

Nash actions (which are distributions) must all come from the class of scalings of
←−−
Exd.852′

1 .

Motivated by this ideal description of an optimal adversary (for an auction setting with

unbounded value support and an assumption of scale-invariant mechanisms), we use the

dual blends outline of Theorem 14 – in particular its inverse-distributions of Definition 23,

its rescalings of Fact 15, and its 1/z ·dz weights – to initially describe infinite-weight blends

for value support V = [0,∞), and subsequently modify them to finite-weight blends in

value space V2 = [1/h, h]2.

To set up the blends below, we describe the base distributions for which we con-

sider all scales. Without truncation, given the exponential distribution Exd1, its inverse-

distribution is naturally the inverse-exponential distribution i-Exd1 defined with CDF

i-Exd1(x) = e− 1/x and with PDF i-exd1(x) = 1
x2 · e− 1/x. Revenue curves for Exd1 and

i-Exd1 are given in Figure A.3. The set of inverse-exponentials as a class are a special

case of the inverse-gamma distribution (with its shape parameter set to 1).7 The case of

inverse-exponentials with general “hazard rate” β is defined by CDF i-Exdβ(x) = e− β/x
2

7 For shape parameter k > 0 and the standard Gamma Function Γ(x) =
∫∞

0
zx−1e−zdz, the Gamma

distribution is defined by PDF γdβ,k(x) = βk

Γ(k) ·x
k=1 ·e−βx and the Inverse-Gamma distribution is defined

by PDF i-γdβ,k(x) = βk

Γ(k)x
−k−1e−β/x, both on domain [0,∞).
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0 1qm = 1/e
0

1/e

Revenue curve RExd1

qm = 0 1
0

1

Revenue curve Ri-Exd1

Figure A.3. Exponential and Inverse-exponential Revenue Curves

The left figure shows the revenue curve RExd1(q) = q · ln 1/q. The right figure shows the
revenue curve Ri-Exd1(q) = q/− ln(1− q). In quantile space, the endpoints of both curves
RExd1 and Ri-Exd1 correspond to posted prices of ∞ and 0 and may require evaluation in
the limit.

and PDF i-exdβ(x) = 1
x2 · e− β/x

2

on [0,∞).8 In this section, we plan to parameterize

over domain bounds by using deliberate truncation, rather than using deliberate shifts as

in Section 4.4 or inherent shifts from re-scaling of the blend elements as in Section 4.5.

Thus, towards implementing the blends of this section, we use top-truncation to modify

exponentials into our downward-closed class of Exponentials, and bottom-truncation to

modify inverse-exponentials into our upward-closed class of Inverse-Exponentials.

Consider top-truncating an arbitrary-hazard-rate exponential distribution Exdβ at a

fixed quantile q̄ regardless of β. Two examples of top-truncated revenue curves for base

distribution Exd1 are given in the left-hand side graph of Figure A.4. As we will show

below, there exists an exact bijection between exponential hazards rates β ∈ (0,∞) and

positive, real-valued top-truncations z ∈ (0,∞). In this way, it can be confirmed that the

distributions included in the Exponentials blend are re-scalings of each other.

8 We will persistently refer to the parameter β of an inverse-exponential distribution as its “hazard
rate” due to the obvious analogy to exponential distributions.
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(1,∼ 0.511)

(1,∼ 1.386)

0 1qmq1 q2
0

1/e

Truncations of RExd1

qm 11− p2 1− p1

(1,∼ 0.721)

(1,∼ 1.958)

0

1

Truncations of Ri-Exd1

Figure A.4. Example Ironings of Exponential and Inverse-Exponential

The left figure shows the results of two examples of (dashed) top-truncation of the dis-
tribution Exd1, respectively at q1 = 0.25 < qm and q2 = 0.6 > qm. The right figure
shows the results of the corresponding two examples of (dashed) bottom-truncation of
the distribution i-Exd1, respectively at 1− p1 = 1− q1 = 0.75 and 1− p2 = 1− q2 = 0.4;
the (approximate) heights of the points on the right describe the values of the respective
truncations.

For the Inverse-Exponentials, consider bottom-truncating an arbitrary-hazard-rate

inverse-exponential distribution i-Exdβ at a fixed percentile p̄ regardless of β. Explicitly,

p̄ as a percentile is intended to be a point mass density of equal size to a corresponding

q̄ according to p̄ = q̄ (and cf., it represents bottom-truncation versus top-truncation).

Two examples of bottom-truncated revenue curves for base distribution i-Exd1 are given

in the right-hand side graphic of Figure A.4. As we will show below, there exists an

exact bijection between inverse-exponential hazards rates β ∈ (0,∞) and positive, real-

valued bottom-truncations z ∈ (0,∞). In this way, it can again be confirmed that the

distributions included in the Inverse-Exponentials blend are re-scalings of each other.

For the purpose of designing a dual blend, we set up specific classes of (truncated)

Exponentials and Inverse-Exponentials. Fix in advance top-truncation quantile q̄ and
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bottom-truncation percentile p̄ = q̄. Thus, perecentile p̄ has quantile 1 − q̄. We design

a blend for every arbitrary pair of truncation points q̄, and p̄ = q̄. Thus, the example of

this section describes an entire class of dual blends, one for every fixed q̄ ∈ (0, 1).

The set up of our Exponentials-versus-Inverse-Exponentials blends meets the condi-

tions of Theorem 14, therefore we immediately have the following corollary without need

for a proof. However, in order to illustrate the behavior of the point masses resulting

from truncation in an infinite-weight blend, and as a technically complete step on the

path to describing finite-weight blends, we do explicitly calculate the function g(·) for the

infinite-weight blend.

Informed by Theorem 14, the (infinite-total) weights are set to be oz = ωz = 1/z · dz

and are formally described within the analysis below. We slightly abuse notation and

describe distributions as parameterized by both β and z even though either one of these

is sufficient – there is an exact functional relationship between them for each side of the

dual blend, which is also described in the respective analyses below.9

Corollary 8. Fix q̄ = p̄ ∈ (0, 1). Given the class of downward-closed Exponentials

with members
←−−
Exdz

′

β and the class of upward-closed Inverse-Exponentials with members

−−−→
i-Exdz

′

β , each class including all z > 0 (equivalently all β > 0). For oz = ωz = 1/z · dz

and n = 2, we have the following dual blends matching up at every v = (v1, v2 ≤ v1) to

describe a common function g:

(A.10)

∫ v2

0

1

z
·
←−
exdz

′

β (v1) ·
←−
exdz

′

β (v2) dz = g(v) =

∫ ∞
v1

1

z
·
−−→
i-exdz

′

β (v1) ·
−−→
i-exdz

′

β (v2) dz

9 Specifically, we use β in the subscript where base distribution parameters “always appear,” and use
z in the superscript to indicate the truncation value where truncation parameters “always appear.” We
keep this notation throughout for simplicity, i.e., to avoid properly replacing either parameter with its
more-complicated substitution function in terms of the other.
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Some technical calculations to support this section that hamper its presentation are de-

ferred to Appendix B.6.

A.3.1. Infinite-weight Blends

Calculations here give a re-proof Corollary 8 (which already holds from Theorem 14).

These calculations further describe supporting structure for calculations of finite weight

blends. Because it is of critical importance for our work here, we state one more time: we

have a fixed q̄ ∈ (0, 1) and p̄ = q̄. In contrast to past presentations of dual blends, the pres-

ence of additional technical complexity here leads us to analyze each blend sequentially

(and thus, in relative isolation) and only confirm that they match at the end.

Downward-closed quantile-q̄ top-truncated Exponentials. Recall, an exponen-

tial distribution without truncation has CDF Exdβ(x) = 1 − e−βx on (0,∞) and PDF

exdβ(x) = β · e−βx on (0,∞). We want to truncate each exponential (with varying β)

at fixed quantile q̄ ∈ (0, 1), and change the indexing to be purely by truncation value

z. This makes the downward-closed property clear and sufficiently organizes the integral

calculations of mass at every v to match our previous blends analyses throughout this

work (i.e., via integration dz; the takeaway idea is, we don’t have a direct interest in

the hazard rate parameter β, so we replace it). Given fixed q̄ (and keeping in mind that

q̄ < 1⇒ − ln q̄ > 0), we get a substitution identity to replace β with a function of z:

q̄ = 1− Exdβ(z) = e−βz

β =
− ln q̄

z
(A.11)
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Thus, given a top-truncated exponential distribution parameterized by its truncation

value z, we fix its hazard rate parameter to be − ln q
z

. The final description of an element

with parameter z of the Exponentials Blend is

(CDF)
←−−
Exdz

′

β (x) = 1− e
x
z

ln q̄ on (0, z),
←−−
Exdz

′

β (z) = [1− q̄, 1](A.12)

(PDF)
←−
exdz

′

β (x) =
− ln q̄

z
· e

x
z

ln q̄ on (0, z),
←−
exdz

′

β (z) = q̄ point mass(A.13)

Note, we explicitly allow the CDF to be set-valued as a consequence of the point mass;

and, we have implemented here the abuse of notation mentioned above, with both z and

β parameters appearing in order to help simplify the notation.

The weights per z on the Exponentials are ωz = 1/z · dz for z ∈ (0,∞). We need to

match up mass on each side of the dual blend for three measurements of mass, partly

breaking down by dimension count (Definition 20), and partly from introducing a new

dimension: point masses within a distribution are identically realized to have value equal

to the parameter of the distribution z. Thus, they are measured dz (as inherited from

the individual distribution weight) rather than being evaluated by integrating across dis-

tributions (as in previous blends examples, e.g., at h). The three measures of mass are:

• first, a nonstandard 1-D mass measured dz at every point (v1, v2 = v1), which is

a pure point mass when considering only the dimensions of value space; mass of

this measure can only occur when v1 = v2 = z, values which can only be drawn

from the distribution
←−−
Exdz

′

β with a point mass at z;

• second, standard 2-D mass measured dv1dv2 at every point v ∈ V2 = (0,∞)2;
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• third, a non-standard 2-D mass measured dzdvi = dzdv1 = dzdv2 at every point

v; this represents mass at a point (v1, v2 ≤ v1) that results from v1 = z as a

realized draw in the q̄-point-mass quantile of the distribution
←−−
Exdz

′

β , and v2 as a

realized draw from the continuous range below z;

• addendum: later for the dual blend composed of Inverse-Exponentials, this third

point will match a non-standard 2-D mass at a point (v1, v2 ≤ v1) that results

from v1 as a realized draw from the continuous range of the distribution
−−−→
i-Exdz

′

β

above z, and v2 = z as a realized draw in the p̄-point-mass percentile range

(as reference, below see the description of the Inverse-Exponentials according to

parameterized CDF (equation (A.19)) and PDF (equation (A.20));

• final note: while it is not an exact fit – because total weight is infinite – it might

be easier to understand the breakdown into the different measures of mass here

using the idea of deferred realization of random variables. This perspective is

accessible because of the presence of the point mass densities q̄ = p̄ as constant

probabilities of point mass draws within each distribution: for a distribution with

anonymous z, it is possible to first pre-draw each vi as either being from the

point mass or being from continuous density, in this case deferring realization of

z until after this step.10

10 The natural perspective of blends following from its application to prior independent lower bounds
is to assume that the domain-bound z is determined first, i.e., the distribution is drawn first and fixes
a parameter z; and second to draw v i.i.d. from the parameter-z distribution, in particular using the
following two-step algorithm: randomize with Bernoulli probabilities q̄ and 1− q̄ to determine if a value
is realized as the point mass value or drawn from the continuous region, and then draw the final value
conditional on the first Bernoulli outcome.

Alternatively as suggested here, we could run the Bernoulli draw first, before drawing parameter z; for
our analysis in this section, this ordering of random draws – which defers the fixed assignment of z –
more naturally aligns with the three measures of densities that we have itemized.

As a reference, Hartline et al. (2015) illustrates how deferred realization is used in mechanism design.
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Next per the Blends Technique, we add up mass at every ordered point (v1, v2 ≤ v1).

First consider 1-D mass dz. Calculations at every point (z, z) for z > 0 are given by:11

g1D(z, z) = resulting mass of double-point-mass draws from
←−−
Exdz

′

β

= ωz ·
(

Pr
[
X = z for X ∼

←−−
Exdz

′

β

])2

=
1

z
· q̄2 · dz(A.14)

for which
←−−
Exdz

′

β is the unique distribution within the Exponentials to contribute mass of

this measure at this point (z, z). Second, consider standard 2-D mass dv1dv2. Calculations

at every point use integration-by-parts and are given by:

g2D(v) = resulting mass of double-continuous draws across the
←−−
Exdz;β blend

=

∫ ∞
v1

ωz ·
←−
exdz

′

β (v1) ·
←−
exdz

′

β (v2)

=

∫ ∞
v1

1

z
·
(
− ln q̄

z
· e

v1
z

ln q̄

)
·
(
− ln q̄

z
· e

v2
z

ln q̄

)
dz

= (ln q̄)2

∫ ∞
v1

(
1

z

)[
1

z2
· e

v1+v2
z

ln q̄ dz

]
(A.15)

= (ln q̄)2

([(
1

z

)
·
(

−1

ln q̄ · (v1 + v2)
· e

v1+v2
z

ln q̄

)]∞
v1

−
∫ ∞
v1

(
−1

ln q̄ · (v1 + v2)
e
v1+v2
z

ln q̄

)(
−1

z2
· dz
))

=

[
ln q̄

v1

· 1

v1 + v2

e
v1+v2
v1

ln q̄

]
− ln q̄

v1 + v2

[(
−1

ln q̄(v1 + v2)

)
e
v1+v2
z

ln q̄

]∞
v1

=

[
ln q̄

v1

· 1

v1 + v2

· q̄ · e
v2
v1

ln q̄

]
+

1

(v1 + v2)2

(
1− q̄ · e

v2
v1

ln q̄
)
> 0(A.16)

11 Note, as has been standard presentation so far throughout this work, we write dz explicitly but
rather suppress dvi terms in blends calculations.
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for which the final term is definitively positive for q̄ ∈ (0, 1) (with its first additive term

negative and its second term positive; see Appendix B.6.1). Third, consider 2-D mass

dzdvi for which we use the functional notation g2Dz to describe its contribution to the

function g. For this measure of mass, calculations for the Exponentials require that the

larger value v1 be drawn equal to z and value v2 be a weakly smaller draw from continuous

density. At every point, these calculations are given by:

g2Dz(v1 = z, v2) = resulting mass of “one each” draws from
←−−
Exdz

′

β

= ωz ·
(

Pr
[
X = z for X ∼

←−−
Exdz

′

β

])
·
←−
exdz

′

β (v2)

= ωv1 · q̄ ·
←−
exd

v′1
β (v2) =

q̄

v1

·
(
− ln q̄

v1

e
v2
v1
lnq̄

)
· dz(A.17)

We now turn to the other side of the dual blend: the Inverse-Exponentials.

