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Abstract.
GRID computing uses heterogeneous resources to solve large-scale computational problems. With

increasing dataset sizes in data-intensive GRID applications reaching terabytes and even petabytes,
high-performance I/O is emerging as an important research area. We discuss much of the current
status of research in GRID I/O. We also describe our research ideas for handling noncontiguous I/O
access, consistency, caching, fault-tolerance and improved performance.
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1. Introduction. With virtually limitless resources, GRID computing has the
potential to solve large-scale scientific problems that eclipse even applications that
run on the largest computing clusters today. The architecture of a computing GRID
simply consists of a heterogeneous network infrastructure connecting heterogeneous
machines presumed to be larger than most clusters of the future. Most GRID envi-
ronments consist of clusters-of-clusters (TeraGRID) or harnessing the compute power
of ordinary users (Seti@home) across the Internet.

There are numerous research projects involved in GRID I/O. We discuss many
of them in detail in this book chapter. Some of the GRID I/O research projects can
be classified as the placement of middleware code (most commonly data filtering and
data queries) in the GRID. This includes Armada [1], Grid Datafarm [2], DataCutter
[3], and Mocha [4]. Creating a GRID based MPI and MPI-IO implementation has
been the focus of several projects including [5, 6, 7]. Other GRID I/O work includes
GridFTP and data replication.

Much of the previous and current work tackles the challenges of how and where to
place executable code in the GRID and how to define GRID computing communities.
Replication techniques are another way of moving data closer to the computation.
Deciding where and how much code to deploy near data sources reduces network
traffic. The work on MPI for GRID computing is mainly designed to allow the existing
MPI based scientific applications to leverage the GRID.

GRID applications today generate incredibly large datasets. Some examples of
these applications include climate modeling, simulation of physical phenomena, visu-
alization tools, etc. I/O is already the slowest computational component by several
orders of magnitude when compared to memory or processor speed. In order to
effectively access and manipulate their large datasets, GRID applications must use
parallel I/O. Multiple clients and multiple I/O access points are essential for higher
bandwidth.

Most scientific applications have complex data structures that result in noncon-
tiguous I/O access patterns. While some applications may directly use MPI derived
datatypes, it is more common for application designers to unknowingly use MPI-IO
through higher level application I/O libraries such as HDF4, HDF5, NetCDF, or
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Figure 1. File striping versus file fragments.

pNetCDF. These libraries issue file system operations most commonly through MPI-
IO and we describe the needs and benefits of having high-performance noncontiguous
I/O interfaces at the file system level.

While previous and current GRID I/O research will help reduce network traffic
and make existing APIs work in the GRID, they do not fully address some of the most
difficult I/O topics for GRID computing: noncontiguous I/O, caching, consistency,
and fault-tolerance. We provide our ideas on these topics for improving large-scale
I/O that are based on the Versioning Parallel File System (VPFS), file domains, and
Direct Access Cache (DAChe).

In this chapter we begin by examining some of the other GRID I/O projects in
Section 2. We describe example GRID applications and their I/O profiles in Section 3.
In Section 4, we discuss commonly used file formats for scientific computing (HDF and
NetCDF) and their associated noncontiguous data access patterns. Section 5 explains
the different methods for accessing noncontiguous data and possible improvements for
GRID I/O. The next two sections are a preview of the research topics we are currently
pursuing. Section 6 describes a next generation file system called the Versioning
Parallel File System that will address issues of fault-tolerance, atomicity, and fast
noncontiguous I/O for scientific datasets. Section 7 examines issues of caching and
consistency for future high-performance I/O. Finally, Section 8 concludes this book
chapter.

2. Current GRID I/O Research. Grid Datafarm (Gfarm) provides a global
parallel file system designed for grids of clusters that span over 10,000 nodes [2]. The
Gfarm model specifically targets applications where records or objects are analyzed
independently. With its file distribution and process scheduling techniques, it achieves
scalable bandwidth by keeping processes and their associated file data near each other.
Gfarm is comprised of three major components: the Gfarm file system, the Gfarm
process scheduler, and the Gfarm parallel I/O API. Gfarm file system nodes and
Gfarm metadata nodes together make up the Gfarm file system.

One of the major differences between Gfarm and a traditional distributed file
system is that Gfarm file system nodes act as both I/O nodes and compute nodes.
Computation is moved to the data in the Gfarm resource allocation scheme. Gfarm
is a parallel file system with files partitioned into file fragments. Traditional parallel
file systems [8, 9, 10] stripe files across I/O access points in a round-robin manner
similar to hardware RAID techniques as shown in Figure 1. File fragments can be of
arbitrary size and can be stored on any node. If an I/O operation does not exceed
the size of a file fragment and only a single replica of the relevant file fragment exists,
the I/O operation can only attain the maximum bandwidth of a single I/O server.
However, file fragments can provide an easier data structure for replication on other
I/O access points since they are statically defined in size.
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In order to move data closer to computation, Gfarm files can be replicated on
additional Gfarm file system nodes. A Gfarm file is write-once. If another write occurs
to the same file all other replicas are invalidated. Gfarm follows a similar consistency
model to AFS where updated file content can be accessed only by a process that opens
the file after a writing process closes it [11].

The Armada parallel file system [1] is a flexible file system that allows application
supplied code to run on compute nodes, I/O nodes, and/or intermediate nodes. The
core file system is very basic. The only interfaces provided on data servers are open,
close, read, and write. Remote datasets are accessed through a network of distributed
application objects or ships that provide some functionality to define the behavior and
structure of the overall system. Armada uses blueprints to describe an arrangement
of ships on the network. Armada requires a two-step process in accessing file data.
First, a programmer must define a blueprint that describes the arrangement of ships
in the network. Secondly, the ships are deployed into the network. There are four
classes of ships in Armada: structural ships (describes data organization and layout),
optimization ships (improve performance), filter ships (manipulate data) and interface
ships (provide semantic meaning for data). Much of the work in Armada deals with
the graph partitioning problem of laying out ships effectively in the GRID.

