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Abstract—The achievable rate of a wideband Multi-Input
Single-Output channel with multi-carrier transmission is studied
with limited feedback of Channel State Information (CSI). The
set of sub-channel vectors are assumed to be jointly quantized
and relayed back to the transmitter. Given a fixed feedback rate,
the performance of an optimal joint quantization scheme can
be characterized by the rate-distortion bound. The distortion
metric is the average loss in capacity (forward rate) relative to the
capacity with perfect channel state information at the transmitter
and receiver. The corresponding rate-distortion function gives
the forward capacity as a function of feedback rate, and is
determined explicitly by casting the minimization of mutual
information as an optimal control problem. Numerical results
show that when the feedback rate is small, the rate-distortion
bound significantly outperforms separate vector quantization of
each sub-channel vector. Practical issues, such as quantization
codebook design and implementation, are also briefly discussed.

I. I NTRODUCTION

The performance of a multi-antenna communication system
can be substantially increased when Channel State Information
(CSI) is made available at the transmitter. For a Multi-Input
Single-Output (MISO) channel this allows transmit beamform-
ing, which can both increase the rate and potentially decrease
interference to neighboring receivers. However, the associated
gains are compromised when the CSI is inaccurate due to a
limited-rate feedback channel.

The design and analysis of limited feedback techniques for
beamforming has been extensively studied over the past few
years (e.g., see [2]–[11] and the broad overview of work on
limited feedback for wireless systems in [1]). Most of the
previous work on limited-feedback beamforming is based on a
narrow-band fading model. Optimal beamforming codebooks
can be designed, in principle, by using the Lloyd algorithm.
This was first proposed for narrowband beamforming in [2],
and further analyzed in [7], [9]. Other approaches to codebook
design have been proposed based on Grassmanian packings [4]
and Random Vector Quantization (RVQ) [?], [6], [11].

Here we study the performance of limited-feedback beam-
forming with a wideband fading channel. Specifically, we
consider multi-carrier transmission over a wideband MISO
channel where the MISO sub-channel gains are assumed to
be i.i.d. Given Nt transmit antennas andN sub-channels
(assumed to be constant with frequency), the CSI then consists
of the set ofN i.i.d. sub-channel vectors (eachNt × 1). The

general problem is then how to design an optimal codebook (in
some sense) to represent theN beams, and how to characterize
the associated performance. As in most prior work, we will
assume that the CSI is perfectly known at the receiver, and
a noiseless, limited-rate, zero-delay feedback link relays the
CSI back to the transmitter.

To maximize the achievable forward rate given a fixed
feedback rate, the set of sub-channel vectors should bejointly
quantized. That is, each entry of the quantization codebook
should contain a complete set ofN vectors (eachNt × 1),
as opposed to quantizing each of theN sub-channel vectors
separately. The asymptotic performance of an optimal joint
quantization scheme asN becomes large (with fixedNt)
is given by rate-distortion theory. The source is the set of
sub-channel vectors (equivalently, transmit beams acrosssub-
channels) and the distortion metric is the difference in forward
rates achieved with quantized and perfect beams, respectively.
We assume ani.i.d. block Rayleigh fading model, and take
the achievable rate to be ergodic capacity.

To calculate the rate-distortion function, the minimization
of mutual information over the conditional density of the
sub-channel vector, given the quantized vector, is cast as an
optimal control problem. We further simplify the problem
by quantizing only the sub-channel directions (ignoring the
magnitudes), and applying a uniform power distribution over
the sub-channels, which is near-optimal at all but very low
SNRs. The resulting problem can be solved, giving an explicit
characterization of achievable forward rate versus feedback
rate. Numerical results show that joint quantization of thesub-
channel vectors can provide a significantly higher forward rate
than separate quantization of each vector.

Related work on multi-carrier beamforming with correlated
sub-channels is considered in [12]. There an interpolationap-
proach is used to extend quantization of single vectors for nar-
rowband channels to the wideband scenario. **do they assume
uniform power also?** Here our focus is on demonstrating
the benefits of optimal (joint) quantization relative to separate
quantization of each vector. We consideri.i.d. sub-channels
primarily for tractability, and because the performance gains
shown here serve as a lower bound on the corresponding gains
with correlated sub-channels. (Also, withi.i.d. sub-channels
interpolation cannot improve the performance of separate sub-
channel quantization.)