Upward-closed percentile-p̄ bottom-truncated Inverse-Exponentials. Recall, an

inverse-exponential distribution without truncation has CDF i-Exdβ(x) = e− β/x on (0,∞)

and PDF i-exdβ(x) = β
x2 · e− β/x on (0,∞). We want to truncate each inverse-exponential

(with varying β) at fixed percentile p̄ = q̄ for q̄ as fixed for the Exponentials side of the dual

blend above, and change the indexing to be purely by truncation value z. This makes the

upward-closed property clear and sufficiently organizes the integral calculations of mass at

every v to match our previous blends analyses throughout this work (i.e., via integration

dz; again the takeaway idea is, we don’t have a direct interest in the hazard rate parameter

β, so we replace it). Given fixed p̄ = q̄ (and keeping in mind that p̄ < 1 ⇒ − ln p̄ > 0),
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we get a substitution identity to replace β with a function of z:

p̄ = i-Exdβ(z) = e−β/z

β = −z ln p̄(A.18)

To be clear, because this truncation is at the bottom of the distribution rather than the

top, we now have that p̄ is the probability of the point mass and 1− p̄ is the probability

of the continuous draw (now above the point mass). Thus, given a bottom-truncated

inverse-exponential distribution parameterized by its truncation value z, we fix its hazard

rate parameter to be −z ln p̄. The final description of an element with parameter z of the

Inverse-Exponentials Blend is

(CDF)
−−−→
i-Exdz

′

β (z) = [0, p̄],
−−−→
i-Exdz

′

β (x) = e
z
x

ln p̄ on (z,∞)(A.19)

(PDF)
−−→
i-exdz

′

β (z) = p̄ point mass,
−−→
i-exdz

′

β (x) =
−z ln p̄

x2
· e

z
x

ln p̄ on (z,∞)(A.20)

Note again, the CDF is explicitly allowed to be set-valued as a consequence of the point

mass; and, we keep here the abuse of notation mentioned previously, with both z and β

parameters appearing in order to help simplify the notation.

The weights per z on the Inverse-Exponentials are oz = 1/z · dz for z ∈ (0,∞). The

goal of the rest of this analysis is to match up the three measures of mass identified from

the Exponentials side of the dual blend, i.e., we specifically show that the blend over

Inverse-Exponentials has overall mass to match each of: 1-D mass in equation (A.14),

standard 2-D mass in equation (A.16), and 2-D mass-measure dzdvi in equation (A.17).
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First, considering 1-D mass dz, calculations at every point (z, z) for z > 0 are given

by:

g1D(z, z) = resulting mass of double-point-mass draws from
−−−→
i-Exdz

′

β

= oz ·
(

Pr
[
X = z for X ∼

−−−→
i-Exdz

′

β

])2

=
1

z
· p̄2 · dz(A.21)

for which
−−−→
i-Exdz

′

β is the unique distribution within the Inverse-Exponentials to contribute

mass of this measure at this point (z, z), and which matches equation (A.14) (because

p̄ = q̄). Second, considering standard 2-D mass dv1dv2, calculations at every point use

integration-by-parts and are given by:

g2D(v) = resulting mass of double-continuous draws across the
−−−→
i-Exdz;β blend

=

∫ v2

0

oz ·
−−→
i-exdz

′

β (v1) ·
−−→
i-exdz

′

β (v2)

=

∫ v2

0

1

z
·
(
z · (− ln p̄)

v2
1

e
z
v1

ln p̄

)
·
(
z · (− ln p̄)

v2
2

e
z
v2

ln p̄

)
dz

=

(
ln p̄

v1v2

)2 ∫ v2

0

(
1

z
· z2

)[
e

(
v1+v2
v1v2

)
z ln p̄

dz

]
(A.22)

=

(
ln p̄

v1v2

)2([
(z)

(
v1v2

ln p̄ · (v1 + v2)
e

(
v1+v2
v1v2

)
z ln p̄

)]v2

0

−
∫ v2

0

(
v1v2

ln p̄ · (v1 + v2)
· e

(
v1+v2
v1v2

)
z ln p̄

)
(1 · dz)

)
=

[
ln p̄

v1

· 1

v1 + v2

e

(
v1+v2
v1

)
ln p̄

]
−
(

ln p̄

v1v2

)2

·
(

v1v2

ln p̄ · (v1 + v2)

)2 [
e

(
v1+v2
v1v2

)
z ln p̄

]v2

0

=

[
ln p̄

v1

· 1

v1 + v2

· p̄ · e
v2
v1

ln p̄

]
+

1

(v1 + v2)2

(
1− p̄ · e

v2
v1

ln p̄
)

(A.23)



224

which matches equation (A.16). Third, consider 2-D mass dzdvi for which we use the

notation g2Dz to describe its contribution to the function g. For this measure of mass,

calculations for the Inverse-Exponentials require that the smaller value v2 be drawn equal

to z and value v1 be a weakly larger draw from continuous density. At every point, these

calculations are given by:

g2Dz(v1, v2 = z) = resulting mass of “one each” draws from
−−−→
i-Exdz

′

β

= oz ·
−−→
i-exdz

′

β (v1) ·
(

Pr
[
X = z for X ∼

−−−→
i-Exdz

′

β

])
= ov2 ·

−−→
i-exd

v′2
β (v1) · p̄ =

p̄

v2

·
(
−v2 ln p̄

v2
1

e
v2
v1

ln p̄

)
· dz(A.24)

which matches equation (A.17). This line effectively finishes a re-proof of Corollary 8.

A.3.2. Notes for Modification to Finite-weight

Before modifying the infinite-weight blends solution of the previous section to a finite-

weight solution, we highlight a number of features of the modification for intuition and

completeness. As a preliminary note, modification of the infinite-weight blends solution

of Appendix A.3.1 to finite-weight is designed to fit it into value space as a finite box:

V2 = [1/h, h]2.

Introducing blend-elements as distributions with conditioning. For the first

time throughout this work, blends will employ doubly-conditioned modifications of base-

distributions as elements. (Truncated-and-conditioned distributions also appear, see be-

low.) In particular, Exponentials that were otherwise top-truncated above h (the upper
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bound on value support here) are doubly-conditioned (above and below) to restrict draws

to be from the range [1/h, h]. These blend elements are thus of the type
←→
Exd

1/h,h
β .

The Inverse-Exponentials that were otherwise bottom-truncated below 1/h (the lower

bound on value support here) are similarly doubly-conditioned to restrict draws to be

from the range [1/h, h]. These blend elements are thus of the type
←−→
i-Exd

1/h,h
β .

The truncated-and-conditioned distributions are respectively
←→
Exd

1/h,z′

β and
←−→
i-Exdz

′,h
β .

Consider for these in particular, e.g., the distributions composing the Exponentials side

which have top-truncation at a fixed point mass with density q̄ (which is the same as the

infinite-weight solution above). When we also condition the distribution to be above 1/h

and then re-normalize, the underlying distribution stays the same (i.e., the top-truncation

point mass stays at value z and the distribution keeps the same hazard parameter β).

Furthermore, for κ the total remaining measure after conditioning, the point mass density

becomes q̄/κ. Similarly the total density on the continuous density region of the distribution

becomes (1− q̄ − κ)/κ (because all of the density removed from the conditioning is from the

continuous density region and is subtracted up front). Modifications here to Inverse-

Exponentials have symmetric interpretation.

Finite but unknown total weight. For this section, we allow the total weight to be

anything finite per Fact 17. This verified assumption that we can normalize the weight

to 1 later is actually somewhat critical – because in fact we are not going to calculate the

exact weight due to technical complexity.

Instead, we only run calculations to confirm that total weights are equal as defined by

each side of the dual blends, and we further confirm that weights are finite by calculating
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and analyzing an upper bound. Both of these sets of calculations (equality, finiteness)

will be deferred to Appendix B.6.2.

Elements of finite-weight Exponentials blend maintain the MHR property

post-modification. One of the goals of modifying infinite-weight Exponentials into a

“usable” finite weight blend is that the modified distributions remain feasible within the

setting of an adversary restricted to the class of MHR distributions, towards application

of the Blends Technique. The finite-weight blends solution of Appendix A.3.3 is presented

within this context. The confirmation that distributions of the finite-weight Exponentials

are MHR is deferred to Appendix B.6.3.

Outlining the technique of the modification. At a high level, the observable goal

of designing the finite-weight blends in Appendix A.3.3 is simple: re-achieve the exact

mathematical calculations of the infinite-weight solution from Appendix A.3.1. The im-

plemented technique follows a three-point outline to design the finite-weight blends:

(1) recalling that all infinite-weight blends elements (on both the Exponentials side

and the Inverse-Exponentials side) are parameterized by z which respectively

represents top-trunction or bottom-truncation, for all z ∈ [1/h, h] and for both

sides, we further modify the distribution by conditioning it at a bound of value

support in order to have domain that is a subset of value support (Exponentials

are bottom-conditioned at 1/h, Inverse-Exponentials top-conditioned at h); this

provides a formulaic starting point to recover the exact calculations of the infinite-

weight blends, only needing the following two “fix ups;”
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(2) densities of distributions described in point (1) no longer match the infinite-weight

solution because of the re-normalization step within conditioning; we fix this

innately by modifying the choice of weights oz and ωz to include a multiplicative

factor to exactly cancel the re-normalization factor;

(3) the integrals used to calculate density at an input v have endpoints that reflect

the restriction to finite ranges of values in [1/h, h]; we modify distributions with

parameters z outside this range in a way that their contributions exactly offset

evaluation of the integrals at these “problem” endpoints (and thus the combined

contribution is 0; cf., the role of the opm-term in line (4.6) in Section 4.4 which

effectively cancels evaluation of the oEz-integral at its endpoint 0).

A.3.3. Modifying to Finite-weight Blends

We now modify the infinite-weight blends solution of Appendix A.3.1 to a finite-weight

solution, specifically within value space as a finite box: V2 = [1/h, h]2. As indicated

above, this section continues to make heavy use of truncated distributions (and now also

conditioned distributions) as formally explained in Appendix B.1. Where truncation is

employed, we still fix in advance truncation at the quantile q̄ for the Exponentials and at

the percentile p̄ = q̄ for the Inverse-Exponentials. We have a working assumption that

the weights described here result in a total weight that is finite, and we will confirm this

assumption later.

The rest of this section generally parallels the presentation of the infinite-weight so-

lution in Appendix A.3.1. Supplementary material to support the rest of this section is

deferred as appropriate to Appendix B.6.
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Quantile-q̄ Exponentials. There are two types of distributions which have weights

ωz, each modified from the Exponentials distributions in the infinite-weight solution

which were described in equations (A.12) and (A.13) and embedding again the identity

β = − ln q̄/z. For simplicity of the equations and following analysis, we only present the rel-

evant PDFs and within their definitions, we also make use of “un-substituted” base CDF

functions for the conditioning. For every z ∈ [1/h, h], we include the bottom-conditioned,

top-truncated Exponential distribution

←→
exd

1/h,z′

β (x) =
− ln q̄
z
· exz ln q̄

1− Exdβ(1/h)
on [1/h, z),

←→
exd

1/h,z′

β (z) =
q̄

1− Exdβ(1/h)
point mass

(A.25)

and for every z > h (with β = − ln q̄/z), we include the doubly-conditioned distribution

←→
exd

1/h,h
β (x) =

− ln q̄
z
· exz ln q̄

Exdβ(h)− Exdβ(1/h)
on [1/h, h](A.26)

The weights ωz are:

• for every z ∈ [1/h, h], the exponential distribution
←→
Exd

1/h,z′

β has weight ωz =

1
z

(1− Exdβ(1/h))2 · dz;

• for every z ∈ (h,∞), the exponential distribution
←→
Exd

1/h,h
β has weight ωz =

1
z

(Exdβ(h)− Exdβ(1/h))2 · dz.

At the end of the previous section, we explained how these (finite-total) weights were

specifically designed to recover the infinite-weight calculation forms of Appendix A.3.1.

With this direct comparison to infinite-weights, the finite-weights are calculated as follows.

First consider 1-D density dz. For every z ∈ [1/h, h], calculations at point (z, z) are given

by
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g1D(z, z) = resulting mass of double-point-mass draws from
←→
Exd

1/h,z′

β

= ωz ·
(

q̄

1− Exdβ(1/h)

)2

=
1

z
· q̄2 · dz(A.27)

Second, consider standard 2-D mass dv1dv2. Calculations are solved using reference to

infinite-weights equations for simplicity – our construction is specifically design for this

simplification, and we do this in one step when we substitute in the PDF definitions. At

every point v with h ≥ v1 ≥ v2 ≥ 1/h, calculations are given by

g2D(v) = resulting mass of double-continuous draws from
←→
Exd

1/h,z′

β

+ resulting mass of double-continuous draws from
←→
Exd

1/h,h
β

=

∫ h

v1

ωz ·
←→
exd

1/h,z′

β (v1) ·
←→
exd

1/h,z′

β (v2) +

∫ ∞
h

ωz ·
←→
exd

1/h,h
β (v1) ·

←→
exd

1/h,h
β (v2)

=

∫ ∞
v1

1

z
·
(

ln q̄

z

)2

· e
v1+v2
z

ln q̄dz = line (A.15)

= line (A.16) =

[
ln q̄

v1

· 1

v1 + v2

· q̄ · e
v2
v1

ln q̄

]
+

1

(v1 + v2)2

(
1− q̄ · e

v2
v1

ln q̄
)

(A.28)

Third, consider 2-D mass dzdvi for which we use the functional notation g2Dz to describe

its contribution to the function g. Recall for this measure of mass, calculations for the

Exponentials require that the larger value v1 be drawn equal to z, and now value v2 must

be a weakly smaller draw from continuous density in [1/h, v1]. Calculations at every point
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are given by

g2Dz(v1 = z, v2) = resulting mass of “one each” draws from
←→
Exd

1/h,z′

β

= ωz ·
(

Pr
[
X = z for X ∼

←→
Exd

1/h,z′

β

])
·
←→
exd

1/h,z′

β (v2)

= ωv1 ·
q̄

1− Exdβ(1/h)
·
←→
Exd

1/h,v′1
β (v2)(A.29)

=
q̄ · (1− Exdβ(1/h))2

v1 · (1− Exdβ(1/h))
·

(
− ln q̄
v1

e
v2
v1
lnq̄
)

1− Exdβ(1/h)
· dz =

q̄

v1

·
(
− ln q̄

v1

e
v2
v1
lnq̄

)
· dz(A.30)

Percentile-p̄ Inverse-Exponentials. On the other side of the dual blend, again there

are two types of distributions which have weights oz, each now modified from the Inverse-

Exponentials distributions in the infinite-weight solution which are described in equa-

tions (A.19) and (A.20) and embedding again their identity β = −z ln p̄. Recall, percentile

p̄ = q̄ is now the measure of the point mass at the bottom-truncation point z. Again for

simplicity, we only give PDFs with dependence on base CDFs. For every z ∈ [1/h, h], we

include the bottom-truncated, top-conditioned Inverse-Exponential distribution

←−→
i-exdz

′,h
β (z) =

p̄

i-Exdβ(h)
point mass,

←−→
i-exdz

′,h
β (x) =

−z ln p̄
x2 · e zx ln p̄

i-Exdβ(h)
on (z, h](A.31)

and for every 0 < z < 1/h (with β = −z ln p̄), we include the doubly-conditioned distribu-

tion

←−→
i-exd

1/h,h
β (x) =

−z ln p̄
x2 · e zx ln p̄

i-Exdβ(h)− i-Exdβ(1/h)
on [1/h, h](A.32)

The oz weights are
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• for every z ∈ [1/h, h], the inverse-exponential distribution
←−→
i-Exdz

′,h
β has weight

oz = 1
z

(i-Exdβ(h))2 · dz;

• for every z ∈ (0, 1/h), the inverse-exponential distribution
←−→
i-Exd

1/h,h
β has weight

oz = 1
z

(i-Exdβ(h)− i-Exdβ(1/h))2 · dz.