MOCHA is a self-extensible database middleware system for interconnecting dis-
tributed data sources [4]. It is self-extensible in that new application specific func-
tionality can be added on demand. MOCHA (Middleware Based On a Code Shipping
Architecture) is implemented in Java and allows Java bytecode to be shipped to re-
mote data sources. While any code can be run on the data sources through the
extensible MOCHA middleware, the main goal of MOCHA is to place data-reducing
operators at the data sources and data-inflating operators near the client, thereby sig-
nificantly reducing network bandwidth needs between the client and the data source.
A prototype of MOCHA was able to substantially improve query performance by a
factor of 4:1 in the case of aggregates and 3:1 in the case of projections, predicates,
and distributed joins when evaluated on the Sun Ultra SPARC platform [4].

DataCutter is a middleware infrastructure that enables processing of scientific
datasets stored in archival storage systems across a wide-area network. As a mid-
dleware layer, DataCutter uses multidimensional range queries to create subsets of
datasets. It can also perform application specific aggregation on scientific datasets
stored in an archival storage system.

The application processing structure is decomposed into a set of processes called
filters that can be placed anywhere on the GRID, but are usually placed close to the
archival storage server. While data processing at the server is useful for eliminating
most of the network traffic, servers can be overloaded by several processes simultane-
ously filtering on the server. This is why DataCutter is purposely flexible enough to
place these filters at appropriate places in the GRID.

The Globus Project aims to develop a basic software infrastructure for build-
ing grids. The toolkit implements services for security, resource location, resource
management, etc. The Globus Data Grid architecture [12] provides a scalable infras-
tructure for managing storage resources and data in the GRID. A replica selection
service has been developed for the Globus Data Grid. GridFTP, a part of the Globus
data management services can access data in parallel, providing a high-performance
means for transferring datasets from a remote data center to a local site.

Much of the other current GRID I/O research involves helping MPI applications
run on the GRID. MPICH-G2 [7] is a GRID-enabled implementation of MPI. It
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extends the Argonne MPICH implementation of MPI by using the Globus Toolkit for
authentication, authorization, resource allocation, executable staging, I/O, process
creation, monitoring, and control. In [6], the authors implement a GridFTP driver
for ROMIO (Argonne’s implementation of the MPI-IO interface).

3. GRID Applications. In order to motivate a need for high-performance I/O
in the GRID, we begin by describing the datasets created and manipulated by GRID
applications. In the final two applications (ASC FLASH and tile display) we describe
their access patterns in detail.

Global climate modeling is a specific group of applications that characterize GRID
computing from distributed data collection to modeling and collaboration. The Earth
System Grid (ESG) interdisciplinary project is aimed at creating a virtual collabora-
tive environment linking distributed centers, users, models, and data [13]. The largest
challenge that such a research project faces is that increasingly complex datasets over-
whelm current storage technologies. Simulations of the Earth-system components that
are high resolution and contain nearly continuous time steps easily generate petabytes
of data. Manipulating, archiving, post-processing, retrieving, and visualizing these
datasets is difficult for current I/O technology. By the end of 2004, approximately
100 terabytes of Parallel Climate Model data had been collected and distributed across
several data centers [14]. Accessing this data fast enough for useful post-processing
applications is a difficult challenge.

IPARS (Integrated Parallel Accurate Reservoir Simulation) [15] is a software sys-
tem for large-scale oil reservoir simulation studies. This code is highly data dependent,
meaning that the next iterative set of simulations depends on the analysis of previous
simulations. In this paper [16], Saltz et al. generated data from a black-oil (three
phase) flow problem on a grid with 9,000 cells. At every time step, 17 variables are
output from each node in the grid. 10,000 time steps make a realization of about
6.9 gigabytes. Accumulating 207 realizations from 18 geostatistical modes and 4 well
configuration/production scenarios generates an overall dataset size close to 1.5 ter-
abytes. In order to obtain more precision (adding additional cells, more time steps,
or more variables), the overall dataset size could easily scale to hundreds of terabytes.
A variety of post-processing operations including the determination of the location
and size of regions of bypassed oil, the finding of the representative realization, or the
visualization of any of these results requires efficient GRID I/O technologies.

The Advanced Simulation and Computing (ASC) FLASH code is an application
designed to simulate matter accreted on the surfaces of compact stars, nuclear igni-
tion of the accumulated material, and the subsequent evolution of the star’s interior,
surface, and exterior. It incorporates the physics of hydrodynamics, nuclear physics,
gravity, cosmology, and particle interaction. The ASC FLASH code also provides
tools for setup, Adaptive Mesh Refinement (AMR) usage, parallel I/O through HDF5
or pNetCDF, profiling, and runtime and post-process visualization. AMR is a popular
technique for describing scientific datasets due to its ability to place high resolution
grids where scientists need them [17]. The ASC FLASH application has been shown
to scale to thousands of processors and contains over a half million lines of code.

The ASC FLASH code is heavily I/O intensive according to [18]. A normal pro-
duction run will create over half a terabyte of data divided between plot files and
checkpoint files. Since these I/O requirements were determined from old data, addi-
tional precision or larger-scale simulation will easily push I/O needs to hundreds of
terabytes or petabytes. As the ASC FLASH application is run on larger-scale ma-
chines or across the GRID, it will need to write checkpoints more often. A checkpoint
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Figure 2. ASC FLASH memory block.

should generally be written out from an application in an interval that is at least less
than the system failure interval to make progress. Larger-scale GRIDs or clusters-of-
clusters further decrease the mean time to failure due to less reliable networks and
the increasing number of machines used.

In order to describe how noncontiguous I/O accesses occur, we explain the data
structures of the ASC FLASH code. The ASC FLASH data structures are stored in
three-dimensional blocks that have 24 variables. These three-dimensional blocks are
surrounded by guard cells in each of the three dimensions. Figure 2 shows a logical
view of the memory structure. Each process keeps track of 50-100 blocks (depending
on processor workload). When performing a checkpoint operation, the guard cells are
not saved. The data is stored variable-first, which results in a noncontiguous access
pattern.

High resolution visualization of data is an important analysis tool for many sci-
entific datasets and can be far removed from the point or points of data generation.