Rate-distortion results for narrowband limited-feedback
beamforming are presented in [2], [7], although the distortion
metrics are different from that considered here. Also, the
previous approaches to codebook design rely on an exhaustive
search of the quantization codebook. For the wideband MISO
channel model considered with a large number ofi.i.d. sub-
channels, this is clearly impractical even for relatively small
feedback rates. We therefore briefly discuss the possibility of
using graphical based codes, which can approach the rate-
distortion bound with reasonable complexity.

II. M ULTI -CARRIER MISO MODEL

Consider a single-user MISO channel withNt transmit
antennas (Nt ≥ 2 is assumed) and one receive antenna.
Suppose there areN i.i.d. sub-channels and denote thei-th
sub-channel vector ash†

i = [hi1 hi2 . . . hiNt
], which is

assumed to bei.i.d. complex Gaussian with unit variance per
complex dimension, where(·)† denotes Hermitian transpose.
For sub-channeli we assume that the transmitter array trans-
mits a single symbolxi. Before transmission on antennak,
the symbol is weighted by a complex numberv̂ik. Then the
vector v̂i = [v̂i1 v̂i2 . . . v̂iNt

]T is the beamforming vector
on sub-carrieri with power constraint‖v̂i‖

2 = 1, where(·)T

denotes transpose and‖ · ‖ denotes the vector two-norm. The
received signal on sub-carrieri can be written as

ri = h
†
i v̂ixi + ni. (1)

where ni is the noise term with zero mean and variance
N0. Without loss of generality, we assumeN0 = 1. Define
Es

def
= E[|xi|

2], whereE[·] stands for ensemble average. From
(1), the received SNR on sub-carrieri is given byEs|h

†
i v̂i|

2.
Given the number of feedback bits for each sub-carrier, de-

noted asB, the approach used for narrow-band beamforming
can be directly applied here, which is to design a vector quan-
tization codebookV = {v1, . . . ,v2B} that is known to both
the transmitter and the receiver. Using this codebook, for each
sub-carrier the receiver then chooses the SNR-maximizing
beamforming vector, yielding the quantization rule

v̂i = arg max
vk∈V

|h†
ivk|

2. (2)

The set of indices are represented by a total ofN × B bits,
which are conveyed to the transmitter through a noiseless and
zero-delay feedback link from the receiver to the transmitter.

The preceding approach quantizes each sub-channel vector
independently, so that it will induce a performance loss from
the optimal (joint) vector quantizer. Specifically,joint vector
quantization refers to a codebook with2N×B entries, where
each element in the codebook is a complex vector of length
N × Nt and is composed by stacking the beamforming
vectors across sub-channels. For a given channel realization
ideally the entry in the codebook is selected, which maximizes
the sum capacity over all sub-carriers. The large number of
degrees of freedom (sub-carriers, antennas) naturally suggests
the application of rate-distortion theory, which providesa
fundamental tradeoff between the number of feedback bits and
the distortion (loss in achievable rate).

III. T HE RATE-DISTORTION BOUND

A. Problem Formulation

For simplicity, in what follows we drop the sub-carrier index
i, which appears in (1). The sub-channel vectorh

† can be
written as the product of two independent parts, the magnitude
‖h†‖ and the direction (or phase)v† = h

†/‖h†‖, i.e.,

h
† = ‖h†‖v†, (3)

where ‖h†‖2 has a chi-square distribution andv† is
isotropically distributed over theNt dimensional complex
unit hyper-sphere [8], [9]. We adopt a similar approach as
for narrow-band beamforming, and only quantize the channel
direction without considering the channel magnitude. Since
the channel magnitude is unavailable at the transmitter, the
transmit power is assumed to be uniform over different
sub-carriers.

The distortion metric is the average capacity loss with
quantized beams relative to the capacity with perfect CSI at
the transmitter, which is defined as

d(v, v̂)
def
= E‖h†‖2 [log2(1 + Es‖h

†‖2)]

− E‖h†‖2 [log2(1 + Es‖h
†‖2|v†

v̂|2)].
(4)

The distortion metric depends only on|v†
v̂|, the angle be-

tween the actual direction and the quantized direction. We
will use this observation to evaluate the rate-distortion bound.