Now the density calculations for the Inverse-Exponentials. First, considering 1-D mass

dz, for every z ∈ [1/h, h], calculations at point (z, z) are given by

g1D(z, z) = resulting mass of double-point-mass draws from
←−→
i-Exdz

′,h
β

= oz ·
(

p̄

i-Exdβ(h)

)2

=
1

z
· p̄2 · dz(A.33)

We confirm, the quantity in equation (A.33) matches the Exponentials blend quantity

in equation (A.27). Second, considering standard 2-D mass dv1dv2, calculations at every

point use reference to infinite-weights equations for simplicity – recall, they are constructed

specifically to implement this simplification, and we do this in one step when we substitute

in PDF definitions. Calculations at every point v with h ≥ v1 ≥ v2 ≥ 1/h are given by

g2D(v) = resulting mass of double-continuous draws from
←−→
i-Exdz

′,h
β

+ resulting mass of double-continuous draws from
←−→
i-Exd

1/h,h
β

=

∫ v2

1/h

oz ·
←−→
i-exdz

′,h
β (v1) ·

←−→
i-exdz

′,h
β (v2) +

∫ 1/h

0

oz ·
←−→
i-exd

1/h,h
β (v1) ·

←−→
i-exd

1/h,h
β (v2)

=

∫ v2

0

1

z

(
z ln p̄

v1v2

)2

e

(
v1+v2
v1v2

)
z ln p̄

dz = line (A.22)

= line (A.23) =

[
ln p̄

v1

· 1

v1 + v2

· p̄ · e
v2
v1

ln p̄

]
+

1

(v1 + v2)2

(
1− p̄ · e

v2
v1

ln p̄
)

(A.34)
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We confirm, the quantity in equation (A.34) matches the Exponentials blend quantity in

equation (A.28). Third, consider 2-D mass dzdvi for which we use the notation g2Dz to

describe its contribution to the function g. Again for this measure of mass, calculations

for the Inverse-Exponentials require that the smaller value v2 be drawn equal to z and

value v1 be a weakly larger draw from continuous density in [v2, h]. Calculations at every

point are given by

g2Dz(v1, v2 = z) = resulting mass of “one each” draws from
←−→
i-Exdz

′,h
β

= oz ·
←−→
i-exdz

′,h
β (v1) ·

(
Pr
[
X = z for X ∼

←−→
i-Exdz

′,h
β

])
= ov2 ·

←−→
i-Exd

v′2,h
β (v1) · p̄

i-Exdβ(h)
(A.35)

=
p̄ · (i-Exdβ(h))2

v2 · i-Exdβ(h)
·

(
−v2 ln p̄
v2
1

e
v2
v1

ln p̄
)

i-Exdβ(h)
· dz = p̄ ·

(
− ln p̄

v2
1

e
v2
v1

ln p̄

)
· dz(A.36)

We confirm, the quantity in equation (A.36) matches the Exponentials blend quantity

in equation (A.30), which completes the “proof” that the finite-weight blends match

everywhere for every measure of density, and therefore are proper dual blends.

At this point, two technical analyses are deferred to the appendix. First, calculations to

confirm that (a) weights are equal, and (b) weights are finite are given in Appendix B.6.2.

To show that weights are finite, in fact we upper bound them for technical simplicity,

rather than calculating them exactly. The finite weights can be used within the Blends

Technique even leaving them “unknown,” because they are equal and the total divides

out of the ratio of optimal performances (Fact 17).
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Second, as a point of interest, we want to be able to use the finite-weight Exponentials

blend as the adversary’s choice within prior independent settings in which the class of

distributions is Fmhr, i.e., MHR distributions (Definition 10). The base distributions Exdβ

(un-truncated and un-conditioned) are well-known to be MHR (recall Fact 11). Proofs

to confirm that the distributions
←→
Exd

1/h,z′

β and
←→
Exd

1/h,h
β used here remain MHR even after

their respective truncation and conditioning operations are given in Appendix B.6.3. We

formalize this final statement as a proposition.

Proposition 6. For every fixed q̄ ∈ (0, 1) and h > 1, all distributions of the types

←→
Exd

1/h,z′

β (of equation (A.25)) and
←→
Exd

1/h,h
β (of equation (A.26)) are MHR. Therefore they

are all elements of the class of distributions Fmhr and are accessible to a prior independent

design problem’s adversary when restricted to Fmhr.

A.4. Regular (Revenue) Dual Blends

This section repeats only the infinite-weight calculations of the previous section for

value support V = [0,∞), this time for the setting of regular distributions, i.e., restriction

to the class F reg. The setting corresponds to Theorem 5 which was proved in this thesis,

which we restate here.

Theorem 5. Given a single item, 2-agent auction with a revenue objective, the optimal

truthful, scale-invariant mechanism (from the classMsi) against regular distributions F reg

for the prior independent design program (αF
reg

) is Mr̂,ξ which randomizes according to

ξ over the second-price auction M1 with probability ξ1 and r∗-markup mechanism Mr∗

with probability ξr∗ = 1 − ξ1, where ξ1 ≈ 0.806 and r∗ ≈ 2.447. The worst-case regular
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distribution is Trvdq∗m with its monopoly quantile q∗m ≈ 0.093 and its approximation ratio

is αF
reg ≈ 1.907.

Thus, the worst-case distribution for this setting to be used in this section is a Triangle

revenue-curve, in particular, the q∗m ≈ 0.093-truncation of the standard constant negative

virtual value (CNVV)12 which has CDF Cnvd−1(x) = 1 − 1/x+ 1 on [0,∞) and PDF

cnvd−1(x) = 1/(x+ 1)2 and constant negative virtual value φCnvd−1(v) = −1. With 1/q∗m ≈

10.74 and 1/(1− q∗m) ≈ 1.103, this worst-case distribution is denoted
←−−−
Cnvd10.74′

1.103 .

While Default-scaled Triangle revenue curves – with peak revenue fixed to be 1 inde-

pendent of monopoly quantile – were defined in Definition 16, we need to generalize usage

of Triangle revenue curves here. Whereas Default-scaled Triangles fix the height of the

monopoly-peak and leave the monopoly quantile free, we want to flip these: we will want

to consider instead all scalings of Triangles given a fixed monopoly quantile q̄. These are

exactly the q̄-truncations of distributions in the set CNVV = {Cnvdφ : φ < 0}. Recall

per Definition 15, an arbitrary distribution of this class has CDF Cnvdφ(x) = 1 + φ/(x− φ)

and PDF cnvdφ(x) = − φ/(x− φ)2.

CNVVs have three interesting properties. One we have mentioned previously in

Fact 12: they are the class of tight distributions for Theorem 4 (Bulow and Klemperer,

1996). The second is to recall that they are shifted-quadratics which are always shifted

to-the-left. The point is that while
∫∞

0
1
x2dx is originally divergent, a leftward-shift for

12 Recall, constant negative virtual value distributions were defined in Definition 15 to be the set
CNVV =

{
Sqd0,φ : φ < 0

}
. Thus equivalently, this worst case distribution is described as a special-case

of shifted-quadratic distribution Sqd0,−1 which has CDF Sqd0,−1(x) = 1 − 1/x+ 1 on [0,∞) and PDF

sqd0,1(x) = 1/(x+ 1)2 and constant negative virtual value φSqd0,−1(v) = −1.
Graphically, their revenue curves were described as “all revenue curves that are simple line segments

connecting a point (in quantile revenue curve space) (0,−φ) to (1, 0) with slope φ (and for all φ < 0).”
Additionally note here, from the geometry of CNVV revenue curves, top-truncation at q̄ is always the
monopoly truncation qm.
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every ε > 0 will induce an integral that converges, i.e.,
∫∞

0
1

(x+ε)2dx is finite for every ε > 0

and these describe the class of CNVVs.

The third interesting property is that applying the inverse-distribution operation to

all CNVVs as a class is an identity operation. Specifically, the inverse-distribution of a

CNVV distribution with virtual value φ < 0 yields the CNVV distribution with virtual

value 1/φ, as can be directly observed from the following:

Cnvdφ(x) = 1 +
φ

x− φ
on (0,∞)

i-Cnvdφ(x) = 1− Cnvdφ(1/x) =
−φ

1/x− φ
=
−φx

1− φx
on (0,∞)(A.37)

= 1− 1

1− φx
= 1 +

1/φ

x− 1/φ
= Cnvd1/φ(x)

Obviously, mapping all negative φ to 1/φ is a self-bijection with range equal to domain.

Therefore the goal of this section is to describe (infinite-weight) dual blends with CNVVs

on both sides, with only the distinction that one side is top-truncated and the other side is

bottom-truncated. Analogous to the previous section, we use notation from Appendix B.1

to indicate truncation.

On the downward-closed side with weights ωz, we therefore have a fixed (monopoly)

top-truncation quantile q̄ = qm; versus, on the upward-closed side with weights oz, we have

a fixed (in fact revenue-curve-minimizer) bottom-truncation percentile p̄ = q̄. Figure A.5

illustrates revenue curves for two distributions that are both CNVVs and also inverse-

distributions to each other; and Figure A.6 shows the effects of respective top-truncation

and bottom truncation (cf., Figure A.3 and Figure A.4 of the previous section).
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qm = 0 1
0

2/3

Revenue curve RCnvd2/3

qm = 0 1
0

3/2

Revenue curve RCnvd3/2
= Ri-Cnvd2/3

Figure A.5. Shifted-Quadratic and (Same-Class) Inverse Revenue Curves

The left figure shows the revenue curve RCnvd2/3
(q) = 2/3 · (1− q). The right figure shows

the revenue curve Ri-Cnvd3/2
(q) = 3/2 · (1− q). (The inverse-distributions are the same class

with the scales inverted.) In quantile space, the endpoints of both curves RCnvd2/3
and

Ri-Cnvd3/2
correspond to posted prices of ∞ and 0.

(1, 2)

(1, 4/9)

qm 1
0

2/3

q1 q2

Truncations of RCnvd2/3

qm 1
0

3/2

1− p2 1− p1

(1, 1/2)

(1, 9/4)

Truncations of RCnvd3/2
= Ri-Cnvd2/3

Figure A.6. Example Ironings of Shifted-Quadratics and (Same-Class) Inverses

The left figure shows the results of two examples of (dashed) top-truncation of the dis-
tribution Cnvd2/3, respectively at q1 = 0.25 and q2 = 0.6. The right figure shows the
results of the corresponding two examples of (dashed) bottom-truncation of the distribu-
tion i-Cnvd2/3 = Cnvd3/2, respectively at 1− p1 = 1− q1 = 0.75 and 1− p2 = 1− q2 = 0.4.
The heights of the points on the right describe the values of the respective truncations.
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It will be convenient to describe the CNVV distributions by truncation parameters

z rather than by virtual value φ. (This is also an exact analogy to the previous section

which used z in place of hazard rate β). For the purpose of designing a dual blend, we set

up respective classes of Top-Truncated CNVVs and Bottom-Truncated CNVVs. Fix in

advance top-truncation quantile q̄ and bottom-truncation percentile p̄ = q̄ (so perecentile

p̄ has quantile 1 − q̄). We design a blend for every arbitrary pair of truncation points q̄

and p̄ = q̄. Thus the example of this section describes an entire class of dual blends, one

for every fixed q̄ ∈ (0, 1).

The set up of our Top-Truncated-CNVVs-versus-Bottom-Truncated-CNVVs blends

meets the conditions of Theorem 14, therefore we immediately have the following corollary

without need for a proof. However, we still work out the exact solution in order to

illustrate the unique structure of this special example in which distributions of the first

side of the dual blend (CNVVs as a class) are their own class of inverse-distributions.

We also again consider this a step for technical completeness on the path to describing

finite-weight blends. Therefore we calculate the function g(·) for the infinite-weight blend.

The weights are oz = ωz = 1/z · dz.13

Corollary 9. Fix q̄ = p̄ ∈ (0, 1). Given the class of downward-closed Top-Truncated-

CNVVs with members
←−−−
Cnvdz

′

φ and the class of upward-closed Bottom-Truncated-CNVVs

with members
−−−−→
i-Cnvdz

′

φ , each class including all z > 0 (equivalently all φ < 0). For

13 The following note is critical to explain our choice regarding use of notation here. Similar to
the previous section, we abuse notation slightly and describe distributions as parameterized by both
φ and z even though there is an exact functional relationship between them for each side of the dual
blend. As noted above, both sides of the blends are composed of distributions that are modified from
CNVVs. Each side of the blend will use a different functional identity to map between φ and z. To
make this clear, we will explicitly use i-Cnvd distributions on the second side of the blend, even though
we could technically write down each side using CNVVs directly. The second side is the oz-weights,
bottom-truncated, upward-closed-distributions side.
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oz = ωz = 1/z · dz and n = 2, we have the following dual blends matching up at every

v = (v1, v2 ≤ v1) to describe a common function g:

(A.38)

∫ v2

0

1

z
·
←−−
cnvdz

′

φ (v1) ·
←−−
cnvdz

′

φ (v2) dz = g(v) =

∫ ∞
v1

1

z
·
−−−→
i-cnvdz

′

φ (v1) ·
−−−→
i-cnvdz

′

φ (v2) dz

We next give the (infinite-weight) mass calculations of the dual blends for arbitrary fixed

q̄ ∈ (0, 1) and p̄ = q̄, which effectively re-prove Corollary 9.