Tile displays (using multiple displays) are commonly used to cost-effectively in-
crease viewing resolution. Numerous companies and research institutes (Argonne
National Laboratory, Sandia National Laboratory, etc.) use this technique. The I/O
access pattern presented by such an application breaks up a movie frame into tiles
that a processor outputs to a display as in Figure 3. It is worth noting that the over-
lapping pixels are sometimes used for seamless blending in projector environments. In
our example, a 3 x 2 tile display, each frame consists of approximately 10 megabytes.
If we assume 30 frames per second, we need 300 megabytes per second of I/O band-
width to supply the tiles to the display. Larger tile displays will require additional
I/O requirements.

4. Scientific File Formats. Many of the applications listed above require com-
plex data structures. The two most common scientific file formats are NetCDF and
HDF. NetCDF is a standard library interface to data access functions for storing
and retrieving array data [19] [20]. pNetCDF is a parallel interface for NetCDF
datasets [21]. HDF4 and HDF5 are the most popular versions of HDF. They both
store multi-dimensional arrays together with ancillary data in portable, self-describing
file formats. Similar to NetCDF, HDF4 supports a serial interface. HDF5, however,
features a redesigned API and includes parallel I/O though MPI-IO. In this section
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we discuss how and why their data layouts affect high-performance I/O for scientific
applications in the GRID.

The NetCDF dataset is array-oriented. Its basic format is a file header followed
by an organized data section. The file header contains the metadata for dimensions,
attributes, and variables. The data part consists of fixed size data (containing the
data for variables that don’t have an unlimited dimension) and followed by record
data (containing the data records for variables that have an unlimited dimension). For
variable-sized arrays, NetCDF makes a record of an array as a subarray comprising
all fixed dimensions. The records are interleaved and can grow in the unlimited
dimension. The physical data layout is shown in Figure 4. The data is represented in
the XDR format for machine-independent use. NetCDF arrays exhibit a great deal
of regularity and can be described concisely to the underlying MPI-IO layer.

HDF5 is both a general purpose library and a file format for storing scientific
data [22]. It uses a tree-like file structure (similar to the UNIX file format) to store
data. Super blocks, header blocks, data blocks, extended header blocks and extended
data blocks are irregularly positioned throughout the file. This hierarchical approach
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Figure 5. Example POSIX I/O call. The traditional POSIX interfaces for this access

pattern uses five file system calls, one per contiguous region.

affords some additional flexibility relative to the NetCDF file format. One example of
this flexibility is array growth in multiple dimensions. However, from the perspective
of MPI-IO, HDF5 data accesses will likely be irregular, unlike NetCDF.

High level application I/O libraries like NetCDF or HDF provide a simple and
rich I/O interface for programmers to use when creating scientific applications. The
I/O access patterns that result from using these high level libraries are usually non-
contiguous in nature. This has various implications when considered in a large-scale
environment.

5. Noncontiguous I/O. The scientific applications described in Section 3 have
access patterns that are noncontiguous. In most scientific applications these non-
contiguous access patterns display a high degree of regularity, (such as the FLASH
memory structure and the tile display code). Due to bandwidth requirements, nearly
all such applications will access data through a parallel file system such as the Par-
allel Virtual File System (PVFS) [10], the General Parallel File System (GPFS) [8],
Lustre [23], etc. Numerous studies have shown that I/O for large-scale applications
is dominated by numerous noncontiguous I/O requests [24, 25, 26].

Application I/O begins with logical data structures and I/O access patterns that
are mapped into high level interfaces such as HDF or NetCDF, which then pass
through lower level interfaces such as MPI-IO before finally accessing the file system.
As access patterns move down through these layers, it is often the case that they
progressively become more generic. When they are finally translated into file system
calls, these complex access patterns typically become a set of individual UNIX read()
or write() file system calls. Recent work on noncontiguous I/O has developed a variety
of methods for handling noncontiguous access patterns in efficient ways.

The most naive method for implementing noncontiguous I/O is through the
POSIX I/O interface (using UNIX read()/write() file system calls). It is described in
Section 5.1. Still only using the POSIX I/O interface, data sieving I/O (Section 5.2)
and collective I/O (Section 5.3) methods were created for better performance. Recent
work suggests that new file system interfaces (list I/O in Section 5.4 and datatype I/O
in Section 5.5) result in much needed performance improvements for noncontiguous
I/O in many scientific applications. In Section 5.6 we discuss the use of these file
system techniques in GRID applications.

5.1. POSIX I/O. Most parallel file systems implement the POSIX I/O inter-
face. This interface offers contiguous data access only. To support noncontiguous
access with POSIX I/O one must break the noncontiguous access pattern into a se-
quence of contiguous I/O operations. POSIX I/O can service noncontiguous access
patterns in this manner, however there can significant overhead in the number of I/O
requests that must be processed by the underlying file system. Because operations
in parallel file systems often require data movement over a network, latency for I/O
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Figure 6. Example data sieving I/O call. Data is first read as a large contiguous file

region into a buffer. Data movement is subsequently performed between memory and the

buffer. For writes, the buffer is flushed back to disk.

operations can be high. For this reason, performing many small I/O operations to
service a single noncontiguous access is very inefficient. An example of the POSIX
I/O interface used for noncontiguous I/O access is shown in Figure 5. Fortunately for
users of these file systems, two important optimizations have been devised for more
efficiently performing noncontiguous I/O using only POSIX I/O calls: data sieving
and two-phase I/O.

5.2. Data Sieving I/O. One of the most significant disadvantages of POSIX
I/O is that each of the individual POSIX I/O operations incurs significant processing
overhead independent of the size of data accessed. An innovative approach called data
sieving solves that problem within the limited boundaries of the POSIX I/O interface
by using one large contiguous I/O operation to access several requested file regions.
By reading a large contiguous region from file into a temporary memory buffer and
then performing the user requested data movement operations on the necessary file
regions in the buffer instead of directly in the file, a single I/O request can service the
needs of a file access pattern that contained multiple file regions as shown in Figure
6. In the read case, nothing further is required, but in the write case, the entire buffer
must be written back to disk. Not only does this approach reduce the number of
I/O requests required to serve a noncontiguous I/O access pattern, but it also takes
advantage of the inherent mechanical properties of the underlying disk (larger I/O
operations attain higher bandwidth). While this method helps to fix the numerous
I/O shortcomings of the POSIX I/O interface, it also introduces new overheads. While
accessing an encompassing contiguous file region reduces the I/O requests necessary,
it forces the I/O system to access data that is not desired. Accessing wasted data
causes two problems. It introduces higher latency from accessing useless data and
also requires file regions to be locked in the write case due to re-writing unwanted
(possibly stale) data to the I/O system. The wasted data accessed once during reads
and twice during writes can have a significant impact on performance. If the I/O
access pattern exhibits small amounts of wasted file data, data sieving can greatly
improve performance. However, if the I/O access pattern is sparse in file, performance
can actually fall well below that of POSIX I/O because of the time spent accessing
unnecessary data on disk and synchronization overhead.