Downward-closed quantile-q̄ Top-Truncated-CNVVs. For fixed quantile q̄, first we

show the substitution identity to replace the (negative) virtual value parameter φ with

truncation parameter z, after which we present the truncated distributions as components

of the Top-Truncated-CNVVs blend.

q̄ = 1− Cnvdφ(z) =
−φ
z − φ

−φ =

(
q

1− q

)
· z

The description of the distributions is

(CDF)
←−−−
Cnvdz

′

φ (x) = 1− q̄z

((1− q̄)x+ q̄z)
on (0, z),

←−−−
Cnvdz

′

φ (z) = [1− q̄, 1](A.39)

(PDF)
←−−
cnvdz

′

φ (x) =
q̄(1− q̄)z

((1− q̄)x+ q̄z)2
on (0, z),

←−−
cnvdz

′

φ (z) = q̄ point mass(A.40)

The weights are ωz. There are three measures of mass which are the same as the previous

section: 1-D mass dz described by function g1D; 2-D mass dv1dv2 described by function

g2D; and 2-D mass dzdvi described by function g2Dz. First, considering 1-D mass dz,
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calculations at every point (z, z) for z > 0 are given by:

g1D(z, z) = resulting mass of double-point-mass draws from
←−−−
Cnvdz

′

φ

= ωz ·
(

Pr
[
X = z for X ∼

←−−−
Cnvdz

′

φ

])2

=
1

z
· q̄2 · dz(A.41)

Second, considering standard 2-D mass dv1dv2, calculations at every point are described

as an integral form by:

g2D(v) = resulting mass of double-continuous draws across the
←−−−
Cnvdz

′

φ blend

=

∫ ∞
v1

ωz ·
←−−
cnvdz

′

φ (v1) ·
←−−
cnvdz

′

φ (v2)

=

∫ ∞
v1

1

z
· q̄(1− q̄)z

((1− q̄)v1 + q̄z)2
· q̄(1− q̄)z

((1− q̄)v2 + q̄z)2
dz(A.42)

for which technical evaluation is deferred to Appendix B.7, where we also confirm that it

exactly matches this mass-measure for the inverse-CNVVs side. Third, considering 2-D

mass dzdvi, calculations at every point are given by:

g2Dz(v1 = z, v2) = resulting mass of “one each” draws from
←−−−
Cnvdz

′

φ

= ωz ·
(

Pr
[
X = z for X ∼

←−−−
Cnvdz

′

φ

])
·
←−−
cnvdz

′

φ (v2)

= ωv1 · q̄ ·
←−−
cnvd

v′1
φ (v2) =

q̄

v1

·
(

q̄(1− q̄)v1

((1− q̄)v2 + q̄v1)2

)
· dz(A.43)

Upward-closed percentile-p̄ Bottom-Truncated-CNVVs. For fixed percentile p̄ =

q̄, first we show the substitution identity to replace the (negative) virtual value parameter

φ with truncation parameter z, after which we present the truncated distributions as
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components of the Bottom-Truncated-CNVVs blend.

p̄ = i-Cnvdφ(z) =
−φz

1− φz

−φ =

(
p̄

1− p̄

)
· 1

z

The description of the distributions is

(CDF)
−−−−→
i-Cnvdz

′

φ (z) = [0, p̄],
−−−−→
i-Cnvdz

′

φ (x) =
p̄x

((1− p̄)z + p̄x)
on (z,∞)

(A.44)

(PDF)
−−−→
i-cnvdz

′

φ (z) = p̄ point mass,
−−−→
i-cnvdz

′

φ (x) =
p̄(1− p̄)z

((1− p̄)z + p̄x)2
on (z,∞)

(A.45)

The weights are oz. There are three measures of mass which are the same as the previous

section: 1-D mass dz described by function g1D; 2-D mass dv1dv2 described by function

g2D; and 2-D mass dzdvi described by function g2Dz. First, considering 1-D mass dz,

calculations at every point (z, z) for z > 0 are given by:

g1D(z, z) = resulting mass of double-point-mass draws from
−−−−→
i-Cnvdz

′

φ

= oz ·
(

Pr
[
X = z for X ∼

−−−−→
i-Cnvdz

′

φ

])2

=
1

z
· p̄2 · dz(A.46)
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which matches equation (A.41). Second, considering standard 2-D mass dv1dv2, calcula-

tions at every point are described as an integral form by:

g2D(v) = resulting mass of double-continuous draws across the
−−−−→
i-Cnvdz

′

φ blend

=

∫ v2

0

oz ·
−−−→
i-cnvdz

′

φ (v1) ·
−−−→
i-cnvdz

′

φ (v2)

=

∫ v2

0

1

z
· p̄(1− p̄)z

((1− p̄) z + p̄v1)2 ·
p̄(1− p̄)z

((1− p̄) z + p̄v2)2 dz(A.47)

for which technical evaluation is deferred to Appendix B.7, where we also confirm that

it exactly matches equation (A.42). Third, considering 2-D mass dzdvi, calculations at

every point are given by:

g2Dz(v1, v2 = z) = resulting mass of “one each” draws from
−−−−→
i-Cnvdz

′

φ

= oz ·
−−−→
i-cnvdz

′

φ (v1) ·
(

Pr
[
X = z for X ∼

−−−−→
i-Cnvdz

′

φ

])
= ov2 ·

−−−→
i-cnvd

v′2
φ (v1) · p̄ =

p̄

v2

·
(

p̄(1− p̄)v2

((1− p̄) v2 + p̄v1)2

)
· dz(A.48)

which exactly matches equation (A.43).14 With Appendix B.7, this completes the blending

of quantile-q̄ Top-Truncated CNVVs against percentile-p̄ Bottom-Truncated CNVVs.

14 We make special note of a comparison of calculations of mass measure dzdvi between this CNVVs
example and the Exponentials example earlier. We look at the “computational effect” in the blends
calculations of the choice of weights ωz = oz = 1/z · dz. Before inserting weights functions here, we have
q̄ = p̄ and know that we need weights functions in order that line (A.43) and line (A.48) are equal:

q̄ · ωv1 ·
q̄(1− q̄)v1

((1− q̄) v2 + q̄v1)
2 = p̄ · ov2 ·

p̄(1− p̄)v2

((1− p̄) v2 + p̄v1)
2

so in fact, the assignment of ωz = oz = 1
zdz was necessary, as these weights are the only possible free

parameters to fix the existing mismatch in numerators. Thus, weights functions here are used on both
sides of the dual blend to cancel existing mismatched terms. This is in fact qualitatively different than
what was observed in Exponentials line (A.30) and line (A.36) in which respectively the first ωz-side used
the weight function to add a factor of 1/v1 and the second oz-side used the weight function to cancel an
existing factor of v2. These distinct effects of the common weights of Theorem 14 deserve further study.
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A.5. Prior Free Benchmarks and Related Work in Mechanism Design

This section introduces common benchmark functions and gives a short survey of the

mechanism design literature to highlight the most pertinent results in prior free analysis.

Competitive analysis was introduced to the design of mechanisms by Goldberg et al.

(2006). Each result includes the benchmark for which its statement holds.

A.5.1. Common Benchmark Functions in Mechanism Design

The concept of benchmark design and optimization is relatively new. This section presents

commonly employed benchmarks as they exist in the historical literature for prior free

mechanism design. Historical results are deferred to the next section. Past benchmarks

were somewhat ad hoc – they were instantiated with natural structures from best efforts

and ended up with some nice properties, but were not optimized for such. The four bench-

marks presented are offline optimal, optimal-Bayesian-optimal, ex-feasible price-posting,

and ex-feasible price-posting-(l). Of these, the first two benchmarks have feasibility con-

straints of the setting built into the benchmark, but the last two ignore them.15 Their

descriptions are given next, along with related context.

(1) The offline optimal benchmark (OO) is defined by the (deterministic) performance

of the optimal auction that knows the agents’ values. For single-item revenue,

OO(v) = v(1), the largest value. This function also maximizes welfare, and is

15 The “ex-feasible” benchmarks ignore implicit feasibility constraints of any setting and make the
most sense for “digital goods” settings (in which an auction with n unit-demand agents has n items to
sell). We define these benchmarks even though work in this thesis focuses exclusively on the single-item
case. However benchmarks are simply functions, so benchmarks designed for digital goods settings are of
course still computable in the single-item case. Some of the results that we will give in Appendix A.5.2
are for the digital goods settings, in order to round out (a) historical context of the prior free setting and
(b) illustration of the critical behavior of equal revenue distributions.
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also named the welfare benchmark. For single-item residual surplus, OO(v) =

maxk∈{2,...,n+1}

(∑k−1
j=1 v{j} − v{k}

)
/(k − 1) by optimizing k.

(2) The optimal-Bayesian-optimal benchmark (OBO) is parameterized by a class of

distributions F and is defined for an input v as the optimal (maximum) expected

performance of any mechanism that is (Bayesian) optimal for a distribution in

F (Hartline and Roughgarden, 2008). This definition is otherwise independent

of auction objective, and is given by OBOF(v) = maxF∈F OPTF (v).

(3) The ex-feasible price-posting benchmark is set by the (offline) optimal performance

of posting any single, constant price to all agents and wholly selling to all agents

who accept. This benchmark is also frequently named the envy-free optimal

benchmark (EFO) in the literature (Hartline and McGrew, 2005; Devanur et al.,

2015).16 We adopt this notation ‘EFO’ but use both names based on context

(Chapter 1 gave an example using the price-posting-revenue benchmark). For

revenue, EFO(v) = maxk∈{1,...,n} k · v{k}. For residual surplus, EFO(v) =
∑

k vk,

which reduces to a trivial sum-of-values benchmark.

(4) The ex-feasible price-posting-(l) benchmark – alternatively envy-free-(l) bench-

mark (EFO(l)) – has l ≥ 2 (and most typically l = 2) and is the EFO bench-

mark with a quota or restriction l on the number of items sold. For revenue,

EFO(l)(v) = maxk∈{l,...,n} k · v{k} maximizes EFO when required to sell to at least

l agents. For residual surplus, EFO(l)(v) =

maxk∈{l+1,...,n+1} l ·
(∑k−1

j=1 v{j} − v{k}
)
/(k − 1) maximizes EFO (using price k)

16 An “envy-free” outcome-based computation requires restriction to theoretical allocations in which
no agent i prefers the outcome (xj , πj) of any other agent j to (xi, πi). With “ex-feasible,” this reduces
to digital goods anonymous price-posting.
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when required to (wholly) sell to at most l agents (and inherently always sells to

l agents).

Fact 24 (Hartline and Roughgarden, 2008). For revenue, the offline optimal (OO),

optimal-Bayesian-optimal (OBO), and and envy-free (EFO) benchmarks are all normal-

ized benchmarks (Definition 31).

A.5.2. A Selection of Historical Prior Free Results

This section presents a list of results from the historical literature on prior free auction

design. Each statement fully describes its setting and result, with minimal overall context.

The list reflects the references listed in a blog post on Turing’s Invisible Hand (Hartline,

2014) which motivated much of the work in this thesis. In the theorem statements that

follow, benchmark references include an index corresponding to the list in the previous

section if applicable. The common theme across the results is that equal revenue distri-

butions can be used to prove that their respective approximation guarantees are tight.

This observation is summarized in discussion culminating with Fact 25 at the end of the

section.

Theorem 21 (Hartline and Roughgarden, 2014). Given the single-item setting with

1 agent with value support [1, h], a revenue objective, and the offline optimal benchmark

(1). The optimal auction posts a random price from the distribution with cdf F (x) =

(1 + lnx)/(1 + lnh) (which embeds a point mass at x = 1). Its approximation factor is

1 + lnh.
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Theorem 22 (Fiat et al., 2002). Given the digital goods setting with 2 agents with

value support [1,∞), a revenue objective, and the EFO(2) benchmark (4). The optimal

auction is the second price auction. Its approximation factor is 2.

Theorem 23 (Hartline and McGrew, 2005). Given the digital goods setting with 3

agents with value support [0,∞), a revenue objective, and the EFO(2) benchmark (4). The

optimal auction offers a random price to each agent i based on the values of other agents

vj and vk ≤ vj without loss of generality. The following description is scale-invariant based

on re-scaling v(1) = vj/vk and v(2) = 1. The “final” price offered to each agent i is a draw

from the following conditional density function f (for which sub-function η(x) = 2/13
(x−1)3 ),

re-scaled back up by the factor vk.

• If v(1) ≤ 3/2, f has a point mass at x = 1 with weight 9/13, and otherwise has

density η(x) on range x ∈ (3/2,∞).

• If v(1) > 3/2, f has:

– a point mass at x = 1 with weight 9/13−
∫ v(1)

3/2 z · η(z)dz;

– a point mass at x = v(1) with weight
∫ v(1)

3/2 (z + 1)η(z)dz;

– and otherwise has density η(x) on range x ∈ (v(1),∞)

Its optimal approximation factor is 13/6.

Theorem 24 (Hartline and Roughgarden, 2014). Given a 1-item auction with n = 2

agents with value support [0,∞), a residual surplus objective, and the OBO benchmark

(2) parameterized by the class of all distributions Fall. The optimal auction is as follows.

• If v(1) ≤ 2 · v(2), then allocate each agent with probability 1/2;
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• Otherwise, allocate the larger-valued agent (with v(1)) with probability 3/4 and the

smaller-valued agent with probability 1/4.

Its optimal approximation factor is 4/3.

The following abstract result characterizes approximation factors for a large class of bench-

marks, without explicit specification of the auction corresponding to a benchmark. As

Chen et al. (2014) write, their “characterization is provided by the set of inequalities

[given in (A.49) below] that only involves a [benchmark B and a ratio α], but does not

describe an actual auction. This is similar in spirit to the characterization of truthfully

implementable allocation functions [described in Theorem 1 of this thesis]... that only

specifies an allocation function but ... without describing any payment function, one can

determine whether there is a truthful auction with a specified allocation.”

Theorem 25 (Chen et al., 2014). Given the digital goods setting with n agents with

value support [1,∞), a revenue objective, and any non-negative and increasing benchmark

function B. There is a truthful auction that achieves approximation factor α if and only

(A.49)

∫
S
B(v) · eqrd(v)dv ≤ α ·

n∑
k=1

∫
S↓k

eqrd(v−k)dv−k

where S ∈ V is any upward closed subset of value space, S↓k is the projection of S into

value space excluding dimension k, and eqrd(v) =
∏

k 1/v2
k is the density at v as if the

inputs were drawn i.i.d. from the equal revenue distribution (of Definition 14).