5.3. Two-Phase I/O. Interfaces such as MPI-IO retain a great deal of infor-
mation about how the application as a whole is accessing storage. One example of
this is the collective I/O calls that are part of the MPI-IO API. Collective I/O calls
allow applications to tell the MPI-IO library not only that each process is performing
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accessed in larger file I/O operations with the two-phase I/O method.

I/O, but that these I/O operations are part of a larger whole. This information pro-
vides additional opportunities for optimization not available to application processes
performing independent operations. One example of a collective I/O optimization is
the two-phase method from [27]. The two-phase method uses both POSIX I/O and
data sieving. The two-phase method identifies a subset of the application processes
that will actually perform I/O; these processes are called aggregators. Each aggre-
gator is responsible for I/O to a specific and disjoint portion of the file. ROMIO
calculates these regions dynamically based on the aggregate size and location of the
accesses in the collective operation. Figure 7 shows how read operations using the
two-phase method are performed. First, aggregators read a contiguous region con-
taining desired data from storage and put this data in a temporary buffer. Next,
data is redistributed from these temporary buffers to the final destination processes.
Write operations are performed in a similar manner. First, data is gathered from all
processes into temporary buffers on aggregators. Next, this data is written back to
storage using POSIX I/O operations. An approach similar to data sieving is used to
optimize this write back to storage in the case where there are still gaps in the data.
Data sieving is also used in the read case. Alternatively, other noncontiguous access
methods, such as the ones described in forthcoming subsections, can be leveraged
for further optimization. Two-phase I/O has a distinct advantage over data sieving
alone in that it is significantly more likely to have a higher percentage of useful data
accessed in the data sieving buffer read since each aggregator has combined the file
regions for all the processes doing the collective I/O while data sieving alone will only
do one processor’s I/O file regions at a time. Another advantage of two-phase I/O
over data sieving is that since none of the aggregators are overlapping in specific file
region responsibilities there will be less wasted file data accessed by the aggregators
in two-phase I/O than the clients utilizing the data sieving optimization individually.
If we can assume that this application is the only application accessing the data, we
don’t need to synchronize the write operations with locks when performing collective
I/O. The combination of these advantages makes the reads and writes in two-phase
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Figure 8. Example list I/O call. Only a single I/O request is required to process this

noncontiguous access.

int listio_read(int fd, int mem_list_count, void *mem_offsets[],

int mem_lengths[], int file_list_count, int file_offsets[],

int file_lengths[])

int listio_write(int fd, int mem_list_count, void *mem_offsets[],

int mem_lengths[], int file_list_count, int file_offsets[],

int file_lengths[])

Figure 9. List I/O prototypes.

I/O more efficient than data sieving in most cases.
Two-phase I/O performance also relies heavily on the MPI implementation’s high-

performance data movement. If the MPI implementation is not significantly faster
than the aggregate I/O bandwidth in the system, the overhead of the additional data
movement in two-phase I/O is likely to prevent two-phase I/O from outperforming
the direct access optimizations (data sieving I/O , list I/O, and datatype I/O). The
double transfer of data (from I/O system to aggregators to clients or vice versa) can,
in certain cases, cause performance worse than data sieving I/O.

5.4. List I/O. The list I/O interface is an enhanced parallel file system inter-
face designed to support noncontiguous accesses shown in Figure 8. List I/O is an
interface for describing accesses that are both noncontiguous in memory and file in
a single I/O request (see prototypes in Figure 9. With this interface an MPI-IO
implementation can flatten the memory and file datatypes (convert them into lists
of contiguous regions) and then describe an MPI-IO operation with a single list I/O
call. Given an efficient implementation of this interface in a parallel file system, this
interface can provide a significant performance boost. In previous work we discussed
the implementation of list I/O in PVFS and support for list I/O under the ROMIO
MPI-IO implementation [28, 29]. The major drawbacks of list I/O are the creation
and processing of these large lists and the transmission of the file lists from client to
server within the parallel file system. Additionally, since we want to bound the size
of the list I/O requests going over the network, only a fixed number of file regions can
be described in one request. So while list I/O does significantly reduce the number
of I/O operations (in our implementation by a factor of 64), there is still a linear
relationship between the number of noncontiguous regions and the number of I/O
operations (within the file system layer). In fact, for noncontiguous access patterns
that generate the same number of I/O requests in POSIX I/O as file regions, we see
that the list I/O performance curves run parallel to the POSIX I/O bandwidth curves
(shifted upward due to the constant reduction in I/O requests). Because of these is-
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Figure 10. Tile display I/O performance.

sues, we see that while list I/O is an important addition to the optimizations available
under MPI-IO, it does not replace two-phase or data sieving, but rather complements
them.

5.5. Datatype I/O. Datatype I/O is an effort to address the deficiency seen in
the list I/O interface when faced with an access that is made up of many small regions,
particularly one that exhibits some degree of regularity. Datatype I/O borrows from
the datatype concept used in both message passing and I/O for MPI applications.
The constructors used in MPI types allow for concise descriptions of the regular,
noncontiguous data patterns seen in many scientific applications (such as extracting
a row from a two-dimensional dataset). The datatype I/O interface replaces the lists
of I/O regions seen in the list I/O interface with an address, count, and datatype for
memory, and a displacement, datatype, and offset into the datatype for file. These
parameters correspond directly to the address, count, datatype, and offset into the
file view passed into an MPI-IO call and the displacement and file view datatype
previously defined for the file. The datatype I/O interface is not meant to be used
by application programmers; it is an interface specifically for use by I/O library
developers. Helper routines are used to convert MPI types into the format used by
the datatype I/O functions.