Theorem 25 makes possible the following corollary, thereby positively confirming a con-

jecture of Goldberg et al. (2004).
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Corollary 10 (Chen et al., 2014). Given the digital goods setting with n agents with

value support [1,∞), a revenue objective, and the EFO(2) benchmark. The optimal prior

free approximation factor as n→∞ is ∼ 2.42 (with the worst-case (largest) approximation

factor of any n achieved in this limit).

For a fixed benchmark, the problem of identifying the optimal mechanism is generally

not well understood. However there is a canonical method for identifying lower bounds

on the approximation ratio of the optimal mechanism which motivated this list of re-

sults. The sequence of varied results above exhibits the critical role of the equal revenue

distribution in optimal mechanism design, illustrating a technique first highlighted by

Hartline and McGrew (2005) and Goldberg et al. (2006). They suggested that the prior

free approximation of any mechanism for a benchmark can be lower bounded by iden-

tifying a distribution over inputs for which all “non-dominated” mechanisms have the

same (expected) performance. These “neutralizing” distributions are exactly the EQRs

for revenue and EQRSs for residual surplus that were introduced in Section 2.2.8.

We make this formal as follows, using revenue as an example. The ratio of the expected

benchmark to the revenue of any mechanism for the EQR distribution gives a lower

bound on the prior free approximation of the benchmark, i.e., for the optimal prior free

mechanism there must exist an input where the ratio of benchmark to mechanism revenue

is at least the ratio of their expectations for the distribution. E.g., for digital goods revenue

auctions and a large class of benchmarks, in order to prove Theorem 25 above, (Chen et al.,

2014) give a non-constructive proof that this lower bound is tight. In fact, we generalized

this lower bound for arbitrary i.i.d. distributions in Lemma 15 in Section 6.1.4.
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Fact 25. The optimal approximation factors guaranteed in the statements of Theo-

rem 21, Theorem 22, Theorem 23, Theorem 24, Theorem 25 can be proved tight by using

Lemma 15, i.e., by assuming that value inputs v are drawn i.i.d. from F = Eqrd (respec-

tively F = Eqrsd for the residual surplus result); and subsequently showing that for each,

the (respectively) optimal mechanism’s expected approximation given these inputs is equal

to a (respective) proven upper bound guarantee on its αB.

A.6. Fundamentals of Normalization-Symmetric Resolution

This section expands our foundational analysis of the normalization-symmetric res-

olution measure and its corresponding nsBDP. The definition of its benchmark design

problem is copied here from Section 6.1.4 for direct reference.

Definition 35 (Hartline, 2020). The normalization-symmetric resolution benchmark

design problem (nsBDP) is given by a class of distributions F , a class of algorithms A,

and resolution measure σB; and searches for the argmin of the min−max program

γFσ = min
B∈NBF

[
σB
]

= min
B∈NBF

[
max
F∈F

B(F )

OPTF (F )

]
(γFσ )

Appendix A.6.1 motivates the nsBDP from the historical literature and identifies a natu-

ral relaxation to a related benchmark design problem using: normalization-assymetric-2

resolution measure (na2BDP; measure σ2). Appendix A.6.2 connects both of these prob-

lems to dual blends and bounds from the Blends Technique by writing them as linear

programs. Appendix A.6.3 relates both problems to the brBDP by proving Proposition 7

which states that γFσ ≤ γFσ2
≤ γFρ (and which subsumes Proposition 5 first given in

Section 6.1.4).
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A.6.1. Historical Perspective and Extension to Normalization-asymmetric-2

Recall Lemma 15 from Section 6.1.4.

Lemma 15 (Goldberg et al., 2006). For any benchmark B, the class of distributions

Fall (given input space Vn), and class of algorithms A which induce OPTF , the optimal

prior free approximation αB is at least

ᾰB = max
F∈Fall

B(F )

OPTF (F )
(ᾰB)

With respect to the lower bound of Lemma 15, (a corollary of) the Hartline and McGrew

(2005) result stated as Theorem 23 and the Chen et al. (2014) result stated as Theorem 25

showed in fact for digital goods auctions that αB = ᾰB for a large class of benchmarks

(in particular using F ∗ = Eqrd as the Equal Revenue Distribution). Note further from

Theorem 16, the optimal best-response resolution benchmark also satisfies a slightly-

modified version of Lemma 15 with equality (when the comparison class Fall is replaced

in Lemma 15 to be possibly-restricted to the brBDP’s fixed-parameter class F̄ ⊆ Fall).

Recall from Section 6.3 that we identified challenges to indiscriminate use of the

brBDP, which suggests that we might need a less-precise measure of resolution. A natural

relaxation of the brBDP is – instead of optimizing benchmarks that admit the best prior

free approximation which tailors too much to the interests of the subsequent algorithm

design – to optimize benchmarks that admit the best lower bound of Lemma 15.

First we consider such a relaxation from a simpler version of Lemma 15 which only

searches over a class F̄ rather than F all. The idea is: if a prior independent approximation

guarantee against a specific class of distributions F̄ is such a focused objective of a given
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prior free benchmark design and algorithm design task, then perhaps it makes sense

to implement the relaxed benchmark via resolution lower bound only with respect to the

class F̄ , rather than with respect to Fall. The resulting lower-bound-technique in this case

induces exactly the normalization-symmetric resolution σB, and the resulting benchmark

design program is exactly the nsBDP for F̄ .17 Further, this relaxed design induces a

natural and elegant symmetry in the linear program description of the nsBDP (see Linear

Program 6).

However, an incidental benchmark design – which need not use normalization to guar-

antee approximation to distributions F out /∈ F but which wants to prohibit possibly-

spurious benchmark designs by regulating the expected benchmark over F out to not be

too large – might instead keep the entire class of distributions Fall against which to

measure resolution per the lower bound of Lemma 15. This motivates a new, bench-

mark design program with measure normalization-asymmetric-2 resolution σB2 . Changes

from the nsBDP are bolded. (In the equation line, the only change is that the inner-

maximization problem changes its feasible space from F ∈ F to F ∈ Fall. Thus, the

nsBDP and na2BDP are the same for nsBDP problems that are canonically defined for

the class Fall, e.g., our residual surplus auctions.)

Definition 38. The normalization-asymmetric-2 resolution benchmark design prob-

lem (na2BDP) is given by a value space Vn and the class of all distributions Fall

(over Vn), a class of distributions F for normalization, a class of algorithms A, and

17 Historically, there was intuition (following from Chen et al. (2014)) that universally γFσ = αF , i.e.,
that the nsBDP might always have its optimal resolution equal to optimal prior independent approxima-
tion (cf. Theorem 16). This thesis identified the best-response resolution measure and generally assessed
this intuition to be misguided (Theorem 17 and discussion). There still may exist restricted settings for
which γFσ = αF holds.
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resolution measure σB2 ; and searches for the argmin of the min−max program

γFσ2
= min

B∈NBF

[
σB2
]

= min
B∈NBF

[
max
F∈Fall

B(F )

OPTF (F )

]
(γFσ2

)

A.6.2. The Linear Programs and Connection to the Blends Technique

This section uses techniques of Vohra (2011) to write linear programs for the nsBDP

(Definition 35) and the na2BDP (Definition 38 immediately above). The two programs

are almost identical to each other but we write both for clarity and comparison.

The following applies for both programs. LetB(v) be the assigned output of the bench-

mark function B at v, thus the full set of variables for assignment isB = {B(v) : v ∈ Vn}

The normalization property is naturally a linear constraint on benchmark design. The

inner-minimization of resolution is moved to be a constraint and we optimize the res-

olution measure directly as a variable (cf. Linear Program 1). It is impossible to have

resolution smaller than 1 and this fact is copied into the objective function line.

The dual variables associated with each constraint are given along with constraint

descriptors. For the nsBDP only, the dual variables are ω = {ωF : F ∈ F} and

o = {oF : F ∈ F}.

Linear Program 6 (The Normalization-symmetric Benchmark Design Program18).

Given a prior free algorithm design setting, a class of distributions F , a class of algorithms

A (which induce OPTF per F ∈ F), and the resolution measure σB, the optimal normal-

ized benchmark and its optimal resolution γFσ are given by the argmax of the following

18 Observe the symmetry of the constraints which motivates the name of the resolution measure.
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program:19

γFσ = min
B, σ

σ (≥ 1)(A.50)

s.t.∫
Vn
B(v) · f(v) dv ≥ OPTF (F ) ∀ F ∈ F (ωF , normalization)∫

Vn
B(v) · f(v) dv ≤ σ ·OPTF (F ) ∀ F ∈ F (oF , ns-resolution)

The following linear programs describe the na2BDP. In comparison to the nsBDP, the only

alterations are as follows. The resolution constraint in the primal is generalized to hold

for each distribution F ∈ Fall. Correspondingly, there exist generalized dual variables

o = {oF : F ∈ Fall}.

Linear Program 7 (The Normalization-asymmetric-2 Benchmark Design Program).

Given a prior free mechanism design setting, a value space V with Fall, a normalization

class of distributions F , and a class of mechanisms which induce OPTF , the optimal

normalized benchmark with respect to resolution measure σ2 and its value γFσ2
are given

by the argmax of the following program:

γFσ2
= min
B, σ2

σ2 (≥ 1)(A.51)

s.t.

19 The left-hand side of each approximation constraint is equivalently described as expected benchmark:∫
Vn B(v) ·f(v) dv = Ev∼F [B(v)]. The variables of the program are more explicit from the integral form

(cf. footnote 1 on page 191).
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∫
Vn
B(v) · f(v) dv ≥ OPTF (F ) ∀ F ∈ F (ωF , normalization)∫

Vn
B(v) · f(v) dv ≤ σ2 ·OPTF (F ) ∀ F ∈ Fall (oF , ns-resolution)

Without going into detail, both Linear Program 6 and Linear Program 7 are clear analogies

to Linear Program 4 on page 194. Linear Program 4 was the Appended-Relaxed-Simplified

(ARS) modification of Linear Program 1 for the canonical description of optimal prior

independent single-item mechanism design, in particular, Linear Program 4 had stripped

out the constraints and details of mechanism design and replaced the variables with

pseudo-performance variables. Here we have non-negative benchmark functions in place

of pseudo-performance, a multiplicatively-inverted objective, and a possible restriction of

both sides to F (only in the nsBDP). However the dual programs have essentially identical

structure and behavior to the dual-of-the-ARS program in Linear Program 5, for which

our dual blends Definition 18 were the exact class of feasible solutions.

Moreover, the programs in this section are original formulations of benchmark design

problems (i.e., they are not “Appended-Relaxed-Simplified” from a more-involved problem

description). Thus, not only do dual blends give lower bounds on Linear Program 6 and

Linear Program 7 from the dual programs (Corollary 11), we should expect them to

provide (or approach within a limiting sequence) tight lower bounds to the values of the

primal programs.

In facxt, the nsBDP (Linear Program 6) is an interesting case in comparison to the

na2BDP (Linear Program 7) and the ARS-program (Linear Program 4) because it is

required to only use distributions in F to construct both sides of its dual blends. This
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represents a possibly-material restriction on the nsBDP adversary. Consider the follow-

ing dual blends examples specifically for an auction with a revenue objective restricted

to regular distributions F reg. Cf., our finite weight Quadratics-versus-Uniforms example

of Section 4.5 may be used by any of the programs because all of the Quadratics and

all of the Uniforms are regular and thus equally available within F reg and Fall. Alterna-

tively cf., the example dual blends of Appendix A.3 and Appendix A.4 both incorporated

bottom-truncated irregular distributions and thus may only be used by the na2BDP and

ARS programs (and not by the nsBDP program). This gap may be significant because

irregular distributions are known to be difficult to approximate in prior independent set-

tings (indeed this is why auctions for revenue restrict to F reg). Within the nsBDP, the

adversary may not design the dual blend to use irregulars for the algorithm-upper-bound

that is inherent to the calculation of the denominator optn,1 in the Blends Technique.

Two interesting open questions are:

(1) What is the characterization of the set of algorithm problems – if any – for which

the nsBDP and the na2BDP are equivalent?

(2) Where the programs are not equivalent, how does behavior of the optimal algo-

rithm differ to take advantage of the restricted adversary in the nsBDP program?

We end this section with the statement that dual blends give lower bounds to our bench-

mark design programs here.

Corollary 11. Consider the nsBDP. Assume there exist two distinct dual blends δ1 ∈

∆(F) and δ2 ∈ ∆(F) and correlated density function g (of Definition 18) such that:

δn1 (v) = g(v) = δn2 (v) ∀ v



255

Then the value of the nsBDP (γFσ ) is at least the ratio optn,2/optn,1:

γFσ = min
B∈NBF

[
max
F∈F

B(F )

OPTF (F )

]
≥

optn,2
optn,1

Alternatively, consider the na2BDP setting. Assume there exist two distinct dual blends

δ1 ∈ ∆(Fall) and δ2 ∈ ∆(F) and correlated density function g such that:

δn1 (v) = g(v) = δn2 (v) ∀ v

Then the value of the na2BDP (γFσ2
) is at least the ratio optn,2/optn,1:

γFσ2
= min

B∈NBF

[
max
F∈Fall

B(F )

OPTF (F )

]
≥

optn,2
optn,1

A.6.3. Formal Relationship to Best-response Resolution

Ostensibly, the goal of this section is to prove Proposition 5 from Section 6.1.4. Actually,

we state a stronger version here as Proposition 7, specifically to include γFσ2
in the ordering.

The statement and proof effectively subsume Proposition 5.

Proposition 7. Given a value space Vn and all distributions Fall, a class of distri-

butions F (for normalization) and a class of algorithms A, the value of the nsBDP γFσ

lower bounds the value of the na2BDP γFσ2
which lower bounds the value of the brBDP γFρ

and the approximation factor of the prior independent optimal mechanism for F :

(A.52) γFσ ≤ γFσ2
≤ γFρ = αF
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Proof. Recall that the equality γFρ = αF was shown in Theorem 16. It is included

here (a) for completeness, and (b) because below we will actually show γFσ2
≤ αF rather

than γFσ2
≤ γFρ .

The first inequality follows directly from inspection of Linear Program 6 for γFσ and

Linear Program 7 for γFσ2
, where we see that the latter minimization problem faces exactly

a super set of constraints (from the resolution-line constraints) in comparison to the

former. Thus its objective can not be smaller.