Our prototype implementation of datatype I/O was written as an extension to the
Parallel Virtual File System (PVFS) in [30]. The ROMIO MPI-IO implementation
was likewise modified to use datatype I/O calls for PVFS file system operations. It is
important to note that while we present this work in the context of MPI-IO and MPI
datatypes, nothing precludes us from using the same approach to directly describe
datatypes from other APIs, as in HDF5 hyperslabs.

Since it can be mapped directly from an MPI-IO I/O operation with a one-to-one
correspondence, datatype I/O greatly reduces the amount of I/O calls necessary to
service a noncontiguous request when compared to the other noncontiguous access
methods. Datatype I/O is unique in comparison with the other methods in that
increasing the number of noncontiguous regions that are regularly occurring does
not incur any additional I/O access pattern description data to be passed over the
network. List I/O, for example, would have to pass more file offset and length pairs
in such a case.
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5.6. Noncontiguous I/O Implications. The various methods for accessing
noncontiguous data have a profound impact on GRID I/O. As most GRID applications
use high level interfaces, it is important to see how this affects noncontiguous I/O
access. In Section 1, we examined the tile display application access pattern. In
Figure 10 performance results, we see that there is quite a large gap in performance
between the different I/O methods. In a FLASH I/O checkpoint benchmark, the
performance gap between POSIX I/O and datatype I/O grows to over two orders of
magnitude [30].

With a high level I/O library like NetCDF that makes regular, structured non-
contiguous access, datatype I/O techniques as described in Section 5.5 are well suited.
This allows the access pattern description to remain concise as it is passed down to
the file system. Using datatype I/O for HDF5 and its hierarchical data layout would
most likely map logically regular structured access patterns to irregular noncontigu-
ous data access. Datatype I/O will not perform any better than list I/O when the
access pattern is so irregular that it degrades into an Indexed datatype (similar to list
I/O).

Since both the NetCDF and HDF file formats are self-describing (they define
their data structures within the file), the unique possibility for data structure caching
presents itself. With slightly more metadata labeling the data structures, applications
can describe noncontiguous access patterns that are stored on disk with a unique ID.
This would eliminate nearly all of the noncontiguous access pattern description from
traveling over the network. Since self-describing file formats already store their data
structure information in file, it would make sense to use these descriptions to reduce
network traffic. We are currently working on implementing this I/O technique in the
future, which we call datatype caching. It will likely have a significant impact for I/O
on large-scale GRID applications.

In conclusion, we have discussed the various noncontiguous I/O methods and
their performance impact. In this following two sections, we present two projects
for future I/O systems: the Versioning Parallel File System (a work-in-progress) in
Section 6 and large-scale cache management strategies in Section 7. We believe that
these projects will greatly improve performance, increase fault-tolerance, and enable
strict high-performance I/O semantics for future scientific computing needs.

6. The Versioning Parallel File System. The growing use of parallel file sys-
tems to sustain scalable I/O for scientific computing has led to emerging performance
problems in fault-tolerance, strict consistency semantics, and noncontiguous I/O ac-
cess for large-scale GRID computing. In this section, we discuss a new parallel file
system for large-scale clusters and GRID environments that will address these issues.
In Section 6.1, we begin by discussing the challenges of future parallel file systems
and how atomic noncontiguous I/O plays a large role in handling these problems. In
Section 6.2, we describe how atomicity can be difficult to implement in the file system.
In Section 6.3, we describe a protocol for implementation of VPFS. Finally in Section
6.4, we explain the advantages of VPFS over traditional atomic methods.

6.1. Fault-Tolerance, Strict Consistency, and Noncontiguous I/O. Fu-
ture high-performance storage platforms must address the trends in scientific comput-
ing. First as discussed previously in Section 3, scientific datasets are rapidly growing
in size. In particular, noncontiguous I/O methods must scale to larger data access
sizes. System snapshots generated for visualization or checkpointing are expensive
and scale in I/O cost as time resolution increases. In order to handle such larger I/O
access patterns, storage systems must also scale up in size for capacity and perfor-
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Figure 11. Atomicity difficulties for parallel file systems.

mance reasons. While increasing the parallelism of storage systems can provide these
additional performance capabilities, it also makes the overall storage system more
fault prone. RAID parity techniques such as those described in [31] are often used
to provide a degree of fault-tolerance and will help enable storage systems to scale in
I/O bandwidth.

RAID parity techniques use both data blocks and parity blocks, where parity
blocks contain some redundant information for reconstruction of lost data blocks.
Data blocks and parity blocks must be consistent with each other to provide the ability
to reconstruct partial lost data. Atomic I/O operations that update both data blocks
and parity blocks simultaneously are required to keep data and parity consistent with
each other. An atomic I/O operation is defined as either an I/O operation which fully
completes or does not complete at all. In other words, a read operation will never see
the effects of a partially completed write. Both atomic contiguous I/O operations and
atomic noncontiguous I/O operations must be supported by the file system to keep
parity data consistent.

Even if the file system is not using atomicity for parity based fault-tolerance,
programmers may require the use of strict atomic semantics. For example, MPI-IO has
an atomic mode. If the file system does not provide any atomicity guarantees, MPI-
IO must provide atomicity through some external methods. Programmers may use a
producer-consumer model when writing multi-threaded or multi-process applications.
For example, one application will produce checkpoint or post-processing snapshots and
another may post-process and visualize this data in real-time to provide immediate
feedback for scientists.

In summary, scalable file systems that intend to handle large-scale I/O efficiently
in a fault-tolerant method for scientific computing must provide high-performance
atomic noncontiguous I/O methods.

6.2. Atomicity For Parallel I/O. Ensuring atomicity of I/O operations is dif-
ficult for several reasons. First, noncontiguous I/O operations may be broken up by
higher level libraries into multiple POSIX I/O operations as we discussed in Section
5.1. Secondly, since contiguous I/O operations are divided into multiple I/O opera-
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tions for multiple I/O servers in a parallel file system as shown in Figure 11, interleaved
read and write operations that are logically contiguous can produce non-atomic re-
sults. We begin our discussion on implementing atomicity through the traditional
methods.

In past GRID I/O research, weak semantics, like those used in AFS and Gfarm
(updates are only visible on close), have been used for performance reasons. A tra-
ditional hardware RAID controller would serialize I/O requests in order to ensure
that they were not interleaved. Such a serialized solution is not practical for cluster
computing as it would greatly degrade performance. In the past, locking has been the
only solution for ensuring atomicity for parallel file systems.

A typical lock-based synchronization solution forces processes to acquire either
read or write locks on a file region before an I/O operation. Read locks are shared,
which means that multiple processes may be simultaneously granted read locks as long
as no write lock regions intersect the read locked region. Write locks are exclusive.
Only a single process may have a lock on a file region if it is a write lock. Locks provide
the synchronization capabilities for atomic I/O since I/O operations are automatically
serialized when an I/O access pattern overlap occurs. Locks may have different region
size granularity. They may simply encompass an entire file or simply a byte-range.
If the I/O access pattern is noncontiguous, a lock-based solution can acquire a single
byte-range lock from the initial offset of the noncontiguous access pattern to the
final byte accessed. It may alternatively acquire a group of byte-range locks that
cover every file region accessed. We call this later solution list lock. List lock, to
our knowledge, has not been implemented or benchmarked. One of the difficulties
in implementing list lock is managing possibly thousands or millions of locks, which
scale with the number of noncontiguous file regions accessed. The groups of locks
must be acquired in ascending order in a two-phase method (such as in [32]) to ensure
no I/O deadlock occurs. In Figure 12 we show the various methods of locking to
ensure atomic noncontiguous I/O access.

While a lock-based synchronization solution can use list lock to allow concurrent
I/O for non-overlapped I/O, overlapping I/O will always be at least partially serialized
if any of the overlapping I/O operations is a write. Another problem with locking is
that locks that are held by clients who fail must eventually be reclaimed. However,
while the lock is held by a dead client, limited or no progress can occur to the locked
regions. Byte region locks may require alignment boundaries, which leads to false
sharing. For instance, the GPFS lock token granularity can be no smaller than one
sector [8]. Finally lock-based synchronization can provide atomic I/O access only
when the client does not fail. If a client fails during the middle of a write and the
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lock for that region is recalled, another client may later see the effects of a partial
write, which violates atomicity. In order to provide atomicity while accounting for
client failure, I/O writes must use data journaling or similar techniques to be able to
undo the effects of the partially completed write.

6.3. VPFS Protocol. In order to efficiently provide high-performance atomic
noncontiguous I/O access for scientific computing, we introduce the Versioning Par-
allel File System, or VPFS. As described in Section 6.2, locking techniques serialize
I/O access in many cases and also create significant overhead. Instead of locking,
VPFS uses a technique called versioning to handle performance issues for atomic
noncontiguous I/O access.

Versioning in the file system is not a brand new technique. It has been used in
various projects [33, 34, 35] to allow the file system to see multiple states of a file.
The most common use of versioning in file systems is to provide users with the ability
to recover deleted files as well as collaborate on large projects. We plan to apply
the versioning technique to a parallel file system. This combination has tremendous
potential beyond simply undoing and merging file changes. Our use of versioning in
VPFS is simple. Every I/O operation which modifies data in the file system will create
a “version”, which is a tuple of information consisting of {operation type, offset-length
count, offset-length pairs, offset-length data}. The operation type is the operation
that this version represents (for example write, truncate, checkpoint, etc). The offset-
length count is the number of offset-length pairs in the following list of offset-length
pairs. The data for the offset-length pairs is written contiguously in the last version
tuple component (which provides contiguous I/O performance for noncontiguous I/O
operations). Each version tuple on an I/O server is labeled with a modify number n,
which specifies an order of completion.

VPFS has three major components: clients, version servers, and I/O servers.
Clients are processes accessing files in VPFS. Version servers keep track of version
information per file. For simplicity, file metadata is also stored on the version server
(although a metadata server could be spun off as a stand alone server for performance
reasons). I/O servers are responsible for storing actual file data. The data is dis-
tributed among them in a method designed by the metadata on the version servers
(usually striped in a round robin manner). We describe the duties of each of the three
major components in detail in the following paragraphs.

Clients, or C, are required to obtain an ID# before performing any I/O. When
a client is about to perform I/O, it increments a counter IO#. When ID# and IO#
are concatenated, a unique temporary version number T has been created for a data
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modify operation. This temporary version number T will be used as a temporary
number for modify operations that are still in the process of being completed. They
will later be renamed by file version numbers in Vmap that are piggybacked along
with data retrieve operations.

Version servers, or Vs, are required to keep track of a file’s current version number
(Vf ). Vf is used to label I/O operations in the order in which they complete for
modify operations (for example, write) and the order in which they are began for
retrieve operations (for example, read). The version servers keep track of the Vf
numbers used for retrieve operations that have not yet completed in a list called
Vr list. The minimum of Vr list is Vo, the oldest retrieve operation still in progress.
Version servers also give out ID# to clients when requested, incrementing ID# on
each request to give each client a unique ID#. Modify operations are given file version
numbers when they have fully completed. These mappings from temporary version
numbers T created on the clients to file version numbers Vf are kept in Vmap. The
Vs keeps track of Vmap as a list of tuples {T, Vf}. All of this versioning information
(Vf, Vr list, Vo, ID#, and Vmap) is kept on the Vs on a per file basis.

I/O servers, or Is, maintain the version tuples and a list of the versions in use
(Vuse list). They also execute version merging, which is a process where version
tuples are read and combined into a single version for increasing free disk space.

We describe the basic VPFS processes of open, merge, read and write. The sync
and close operations do not require any special consideration. For simplicity we intend
to simply call merge when the either sync or close is called. More detailed explanation
will be forthcoming with our implementation and performance results.

• Open - C requests an ID# from the proper Vs for file F. The Vs increments
the ID# for the file F and returns the previous value of ID# to C. We note
that the client’s acquisition of ID# can happen at any time before a retrieve
or modify I/O operation. For simplicity, we choose this to occur during a file
open.