To show the remaining inequality γFσ2
≤ αF = γFρ , we effectively copy the proof of

Lemma 16 which stated γFρ ≤ αF in the first place. Specifically, let A∗ be the optimal

prior independent algorithm for class F with optimal approximation factor αF ≥ 1. Then

assigning B = B̄ and σ2 = αF as the arguments of the na2BDP gives a feasible solution

to Linear Program 7 and thus the optimal measure γFσ2
can not be larger than αF . �

A.7. Deferred Connection between Blends and Tensor Decomposition

This section makes explicit the connection between our blends and continuous tensors

as introduced in Section 5.5 on page 147. Appendix A.7.1 gives the technical basics of

tensors. Appendix A.7.2 adapts the framework of tensors to interpret blends.

A.7.1. Introduction to Tensor Decomposition

This section introduces tensors and describes the standard question of tensor decomposi-

tion. An n-th order tensor T is the n-dimensional analogue of a 2-dimensionalm×n-matrix

(which is a 2nd-order special-case tensor).
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Consider the standard outer product operation ‘⊗’ of two vectors a, b as a⊗b = a ·b>

to output a matrix H with elements hi,j = ai · bj. A rank-1 tensor can be written as20

a1,1 ⊗ . . . ⊗ a1,j ⊗ . . . ⊗ a1,n = TA1 for a given list of vectors a1,1, . . . ,a1,j, . . . ,a1,n with

respective sizes m1, . . . ,mn. Thus, TA1 is nth-order with dimensions-sizes corresponding

to the mi.

The rank of a tensor T is the minimum number of rank-1 tensors needed in a sum-

mation to yield T . Analogous to standard matrix operations, tensors can accommodate

scalars as multipliers of every entry, e.g., T ′ = l1 · TA1 + l2 · TA2 . (Scalars are not strictly

necessary because they can be multiplied into their respective tensors up front, so they are

usually employed in situations when there are constraints on the input vectors ai,j and/or

the scalars themselves, e.g., positive and sum to 1.) A tensor T of rank r is expressed by

T =
∑r

z=1 lz ·TAz , and the sum-expression is referred to as the decomposition of tensor T .

All of our examples of dual blends have n = 2 and thus are not restricted by the

challenges of higher-order tensors. In fact in Section 5.1, we conjectured that there is no

generalization of our classes of dual blends to n > 3 due to an algebraic analysis of the

structure of our dual blends (in particular, from the role of the integral endpoints in the

calculations of density at every v). Our impossibility-conjecture is naturally analogous

to uniqueness of higher-order tensor decomposition. However, for 2nd-order tensors –

20 An explanation of tensor indexing variables: a vector az,j is effectively a column-j vector used
within the computation of tensor TAz

; therefore, the entries of az,j have row indexes i; finally, we use
the z index of a rank-1 tensor TAz

to set up analogy to its usage as a blends parameter.
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simply, standard matrices – decomposition is known to be highly non-unique due to what

is called the Rotation Problem.21

The study of tensors in computer science is typically motivated by the existence of a

tensor-object T̃ as a representation of high-dimensional, real-world data. As such, a ten-

sor T̃ frequently incorporates “noisy” entries t̃i1,...,in and it is neither well-understood nor

appropriate how to reinterpret the tensor via decomposition as an exact sum over rank-1

tensors. (Despite decomposition being generally unique (Harshman, 1972; Kruskal, 1977),

determination of tensor rank is generally NP-Hard for 3rd-order (three-dimensional) ten-

sors (H̊astad, 1989).) A decomposition is desirable to act effectively as a factor analysis

of the tensor. With an analogy to statistical factor analysis in mind, it is standard

in the computer science literature to seek approximate decompositions of a (real-world-

generated) tensor T̃ , with an objective to optimize the approximation with respect to an

accuracy measurement (e.g., the Frobenius norm), and subject to a maximum rank r̆ to

avoid overfitting.

A.7.2. Blends as Special-case Tensors

This section explains how our blends are special-case tensors, requiring both restriction

and relaxation from the standard model of tensors as sums over rank-1 tensors, i.e.,

T =
∑r

z=1 lz · TAz . Starting from this standard model, consider the following restrictions:

21 For an accessible presentation of the Rotation Problem, see Section 2.2 of Rabanser et al. (2017)
who further write, “matrix decompositions are only unique under very stringent conditions, such as
orthogonality constraints which are imposed by the singular value decomposition (SVD).” Rank-1 tensors
also have unique decomposition.
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(1) Require symmetry: the tensor has constant sizem in every dimension and further,

component rank-1 tensors have the form TAz = az ⊗ . . .⊗ az, i.e., they are each

the outer product of n copies of a common element-vector az.

(2) Require the tensor to have overall structure to describe a blend, i.e., to describe

a distribution-over-distributions; thus:

• Require the vectors az to be probability distributions (for each az, we have

az,i ≥ 0 and
∑

i az,i = 1).

• The set of scalar factors lz must be a probability distribution (lz > 0 and∑r
z=1 lz = 1).

Thus, the tensor acts as a (symmetric, correlated) probability distribution over

its indexes, with component rank-1 tensors as latent variables according to the

lz scalars as a disrcrete probability distribution l. A random draw from the

tensor-correlated distribution can be effected by drawing a random rank-1 tensor

Âz ∼ l and then drawing each coordinate i.i.d. according to the probabilities

of the corresponding âz (cf. the procedure for drawing n inputs in the prior

independent information setting).

(3) For use within the Blends Technique (as applied to the prior independent design

setting), for the δ2 side as chosen by the adversary, we require restricting the

(probability) vectors az to a given class of distributions F . (The δ1 side may use

arbitrary distributions from Fall.)

Already, this restricted case of tensors corresponds to a special case application of the

Blends Technique, in which the underlying algorithm setting is defined to only have input

from a finite, discrete set – e.g., an auction setting in which values have support as a finite
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set of integers (and there would be a fixed (abstract) mapping between discrete inputs

and tensor indexing).

Definition 39. A latent-distribution, symmetric probability tensor is a convex com-

bination over rank-1 tensors with each component constructed as the outer-product of

successive copies of a single distribution-vector (defined by non-negative entries that sum

to 1).

From here, consider the following relaxations to extend our latent-distribution, symmetric

probability tensor special-case:

(1) Relax the standard indexing of tensor entries to a general setting in which they

may be continuous and unbounded (though we keep an assumption of non-

negativity). I.e., considering a tensor as a function defined for discrete (highly-

structured) domain, this point relaxes to arbitrary domain.

(2) Relax from a sum over rank-1 tensors to allow continuous integration over rank-1-

tensors. Correspondingly, we relax the discreteness of the scalars to allow them to

be continuous quantities (measured dz). In this case we have T =
∫
z
TAz · l(z) dz

and
∫
z
l(z) dz = 1 for l(z) > 0 for all z.22

We state here without proof that the tensor setting which aggregates all restrictions

and relaxations just described is generally equivalent to Definition 18 for our blends,

specifically for use within the Blends Technique.

22 Recall, avoiding overfitting is one of the justifications to prefer tensors with small rank – at some
point, simplicity is better than spurious accuracy. One justification of our relaxation to allow infinite
rank (with cardinality equal to the reals) is that short functional descriptions are themselves “simple”
descriptions – as desired. Informally, this idea suggests replacing upper bounds on rank with upper
bounds on the structure of bases with (potentially) full rank; e.g., our finite-weight Quadratics-versus-
Uniforms dual blend (page 99) was sufficiently presented by just two points for each side of the dual
blend, with each point a description of weight-at-z/distribution-per-z/over-z-range.
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APPENDIX B

Contextual and Technical Notes

B.1. Distribution Naming Conventions, Including Exogenous Restrictions

We include here a technical note to describe naming schemes for distributions. First,

we give two approaches to naming to reflect two distinct approaches of analyses in this

thesis – one line from standard probabilistic approaches (which start by defining CDF and

PDF, etc.) and another line in which distributions are motivated by geometric properties

of their revenue curves. Second, we describe notation to represent modification of a base

distribution via standard operations (truncation and conditioning).

Within the setup of Theorem 5 in Section 3.2, we have a restriction to scale-invariant

mechanisms for which it was sufficient to consider only distributions that have been:

“standardized so that the single-agent optimal revenue defaults to maxq RF (q) = 1.”

Subsequently, Triangle and Quadrilateral revenue-curve distributions are described (Def-

inition 16 and Definition 17) with their names chosen specifically to reflect the geometry

of their revenue curves. In a similar line, Constant Negative Virtual Value (Definition 15)

are named from revenue curves.

All other distributions – largely employed to describe dual blends to inform prior inde-

pendent lower bounds per the Blends Technique – have motivation more generically from

distribution properties and will be “named” functions written in un-italicized lettering,

using the following scheme. These distribution names will:
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• use letters corresponding to the beginning letters of their standard names in the

math community (or natural attempts to copy such); and end with the last letter

‘d’ for “distribution;”

• use the first letter capitalized to reference the distribution itself as an object and

to represent its CDF; and use all letters lowercase to reference the PDF;

• use a lower-case-i prefix to identify an inverse-distribution (per Definition 23);

• e.g., these should clearly distinguish the exponential function exp(x) = ex =∑∞
k=0

xk

x!
; versus an exponential distribution ‘Exd1’ with PDF exd1(x) = e−x.

• an exception to this scheme is local definition and usage of a distribution ξ.

We give further notation to represent operations to modify a given distribution F to a

related form. For absolute clarity, we first explicitly explain these standard operations.

Truncation cuts off a distribution (either at the top or at the bottom) and re-allocates the

deleted probability measure of the discarded support to a point mass at the truncation

point. Conditioning cuts off a distribution and re-normalizes the densities in the remaining

domain by dividing by its remaining total probability measure.

Given a distribution F , we introduce the following formal notation. Everything

that follows applies to a distribution name F , its CDF F , and its PDF f . Denote a

bottom-conditioning and re-normalization of F at input a by
−→
F a, top-conditioning and

re-normalization at input b by
←−
F b, and both operations at a and b > a respectively by

←→
F a,b.1 If the distribution F instead becomes truncated on one side with a point mass

(rather than being conditioned and re-normalized), we accent the endpoint to indicate

1 The arrows, where present, indicate the deleted density’s direction of movement on the real line.
This includes the use of ‘left-right-arrow’ to indicate a both-top-and-bottom domain restriction which
“smushes” the density towards the middle of the original domain.
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the point mass, e.g.,
←→
F a,b′ represents conditioning above a and top-truncation at b. If

the original distribution is described by one or more parameters, e.g. Fz, these naturally

persist as subscripts, for example
←→
F a,b′

z .

With respect to modification of distributions with truncation or conditioning (as de-

fined in Appendix B.1), we have the following lemma to describe when distribution prop-

erties are necessarily preserved.

Lemma 20. Given a distribution F with the MHR property and/or the regularity

property in a revenue auction setting, its properties are preserved under modification to

−→
F a,
←−
F b′, and

←→
F a,b′.

Proof. The statement for
−→
F a follows directly from Fact 2. The statement for

←−
F b′

holds because calculations of hazard rate and virtual value (for revenue) for inputs less

than b are unaffected by top-truncation to a point mass at input b, and at input b the

hazard rate becomes ∞ and virtual value becomes b which are both automatically suf-

ficient to preserve the respective original properties. The statement for
←→
F a,b′ holds by

sequential application of the first two cases. �

Whether or not properties are preserved under top-conditioning with re-normalization

of the density (rather than moving to point mass as in Lemma 20) is dependent on the

distribution in question.

B.2. Ordinal and Inequality Properties of Re-weighted Fractions

(from page 84) Lemma 21 supports the proof of Lemma 10. It states that for a ROE

objective as used in Lemma 10, a point mass on an element of the mixture must achieve
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at least the value of the overall ratio. This statement is similar to a standard statement

from the probabilistic method. Lemma 21 is proved using this Fact 26.

Fact 26. Given a distribution F with PDF f : Ω → R+ and with expected value µF .

There exists an element ω+ ∈ Ω for which ω+ ≥ µF .

Lemma 21. Consider a domain Ω and two positive functions a : Ω → R+ and

b : Ω → R+. For every distribution γ over the elements of Ω, there exists ω+ in the

support of γ for which

(B.1)
a(ω+)

b(ω+)
≥ Eω∼γ [a(ω)]

Eω∼γ [b(ω)]

Proof. Set α = Eω∼γ [a(ω)] and β = Eω∼γ [b(ω)]. The first line uses these definitions

and the second line is a simple re-organization:

α

β
=

Eω∼γ [a(ω)]

Eω∼γ [b(ω)]

0 = Eω∼γ [β · a(ω)− α · b(ω)]

Applying the probabilistic method (explained immediately before this lemma) to the last

line, there must exist ω+ for which β · a(ω+) − α · b(ω+) ≥ 0 which is equivalent to

a(ω+)/b(ω+) ≥ α/β. �

(from page 163) The following fact is an application of Lemma 21 above which is

appropriate when the supremum over ratios can in fact be achieved as the maximum

by an element of the space Ω, which is true when Ω is a probability simplex over finite

elements. Specifically, it states that when a fraction has numerator and denominator
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composed of the same convex combination over positive ordered pairs (over the elements

of each pair respectively), the mininizing (alternatively, maximizing) convex combination

is a point mass on a single pair-element, and therefore, there exists an element-pair for

which the fractional ratio is at least as large (respectively, as small) as the weighted

fraction resulting from any convex combination.

Fact 27. Given a set of n pairs {(ai, bi)}i, with 0 < ai, bi ∈ R ∀ i, applying any

common probability distribution vector ξ (i.e., over a discrete, finite list of elements) and

taking expectation separately (over the indexes of vectors a,b) is an operation minimized

(or maximized) by selecting any index i which individually minimizes (respectively maxi-

mizes) the ratio:

(B.2) min
ξ∈∆({1,...,n})

(
[ξ]> · [a]

[ξ]> · [b]

)
= min

i

(
ai
bi

)

(from page 74) The following lemma supports proof of the Truncation Lemma 6 in Sec-

tion 3.4.

Lemma 22. Given a fractional quantity

Q =
κ · A′ +B′

κ · A′′ +B′′

for κ,A′, A′′, B′, B′′ > 0. Let A = A′/A′′ > 0 and B = B′/B′′ > 0, then the following

hold:

(1) if A ≥ B (respectively equal to), then A ≥ Q (respectively A = Q);

(2) if A ≥ B (respectively equal to, at most), then Q is increasing in κ (respectively

constant, decreasing).



266

Proof. Both statements are true by simple algebraic manipulation. Note we re-

arrange the assumption A ≥ B by B′ ≤ (A′/A′′) ·B′′. For (1):

Q =
κ · A′ +B′

κ · A′′ +B′′
≤
κ · A′ + A′

A′′
B′′

κ · A′′ +B′′

=
κ · A′A′′ + A′B′′

A′′(κ · A′′ +B′′)
=
A′(κ · A′′ +B′′)

A′′(κ · A′′ +B′′)
=
A′

A′′
= A

For (2), first we take the derivative of a function Q(κ) with respect to κ and work from

there, with the last inequality equivalent to the assumption A ≥ B:

(κ · A′′ +B′′)2 · ∂Q
∂κ

= (κ · A′′ +B′′) · A′ − (κ · A′ +B′) · A′′

= B′′ · A′ −B′ · A′′ ≥ 0 �

B.3. Confirmation of Total Weights for Quadratics-versus-Uniforms

(from page 101) The goal of this section is to prove cross-checks of finite-weight blends

math presented in Section 4.5. The total weight from the Quadratics side (oF ) was easily

shown to be 1+
∫ H

1
2
z
dz = 1+2 lnH from the defined weights opm and oQz. We confirm this

from the description of the correlated distribution (which matches from both Quadratics

and Uniforms):

∫ h

1

1

z2
· (z − 1) · 2dz + 2 · (h− 1) · 1

h
+ 1 =

∫ h

1

2

z
− 2

z2
dz +

3h− 2

h
=

∫ h

1

2

z
dz + 1

where the additive terms are respectively the correlated distribution’s totals of 2D prob-

ability mass, total 1D, and total 0D. To confirm this from the ωF weights on Uniforms,
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we have

[
1 +

∫ h

1

2

z
dz

]
−
∫ h

1

2(z − 1)2

z3
dz = 1 +

∫ h

1

4

z2
− 2

z3
dz = 4− 4

h
+

1

h2
=

(2h− 1)2

h2

so on the left, we start with the total weight (in the brackets) minus the integral
∫ h

1
ωUz;

and this is equal to ωpm on the right, which is confirmed as the point mass on ξ.

B.4. Quadratics-versus-Uniforms from Order-statistic Independence

(from page 125, page 128) We show how our main example of Quadratics-versus-

Uniforms fits into Theorem 13. We use the distribution-version of the theorem which

includes its Condition (4). Motivated by the Quadratics, let g1(x) = 1/x2 inducing G1(x) =

1/x. Motivated by the Uniforms, let g2(x) = 1 inducing G2(x) = x. Recall we assume

v1 ≥ v2 > 0. Therefore on the Uniforms side we have the following. Note that in fact,

these calculations apply for arbitrary upward-finite g2 because we can wait until the end

to substitute.

χ(z) =
g1(z)

g2(z)
=

1

z2 · g2(z)
, dχ(z) = d

(
1

z2 · g2(z)

)
= (−1) · 2g2(z) + z · g′2(z)

z3 · (g2(z))2
· dz

(where the evaluation of dχ(z) doesn’t matter but we write it for completeness). We

further have

ωg2(z) = (−1) · d
(

1

z2 · g2(z)

)
· (G2(z))2 =

(
2g2(z) + z · g′2(z)

z3 · (g2(z))2

)
· (G2(z))2 · dz ≥ 0
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with the final inequality included to illustrate that it is non-negative.2 From here we have

∫ ∞
v1

ωg2 ·
(
g2(v1)

G2(z)

)(
g2(v2)

G2(z)

)
=

∫ ∞
v1

(−1) · d
(

1

z2 · g2(z)

)
· (G2(z))2 ·

(
g2(v1)

G2(z)

)(
g2(v2)

G2(z)

)
= (g2(v1) · g2(v2)) ·

∫ ∞
v1

(−1) · d
(

1

z2 · g2(z)

)
= (g2(v1) · g2(v2))

[
1

z2 · g2(z)

]v1

∞
=
g2(v2)

v2
1

as desired, because g2(x) = 1 and g(v) = 1/v2
1 is correct for infinite-weight Quadratics-

versus-Uniforms dual blends of Section 4.5.1. On the Quadratics side, symmetric to the

analysis above, we have

ψ(z) =
g2(z)

g1(z)
= z2, dψ(z) = d

(
z2
)

= 2z · dz

ωg1(z) = d
(
z2
)
· (G1(z))2 = 2z ·

(
1

z

)2

· dz =
2

z
· dz ≥ 0

Finally we have

∫ v2

0

og1 ·
(
g1(v1)

G1(z)

)(
g1(v2)

G1(z)

)
=

∫ v2

0

d
(
z2
)
· (G1(z))2 ·

(
g1(v1)

G1(z)

)(
g1(v2)

G1(z)

)
=(g1(v1) · g2(v2)) ·

∫ v2

0

d(z2) = (g1(v1) · g2(v2))
[
z2
]v2

0
=

1

v2
1

· 1

v2
2

· v2
2 =

1

v2
1

B.5. Blends from Order-statistic Separability that are not Distributions

(from page 125) We give a simple second example which illustrates Theorem 13. (The

first example is immediately above in Appendix B.3.)

2 Here we can also already confirm that

ωg2 =
(

2g2(z)+z·g′2(z)
z3·(g2(z))2

)
· (G2(z))2 · dz =

(
2·1+z·0
z3·(1)2

)
· (z)2 · dz = 2/z · dz as we expect, given the example.
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The dual blends have one side as Quadratics and the other side as Cubics. In this case,

the Quadratics have downward-closed domain and can not be normalized to distributions

because the function G2(x) =
∫ z

0
1/y2 dy =∞. Without further comment, we write down

the evaluations of all necessary elements using the definitions of Theorem 13:

g1(x) =
1

x3
for x ∈ (0,∞) g2(x) =

1

x2
for x ∈ (0,∞)

g1,z(x) =
1

x3
for x ∈ [z,∞) g2,z(x) =

1

x2
for x ∈ (0, z]

ψ(z) = z for z ∈ (0,∞) χ(z) =
1

z
for z ∈ (0,∞)

og1(z) = 1 · dz for z ∈ (0,∞) ωg2(z) =
1

z2
· dz for z ∈ (0,∞)

∫ ∞
0

og1(z) · g1,z(v1) · g1,z(v2) =

∫ v2

0

og1(z) · g1(v1) · g1(v2) =

∫ v2

0

1 · 1

v3
1

· 1

v3
2

dz

=
1

v3
1

· 1

v2
2

= g1(v1) · g2(v2) = g(v)

=

∫ ∞
0

ωg2(z) · g2,z(v1) · g2,z(v2) =

∫ ∞
v1

ωg2(z) · g2(v1) · g2(v2) =

∫ ∞
v1

1

z2
· 1

v2
1

· 1

v2
2

dz

Note – this solution concept would fail if we assigned the Quadratics to be upward-closed

and the Cubics to be downward-closed because the monotonicity conditions of Theorem 13

would be violated.

B.6. Supporting Material for Exponentials-versus-Inverse-Exponentials

(from page 217) This section provides material to supplement Appendix A.3; the

presentation generally assumes its terms, assumptions, and context while only restating



270

the most important definitions here. There are two subsections. Appendix B.6.2 shows

that dual blends weights are equal in total and finite. Appendix B.6.3 shows that the

set of distributions composing the Exponentials side of the finite-weight dual blend are

MHR.

B.6.1. Top-truncated Exponentials Blend: Confirmation of Positive 2-D Mass

(from page 221) The goal of this section is to show that the standard 2-D blends mass

dv1dv2 which is common to both equation (A.16) and equation (A.23) is positive. Recalling

v1 ≥ v2 > 0 and q̄ ∈ (0, 1), starting from equation (A.16) without loss of generality, we

have

[
ln q̄

v1

· 1

v1 + v2

· q̄ · e
v2
v1

ln q̄

]
+

1

(v1 + v2)2

(
1− q̄ · e

v2
v1

ln q̄
)
> 0

m

v1 + q̄
v2
v1 · (q̄ ln q̄ · (v1 + v2 − q̄v1) > 0

⇑

v1 + q̄ · (q̄ ln q̄ · (v1 + v1)− q̄v1) > 0

m

1 + 2q̄2 ln q̄ − q̄2 > 0

Regarding the last line, the derivative of the left-hand side is 4q̄ ln q̄ which is negative for

all q̄ ∈ (0, 1). Therefore its worst-case q̄ is evaluated in the limit q̄ → 1. By observation,

we confirm that the left-hand side is 0 in this limit q̄ → 1 and positive for q̄ < 1. Note,
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it is not surprising that this blends mass goes to 0 as q̄ → 1, because q̄ represents the

“point mass at z” within every distribution of the blend: if q̄ = 1, then 2-D mass dv1dv2

does not exist.

B.6.2. Total Dual Blends Weight is Equal and Finite

(from page 232) We start by writing out the non-closed-form total weights from each side

of the finite-weight Exponentials-versus-Inverse-Exponentials dual blend of Appendix A.3.

Then we first we run a sanity cross-check that total weight is equal, in light of the technical

complexity of the analysis. The total weight of the Exponentials blend is

∫ h

1/h

ωz +

∫ ∞
h

ωz =

∫ h

1/h

1

z
(1− Exdβ(1/h))2 dz +

∫ ∞
h

1

z
(Exdβ(h)− Exdβ(1/h))2 dz

=

∫ h

1/h

e
2
zh

ln q̄

z
dz +

∫ ∞
h

(
e

1
zh

ln q̄ − ehz ln q̄
)2

z
dz(B.3)

and the total weight of the Inverse-Exponentials side of the blend is

∫ h

1/h

oz +

∫ 1/h

0

oz =

∫ h

1/h

1

z
(i-Exdβ(h))2 dz +

∫ 1/h

0

1

z
(i-Exdβ(h)− i-Exdβ(1/h))2 dz

=

∫ h

1/h

e
2z
h

ln q̄

z
dz +

∫ 1/h

0

(
e
z
h

ln q̄ − ehz ln q̄
)2

z
dz(B.4)

We show the two sides have equal weight through calculus-change-of-variables with each

of the additive terms matching up individually. Using y = ζ(z) = 1/z and −dy = 1/z2 · dz
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for both calculus substitutions, we get:

∫ h

1/h

e
2
zh

ln q̄

z
dz =

∫ h

1/h

z ·
(
e

2
zh

ln q̄
)
·
(
dz

z2

)

=

∫ 1/h

h

1

y
·
(
e

2y
h

ln q̄
)
· (−dy)

=

∫ h

1/h

e
2y
h

ln q̄

y
dy

and

∫ ∞
h

(
e

1
hz

ln q̄ − ehz ln q̄
)2

z
dz =

∫ ∞
h

z ·
(
e

1
hz

ln q̄ − e
h
z

ln q̄
)2

·
(
dz

z2

)
=

∫ 0

1/h

1

y
·
(
e
y
h

ln q̄ − ehy ln q̄
)2

· (−dy)

=

∫ 1/h

0

(
e
y
h

ln q̄ − ehy ln q̄
)2

y
dy

Therefore we confirm that total weight is equal. Now we show that total weight is finite.

We work from line (B.4) to show that it is finite for any h ∈ (1,∞) and q̄ ∈ (0, 1). First

we note that within the first additive integral term, the function e
2z
h

ln q̄/z is both strictly

positive and bounded above on the finite domain [1/h, h], so this term is finite. For the

second additive integral term in line (B.4), it is not obvious that the integrand is bounded.

In order to show it is bounded, we start by simplifying with

(B.5)

∫ 1/h

0

(
e
z
h

ln q̄ − ehz ln q̄
)2

z
dz <

∫ 1/h

0

e
z
h

ln q̄ − ehz ln q̄

z
dz
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which is true because
(
e
z
h

ln q̄ − ehz ln q̄
)
< 1 is the (positive) difference between the cdf

function for inverse-exponentials e
z
x

ln q evaluated at H and 1/H (with ln q negative; and

also the integrand is now confirmed to be positive everywhere).

It is sufficient to show the right-hand side of (B.5) is finite. We would like to additively

separate the integral into two integrals by “splitting” it with respect to the “minus sign.”

In order to do this, for technical reasons, we need to explicitly evaluate the lower endpoint

of the integral in the limit going to 0. If we do not undertake this technical adaption up

front, then subsequently otherwise, splitting the integral into its additive terms results in

both being divergent, and it is impossible to put them back together.3

∫ 1/h

0

e
z
h

ln q̄ − ehz ln q̄

z
dz = lim

δ→0

∫ 1/h

δ

e
z
h

ln q̄ − ehz ln q̄

z
dz

= lim
δ→0

[∫ 1/h

δ

e
z
h

ln q̄

z
dz −

∫ 1/h

δ

ehz ln q̄

z
dz

]
(B.6)

Now we use calculus-change-of-variables on each integral within the brackets. We set

y1 = ζ1(z) = − z ln q̄/h, dy1 = − ln q̄
h
· dz; and y2 = ζ2(z) = −hz ln q̄, dy2 = −h ln q̄ · dz.

(Note we use y1 and y2 for the respective substitutions, after which we change both

3 This specifically plays out when – after doing calculus-change-of-variables separately for each ad-
ditive integral term – the evaluations at the lower endpoint of each resulting integral will “cancel” when
they should not, leaving a negative quantity.
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variables of integration to a common y.) Continuing we get

line (B.6) = lim
δ→0

[∫ 1/h

δ

e
z
h

ln q̄

z
dz −

∫ 1/h

δ

ehz ln q̄

z
dz

]

= lim
δ→0

[∫ − ln q̄

h2

−δ ln q̄
h

e−y1

y1

dy1 −
∫ − ln q̄

−hδ ln q̄

e−y2

y2

dy2

]

= lim
δ→0

[∫ ∞
−δ ln q̄
h

e−y

y
dy −

∫ ∞
− ln q̄

h2

e−y

y
dy −

∫ ∞
−hδ ln q̄

e−y

y
dy +

∫ ∞
− ln q̄

e−y

y
dy

]

= lim
δ→0

[
−Ei

(
δ ln q̄

h

)
+ Ei

(
ln q̄

h2

)
+ Ei (hδ ln q̄)− Ei (ln q̄)

]
= lim

δ→0

[
E1

(
−δ ln q̄

h

)
− E1 (−hδ ln q̄)

]
+ Ei

(
ln q̄

h2

)
− Ei (ln q̄)(B.7)

where the “Ei” function is the (irreducible) “exponential-integral” function defined for

x 6= 0 by Ei(x) = −
∫∞
−x

e−y

y
dy. Further for x > 0, −Ei(−x) = E1(x), with “E1” the

(irreducible) exponential-integral function defined by E1(x) =
∫∞
x

e−y

y
dy for the domain

of positive reals and converging to finite real output for this domain.4

Although the exponential-integral E1(x) =
∫∞
x

e−y

y
dy itself is irreducible, we can ana-

lyze the quantity using its Taylor series. Starting with e−y, we get:

e−y =
∞∑
k=0

(−y)k

k!
= 1− y +

y2

2!
− y3

3!
+
y4

4!
− . . .

e−y

y
=

1

y
− 1 +

y

2!
− y2

3!
+
y3

4!
− . . .∫

e−y

y
dy = C + ln y − y +

y2

2 · 2!
− y3

3 · 3!
+

y4

4 · 4!
− . . .