• Merge - C requests to begin a merge operation from the proper Vs for file F.
Vs increments Vf and returns the old Vf, Vo, and Vmap to C. Vs adds the
returned old Vf to the Vr list and links the old Vf to the entries in Vmap.
C sends Vf, Vo, and Vmap to all Is. The Is updates all temporary versions
in Vmap to their final version number and adds them to Vuse list. If the Is
is not performing a merge for Vo already (or has done so in the past), it uses
all the versions up to Vo in Vuse list to create a new version Vo that is also
added to Vuse list. When it completes, C sends back Vf to Vs. Vs removes
Vf from Vr list and removes Vmap entries linked to Vf.

• Write - C increments IO# and concatenates its ID# with old IO# to form
T. C sends T along with its write data to each relevant Is. The Is saves the
version tuple with its temporary version number T. When C has completed
writing all of its version tuples, it sends T to proper Vs. The Vs increments
Vf and adds the old Vf as a tuple {Vf, T} to Vmap.

• Read - C requests to begin a read operation from the proper Vs for file F.
Vs increments Vf and returns the old Vf, Vo, and Vmap to C. Vs adds the
returned old Vf to the Vr list and links the old Vf to the entries in Vmap.
C sends Vf, Vo, and Vmap to all Is. The Is updates all temporary versions
in Vmap to their final version number and adds them to Vuse list. Then the
Is uses all the versions up to Vf in Vuse list to service the read request. If it
desires, the Is may also perform a merge as described in the merge operation
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and add the new version Vo to Vuse list. When it completes the read, C
sends back Vf to Vs. Vs removes Vf from Vr list and removes Vmap entries
linked to Vf.

6.4. VPFS Discussion. Using such a protocol will enforce the atomicity of I/O
operations. Since write operations are not given a Vf until they have fully completed,
no read can possibly see a partially completed write. Writes become visible in the
order in which they complete due to the Vf assignment only after all parts of the
possibly noncontiguous write have finished. If a client dies during the middle of a write
operation, the write will never be assigned a final Vf and therefore will never be visible
to any client. Cleanup operations issued by system administrators or automatically
by the file system can remove these partially completed operations at a convenient
time.

Another strong advantage of the use of versions over locks is I/O operation concur-
rency. All reads and writes may continue in parallel even when they access overlapping
regions. As we discussed in Section 6.2, lock-based systems can only allow concurrent
access to overlapping regions if both processors are reading. VPFS allows atomic con-
current access to overlapping regions for any combination of reads and writes without
any serializing penalties as shown in Figure 13. Also discussed earlier, atomicity of
I/O operations is a key enabler of parity based RAID techniques in parallel file sys-
tems. For RAID 5, parity is maintained on a per stripe basis to ensure that any one
I/O node may be lost while preserving all data and operating in a degraded mode
until the failed node is replaced. In hardware RAID, parity is computed on every
write operation by the hardware RAID controller. This method is not scalable or
practical for parallel file systems. Since our versioning parallel file system can provide
efficient atomic I/O operations, we can also perform atomic data and parity updates
in parallel, even if writes are overlapping the same parity block. This is a large im-
provement over lock-based methods, since they always force serialization when writes
have overlapping I/O parity access.

The nature of our object based versions provides us with a solution to the non-
contiguous I/O problem of small I/O operations. Since we can provide a description
of the object along with file write data, we can describe the format of the data as
a series of offset-length pairs, while writing out the actual file data in a contiguous
I/O operation. In this manner we no longer incur the performance penalty of writing
small noncontiguous file regions to disk for noncontiguous access patterns. This per-
formance optimization should greatly improve noncontiguous I/O operations over the
current datatype I/O method. We still can use the datatype I/O access pattern de-
scription over the network for bandwidth savings, but additionally reap performance
benefits from writing noncontiguous data contiguously in file. Another important
performance optimization for noncontiguous I/O would be that we have a constant
versioning overhead for any size noncontiguous I/O operation. In comparison, if list
lock were implemented, list lock would require n locks to service a noncontiguous I/O
access pattern with n file regions. In other words, our versioning techniques in VPFS
allow us to eliminate the overhead associated with locking all the regions of the file
access pattern with list lock while providing even greater I/O concurrency.

System snapshots are often dumped at intervals between scientific computational
stages. This is done so that if a part of the system fails, the application can be
restarted without losing much progress. System snapshots are also used for post-
processing and/or visualization. Snapshots are I/O intensive and slow on traditional
parallel file systems. The snapshot frequency is often determined by the time it takes
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Figure 14. Cache inconsistencies in collective I/O

to write a snapshot. If snapshots are cheap and fast, they can be written often
without significantly affecting system performance. Our versioning of files natively
creates such snapshots. In fact, by simply tagging the version of the last write that we
would like to include in the system snapshot to not be deleted when a merge operation
occurs, we can ensure that the system snapshots remain in our I/O system without
any I/O penalties. Such an optimization for system snapshots would provide a great
tool for scientific computing (for example, reducing the cost of making a checkpoint
in the ASC FLASH code). We also note that within the MPI-IO interface, we can
perform several optimizations with VPFS. We would like to experiment on how to use
versioning and calculate write parity on collective I/O operations. We expect that
there are important optimizations when using a single version versus using multiple
versions when collective I/O is scaled up to thousands of processors.

Some obvious drawbacks to VPFS include possible new read overheads. Since
the read operation must look thorough multiple version tuples on each I/O server to
be serviced, we expect that overall read performance will slight worsen, while write
speeds will increase. Also, since we make version tuples for every modify operation,
this can, in certain cases, significantly increase overall storage. We expect to further
examine these potential problems as we continue our implementation. VPFS is a
work-in-progress. We expect basic VPFS v1.0 to be completed before the end of the
summer of 2005.
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Figure 15. Cache consistency issues of collective I/O using persistent file domains.

7. Large-scale Cache Management Strategies. In typical distributed en-
vironments, caching is an integral piece of the I/O performance puzzle. Without
client-side caching, nearly every I/O request and data transfer must come from some
remote location and often disk, thus incurring the potentially large costs of network
latency and bandwidth. While network performance may be expected to improve,
its relative performance cannot compare with memory bandwidth, much less proces-
sor performance. Enforcement of strict semantics is rather expensive, driving most
client-side caching schemes to use a relaxed set of consistency semantics. The choice
of consistency semantics depends on an application’s tolerance for transitory inconsis-
tencies as well as the quality of the network between the client and server. Generally,
an application needs to balance semantics and performance needs. In some specific
cases, performance need not be sacrificed for stronger semantics, but they are typically
regarded as inversely correlated.