4 The function E1 as a function of z is actually defined for the complex numbers (other than the
non-positive reals) and requires |Arg(z)| < π but we simplify the identity here to the reals. For being
irreducible, this function is generally well-understood.
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∫ ∞
x

e−y

y
dy = −γEM − lnx+ x− x2

2 · 2!
+

x3

3 · 3!
− x4

4 · 4!
− . . .(B.8)

E1(x) =

∫ ∞
x

e−y

y
dy = −γEM − lnx−

∞∑
k=1

(−x)k

k · k!
(B.9)

where it is known that the integral’s constant term C is the Euler-Mascheroni constant

γEM ≈ 0.57721 when the integral endpoints are x and∞ (Abramowitz and Stegun, 1964).5

We substitute the equation of line (B.9) twice into line (B.7) to get

lim
δ→0

[
E1

(
−δ ln q̄

h

)
− E1 (−hδ ln q̄)

]
+ Ei

(
ln q̄

h2

)
− Ei (ln q̄)

= lim
δ→0

[(
−γEM − ln

(
−δ ln q̄

h

)
−
∞∑
k=1

(
−
(−δ ln q̄

h

))k
k · k!

)

−

(
−γEM − ln (−hδ ln q̄)−

∞∑
k=1

(− (−hδ ln q̄))k

k · k!

)]
+ Ei

(
ln q̄

h2

)
− Ei (ln q̄)

= lim
δ→0

[
ln

(
−hδ ln q̄
−δ ln q̄
h

)
−

(
∞∑
k=1

(
δ ln q̄
h

)k
k · k!

)
+

(
∞∑
k=1

(hδ ln q̄)k

k · k!

)]
+ Ei

(
ln q̄

h2

)
− Ei (ln q̄)

= ln(h2) + Ei

(
ln q̄

h2

)
− Ei (ln q̄)

(B.10)

where the last step cancels within the ln-term such that δ drops completely, and then it

can trivially evaluate the limit point of δ = 0. For every fixed h ∈ (1,∞) and q̄ ∈ (0, 1),

the total in the last line (B.10) is indeed finite. However the sum of the second and third

“Ei” terms is negative. Thus as a last step, we confirm that the total is positive as a

5 Note where the signs flipped after specific endpoints of the integral are added, this is because x
is the lower endpoint, e.g.,

∫∞
x
f(x)dx = −F (x) + F (∞). Line (B.9) is the standard identity of the E1

function (Abramowitz and Stegun, 1964).
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sanity check.

line (B.10) = ln(h2) + Ei

(
ln q̄

h2

)
− Ei (ln q̄)

= ln(h2)− E1

(
− ln q̄

h2

)
+ E1 (− ln q̄)

= ln(h2)−

[
−γEM − ln

(
− ln q̄

h2

)
−
∞∑
k=1

(
ln q̄
h2

)k
k · k!

]
+

[
−γEM − ln (− ln q̄)−

∞∑
k=1

(ln q̄)k

k · k!

]

=
∞∑
k=1

(
ln q̄
h2

)k
k · k!

−
∞∑
k=1

(ln q̄)k

k · k!

=
∞∑
k=1

(−1) · (ln q̄)k ·
(
1− 1

h2

)k
k · k!

=
∑

odd k≥1

[(
(− ln q̄) · (ln q̄)k−1

(
1− 1

h2

)k
k · k!

)
−

(
(ln q̄)2 · (ln q̄)k−1

(
1− 1

h2

)k+1

(k + 1) · (k + 1)!

)]

=
∑

odd k≥1

[(
(− ln q̄) · (ln q̄)k−1

(
1− 1

h2

)k
k · k!

)
·

(
1−

(− ln q̄)
(
1− 1

h2

)
(k+1)2

k

)]
> 0

for which the terms of the last summation are definitively positive for every k by inspection

(for every fixed h ∈ (1,∞) and q̄ ∈ (0, 1)).

B.6.3. All Modified-Exponentials with positive weight ωz are MHR

(from page 233) The goal of this section is to prove Proposition 6, i.e., to show that

the distributions that compose the finite-weight Exponentials blend of Appendix A.3 are

MHR, taking into consideration truncation and conditioning. An exhaustive description

of these distributions is copied here as follows. As previously stated: for every z ∈ [1/h, h],
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we include the bottom-conditioned, top-truncated Exponential distribution

←→
exd

1/h,z′

β (x) =
− ln q̄
z
· exz ln q̄

1− Exdβ(1/h)
on [1/h, z),

←→
exd

1/h,z′

β (z) =
q̄

1− Exdβ(1/h)
point mass

and for every z > h (with β = − ln q̄/z), we include the doubly-conditioned distribution

←→
exd

1/h,h
β (x) =

− ln q̄
z
· exz ln q̄

Exdβ(h)− Exdβ(1/h)
on [1/h, h]

As our starting point, the base distributions Exdβ are all MHR. For the first of these cases

– for every
←→
exd

1/h,z′

β – that these distributions are MHR follows directly from Lemma 20,

restated here for convenience.

Lemma 20. Given a distribution F with the MHR property and/or the regularity

property in a revenue auction setting, its properties are preserved under modification to

−→
F a,
←−
F b′, and

←→
F a,b′.

The second case – for every
←→
exd

1/h,h
β – is more complicated because conditioning given

an upper bound (in this case h) is not guaranteed to maintain the MHR property for

arbitrary base distribution. That the distributions
←→
exd

1/h,h
β are MHR follows as a special

case of Lemma 23 next.

Lemma 23. Let F be an arbitrary probability distribution with the following properties:

(1) F is MHR; and (2) F has non-increasing density, i.e., f as the PDF of F is non-

increasing on its domain. Then for a, b > a in the domain of F , the doubly-conditioned

distribution
←→
F a,b is also MHR.
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Proof. For the proof, it is sufficient to show that the distribution
←−
F b remains MHR

after top-conditioning. It is sufficient because if this sub-claim is true, then sequentially

applying the bottom-conditioning (at a) rule of Lemma 20 to
←−
F b completes the proof.

Given top-conditioning, we need to re-normalize the density by dividing by F (b), which

is the remaining measure of density. This same re-normalization factor applies to both

the PDF f and CDF F of the original distribution. The hazard rate function of the newly

top-conditioned distribution
←−
F b is given by

λ
←−
F b(x) =

f(x)
F (b)

1− F (x)
F (b)

=
f(x)

F (b)− F (x)

and the derivative is

dλ
←−
F b

dx
(x) =

(F (b)− F (x)) (f ′(x))− (f(x)) (−f(x))

(F (b)− F (x))2

=
((F (b)− 1) + (1− F (x))) (f ′(x))− (f(x)) (−f(x))

(F (b)− F (x))2

≥ (F (b)− 1) (f ′(x))

(F (b)− F (x))2 ≥ 0

where the the third line follows by assumption that f is MHR and the conclusion that

the final quantity is positive follows by assumption that f ′ ≤ 0. �

Proposition 6. For every fixed q̄ ∈ (0, 1) and h > 1, all distributions of the types

←→
exd

1/h,z′

β (of equation (A.25)) and
←→
exd

1/h,h
β (of equation (A.26)) are MHR. Therefore they

are all elements of the class of distributions Fmhr and are accessible to a prior independent

design problem’s adversary when restricted to Fmhr.

Proof. As already discussed, the proof follows from Lemma 20 and Lemma 23. �
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B.7. Continuous Density Calculations for Double-sided CNVV Blends

(from page 239 and page 241) The goal of this section is to provide the technical

calculations to show that the dual-blends of Appendix A.4 match up in terms of 2-D

density, specifically, the integral in line (A.42) on one side of the dual blend is equal to

the integral in line (A.47) on the other side. Explicitly, the objective is to show

∫ ∞
v1

1

z
· q̄(1− q̄)z

((1− q̄)v1 + q̄z)2
· q̄(1− q̄)z

((1− q̄)v2 + q̄z)2
dz(B.11)

=

∫ v2

0

1

z
· p̄(1− p̄)z

((1− p̄) z + p̄v1)2 ·
p̄(1− p̄)z

((1− p̄) z + p̄v2)2 dz

Elegantly, if we were to replace the left-hand side with r = 1−q̄ we would see exact symme-

try of the functions to be integrated, but with different evaluation endpoints. However we

deal with them as-is. First we evaluate each side of this equality to show that the result-

ing densities are the same, with explicit statement of each anti-derivative: Gω
2D and Go

2D.

Afterwards, for technical completeness, we calculate the derivative of the anti-derivative

Gω
2D (equation (B.12)) as used on the ωz-side, in order to confirm its correctness. Write

the functional form of the anti-derivative of the integrand of the left-hand side as

Gω
2D(z | v) =

1

(v1 − v2)3 ·
[

(1− q̄)v1(v1 − v2)

((1− q̄)v1 + q̄z)
(B.12)

+
(1− q̄)v2(v1 − v2)

((1− q̄)v2 + q̄z)
+ (v1 + v2) · ln

(
(1− q̄)v2 + q̄z

(1− q̄)v1 + q̄z

)]
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To simplify “in advance,” we multiply equation (B.11) through by constant (v1 − v2)3.

Then calculations to evaluate the left-hand side integral are given by

(v1 − v2)3 ·
∫ ∞
v1

1

z
· q̄(1− q̄)z

((1− q̄)v1 + q̄z)2
· q̄(1− q̄)z

((1− q̄)v2 + q̄z)2
dz

= (v1 − v2)3 ·
(

lim
δ→∞

Gω
2D(δ)−Gω

2D(v1)
)

=0−
(

(1− q̄)(v1 − v2) +
(1− q̄)v2(v1 − v2)

((1− q̄)v2 + q̄v1)
+ (v1 + v2) ln

(
(1− q̄)v2 + q̄v1

v1

))
(B.13)

Write the functional form of the anti-derivative of the integrand of the right-hand side as

Go
2D(z | v) =

1

(v1 − v2)3
·
[

p̄v1(v1 − v2)

(p̄v1 + (1− p̄)z)
(B.14)

+
p̄v2(v1 − v2)

(p̄v2 + (1− p̄)z)
+ (v1 + v2) · ln

(
p̄v2 + (1− p̄)z
pov1 + (1− p̄)z

)]

Again we have pre-multiplication equation (B.11) through by constant (v1 − v2)3. Then

calculations to evaluate the left-hand side integral are given by

(v1 − v2)3 ·
∫ v2

0

1

z
· p̄(1− p̄)z

((1− p̄) z + p̄v1)2 ·
p̄(1− p̄)z

((1− p̄) z + p̄v2)2 dz

= (v1 − v2)3 · (Go
2D(v2)−Go

2D(0))

=

(
p̄v1(v1 − v2)

((1− p̄)v2 + p̄v1)
+ p̄(v1 − v2) + (v1 + v2) ln

(
v2

((1− p̄)v2 + p̄v1)

))
−
(

2(v1 − v2) + (v1 + v2) ln

(
v2

v1

))
=

(
p̄v1(v1 − v2)

((1− p̄)v2 + v1)
− (1− p̄)(v1 − v2) + (v1 + v2) ln

(
v1

((1− p̄)v2 + p̄v1)

))
−
(

(v1 − v2) · ((1− p̄)v2 + v1)

((1− p̄)v2 + v1)

)
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=

(
−(1− p̄)v2(v1 − v2)

((1− p̄)v2 + v1)
− (1− p̄)(v1 − v2) + (v1 + v2) ln

(
v1

((1− p̄)v2 + p̄v1)

))
(B.15)

which exactly matches equation (B.12). Lastly, we calculate the derivative of Gω
2D to

confirm that it recovers the ωz-side integrand of line (B.11). Again ignoring the constant

of (v1 − v2)3 (and accounting for it later), starting from
dGω2D
dz

, we get

d

dz

([
(1− q̄)v1(v1 − v2)

((1− q̄)v1 + q̄z)
+

(1− q̄)v2(v1 − v2)

((1− q̄)v2 + q̄z)
+ (v1 + v2) · ln

(
(1− q̄)v2 + q̄z

(1− q̄)v1 + q̄z

)])
= −(1− q̄)v1(v1 − v2)q̄

((1− q̄)v1 + q̄z)2 −
(1− q̄)v2(v1 − v2)q̄

((1− q̄)v2 + q̄z)2

+ (v1 + v2)

[
q̄

((1− q̄)v2 + q̄z)
− q̄

(1− q̄)v1 + q̄z)

]
=

(
−q̄(1− q̄)(v1 − v2)

[
v1 ((1− q̄)v2 + q̄z)2 + v2 ((1− q̄)v1 + q̄z)2])

((1− q̄)v1 + q̄z)2 ((1− q̄)v2 + q̄z)2

+
(q̄(v1 + v2) ((1− q̄)v1 + q̄z) ((1− q̄)v2 + q̄z) [(1− q̄)v1 − (1− q̄)v2])

((1− q̄)v1 + q̄z)2 ((1− q̄)v2 + q̄z)2

=
q̄(1− q̄)(v1 − v2) (−v1(1− q̄)2v2

2 − v2(1− q̄)2v2
1 − 4q̄(1− q̄)v1v2z − (v1 + v2) [q̄2z2])

((1− q̄)v1 + q̄z)2 ((1− q̄)v2 + q̄z)2

+
q̄(1− q̄)(v1 − v2) ((v1 + v2) [(1− q̄)2v1v2 + q̄(1− q̄)z(v1 + v2) + q̄2z2])

((1− q̄)v1 + q̄z)2 ((1− q̄)v2 + q̄z)2

=
q̄(1− q̄)(v1 − v2) (−4q̄(1− q̄)v1v2z + (v1 + v2) [q̄(1− q̄)z(v1 + v2)])

((1− q̄)v1 + q̄z)2 ((1− q̄)v2 + q̄z)2

=
q̄2(1− q̄)2(v1 − v2) (−4v1v2z + z [v2

1 + 2v1v2 + v2
2])

((1− q̄)v1 + q̄z)2 ((1− q̄)v2 + q̄z)2

=
q̄2(1− q̄)2(v1 − v2) (z(v1 − v2)2)

((1− q̄)v1 + q̄z)2 ((1− q̄)v2 + q̄z)2 = (v1 − v2)3 · q̄2(1− q̄)2z

((1− q̄)v1 + q̄z)2 ((1− q̄)v2 + q̄z)2

which indeed is the desired integrand form (after adjusting the constant).
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THE SENTINEL
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