A simple solution for ensuring cache consistency uses write locks on a file or some
part thereof to signal other processes of an impending write to the file. Through such
a lock system, a write lock invalidates the same file data cached elsewhere and ensures
stale data is not read. Other semantics do not guarantee data availability until a file
is closed.

7.1. Application Cache Coherency in Collective I/O. One way to avoid
the complex problems involved in global system-wide cache consistency is to narrow
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one’s scope. Within a single application, cache consistency can be addressed trans-
parently at higher levels than the file system even when client-side caching is done in
the file system as in NFS. While an application and an MPI implementation may be
aware of complex I/O access patterns, this higher order information is lost by most file
systems where client-side caching usually occurs. The MPI-IO interface is designed
specifically to handle both complex data structures and to allow application processes
to coordinate I/O. Two-phase I/O involves an I/O phase and a communication phase,
the order of which depends on whether the operation is a read or write as described in
Section 5.3. When performing collective I/O, application processes can divide the file
up into distinct persistent file domains. Each process acts as a proxy I/O server for its
file domain(s). In the read case, all accesses to a particular file domain are gathered
at the file domain’s “owner” process. The owner process then performs the read to
its file domain on behalf of all the processes. In the second phase, the owner process
then distributes the requested read data to each process. Figure 14 steps through sev-
eral sequential collective I/O operations using the typical two-phase method where
file domains are determined separately for each call based on the aggregate access
pattern (across processes). In Figure 14a, p0 and p1 collectively read the entire file,
each caching data from its own file domain. Later, in Figure 14b, both processes
collectively write to the first half of the file, where the file domains split the first half
of the file in two. After communicating the write data with each other, it is written,
once again going through their own caches. When the entire file is reread in Figure
14c, using the same file domains as in Figure 14a, the stale second quarter of the
file on p0 is read out and distributed to both processes. By keeping the file domains
persistent across multiple collective reads and writes, only the predetermined owner
of a file domain will accesses the domain either on disk or in system cache, thereby
enforcing cache coherency in the application. Figure 15 demonstrates the persistent
file domain solution and shows why it works. While the file system cache may not
be directly manipulated, access can be organized in such a way to avoid any poten-
tially stale data. Originally intended for high-performance computing, persistent file
domains can be easily adapted for the GRID in setting file domain sizes and local-
ity. Our evaluation of the persistent file domain solution in clusters was published in
[36]. Ideally, the process responsible for a file domain should be somewhat near the
processes requesting data from its file domain. Since high-performance computing is
characterized by homogeneity, persistent file domains are usually assigned in some
uniform manner. The heterogeneous nature of the GRID may make irregular file do-
main sizes and distributions more desirable. Assignment of file domains should take
into account I/O access patterns, locality, as well as other resource parameters such
as CPU load or network load. Since file domain distribution can no longer be derived
deterministically, some global file domain map would need to be distributed among
clients instead. Collective I/O may not always be appropriate for an application, and
the collaborative nature of the GRID does not preclude the concurrent use of one file
by multiple applications.

7.2. Application Cache Coherency in Independent I/O. A novel ap-
proach for handling independent I/O in MPI applications uses Remote Memory Ac-
cess (RMA). Under current development, the Direct Access Cache (DAChe) System
is an application level subsystem designed to manage client-side caching in a coherent
manner. Our initial prototype will soon be published in [37]. Built on top of MPI,
DAChe is quite portable, but actual RMA performance depends on the underlying
communication layers. Systems without network cards that support RMA typically
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Figure 16. Each client process actively executes user code as well as accesses the passive

server on any other node.

use threads instead. It could also be put into the file system layer, but it would
lose its portability over different RMA systems. An advantage of the DAChe design
is that it does not require extra dedicated processes. Each client process has three
responsibilities: a passive metadata, lock, and cache server. Each client’s cache is
remotely accessible by any other client through RMA, though any file page is cached
on at most one client. The latter point ensures cache coherence since all clients will
have the same uniform view of the file. Currently, each client process handles its own
local caching and evictions in an effort to reduce passive coordination complexity and
improve locality. For strict sequential consistency there is a lock mechanism stored
in the metadata for each file page. More importantly, metadata keeps track of where,
on a per page basis, a file page is cached as in Figure 16. The metadata itself is
distributed across client processes in a round robin manner, also globally accessible
through RMA. Metadata operations must be atomic, and are therefore controlled by a
mutual exclusion or lock mechanism. Most RMA interfaces provide either a high-level
lock construct as in MPI or some simpler atomic operation like swap, increment, or
test and set. Because the clients act as the DAChe servers, the number of DAChe
servers automatically scales with the size of the application. The key is getting DAChe
performance to scale with the job size. The primary drawback to DAChe in its present
incarnation is that it is very much based on passive state, making it quite fault prone.
As a user-level library, DAChe should still work on the GRID, but it could also be
pushed down into a GRID file system. Fault tolerance issues need to be dealt with,
the simplest solution to which would be some sort of state replication scheme. A more
complex coherence scheme handling multiple read copies of data and a single write
copy to allow for more aggressive caching may be appropriate for the GRID’s wider
dispersement of resources. Also beneficial would be automatic cache page migration
for dynamic load-balancing and improved data locality.

Considering the shear number of potential clients on the GRID, the on-demand
nature of their expectations, and their independence and dependence, enforcing some
kind of global cache consistency across all the clients for all applications would be
inefficient. Applications should surely be allowed to specify what type of consistency
semantics are needed or expected at run time. Hierarchical adaptations of DAChe-
style caching may be more appropriate for the GRID.
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8. Conclusion. In this book chapter we have discussed many aspects of high-
performance I/O in large-scale GRID environments. We have presented a summary
of current and proceeding projects regarding GRID I/O as well as described how
application I/O moves from high level I/O libraries such as NetCDF and HDF down
to parallel file systems in the back-end. We described how our future work on the
VPFS and large-scale cache management strategies will address issues of performance,
reliability, and high-performance I/O semantics.
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