From the independence of the magnitude‖h†‖ and the cor-
responding directionv, the distortion metric can be simplified
as

d(v, v̂)
def
= CEs,Nt

(1) − CEs,Nt
(|v†

v̂|), (5)

where the functionCEs,Nt
(x), 0 ≤ x ≤ 1 is defined as

CEs,Nt
(x)

def
= E‖h‖2 [log2(1 + Es‖h

†‖2x2)]. (6)

According to [8],CEs,Nt
(x) is given by

CEs,Nt
(x) = log2(e)e

1

Esx2

Nt−1∑
k=0

∫ ∞

1

e
− y

Esx2 y−k−1dy. (7)

Then, the rate-distortion function can be written as

R(D) = min
f(v̂|v)

I(v; v̂) (8)

subject to:Ev,v̂[d(v, v̂)] ≤ D, (9)

whereI(v; v̂) denotes the mutual information betweenv and
v̂, f(v̂|v) is the conditional probability density function (PDF)
to be optimized,D denotes the distortion constraint, and the
expectation is with respect to the joint probability distribution
on v and v̂. Note that the reproduction pointŝv are also
confined to be on the surface of theNt-dimensional complex
unit hyper-sphere since only the channel direction is quantized.

We note that the range ofd(v, v̂) implies thatD must lie in
the interval[0, CEs,Nt

(1)]. A narrower range forD is observed
by noting that without any feedback the MISO beamforming
model reduces to a scalar (Single-Input Single-Output) model
with capacityCEs,1(1), so that the range ofD is given by

0 ≤ D ≤ CEs,Nt
(1) − CEs,1(1). (10)



B. Evaluation of the Average Distortion

It appears to be difficult to optimize the conditional PDF
f(v̂|v) directly, since givenv, it is a function mapping from
the surface of theNt-dimensional unit complex hyper-sphere
to real numbers. However, the problem can be simplified by
observing that the distortion metric only depends on the angle
between the actual directionv and the quantized direction̂v.
The average distortion therefore depends only on the proba-
bility distribution of the scalar random variableX =

def
= |v†

v̂|.
Assuming that the corresponding PDFfX(x) exists, we have

E|v†v̂|[d(v, v̂)] =

∫ 1

0

d(v, v̂)fX(x)dx. (11)

and combining (5) and (11) gives

Ev,v̂[d(v, v̂)] = CEs,Nt
(1) −

∫ 1

0

CEs,Nt
(x)fX(x)dx. (12)

The average distortion in (9) is therefore expressed in a simpler
form than in (12), i.e., as the integral overfX(x), a function of
a single variable. In the next section, we rewrite the objective
(8) as an integral over the same function.

C. Evaluation of the Mutual Information

The mutual information in (8) can be written as

I(v; v̂) = h(v) − h(v|v̂), (13)

whereh(·) denotes the differential entropy andh(·|·) denotes
the conditional differential entropy. Sincev is isotropically
distributed, its differential entropy is given by

h(v) = −

∫
v

f(v) log2 f(v)dv = log2

2πNt

(Nt − 1)!
, (14)

where 2πNt/(Nt − 1)! is the surface area of theNt-
dimensional complex unit hyper-sphere evaluated in [3].

To evaluate the conditional differential entropy, we note that
for any distributionfX(x) satisfying the distortion constraint
(9), we have

h(v|v̂) =

∫ 1

0

fX(x)h(v | v̂, |v†
v̂| = x)dx (15)

≤

∫ 1

0

fX(x)h(v | |v†
v̂| = x)dx (16)

≤ −

∫ 1

0

fX(x) log2

fX(x)

lx
dx, (17)

where (16) follows from that fact that conditioning reduces
entropy and (17) follows from the fact that given the support
of a random variable, the uniform distribution maximizes its
entropy, where

lx = −
d

dx
|Sx| (18)

and
Sx = {v | ‖v‖ = 1, ‖v̂‖ = 1; X > x}. (19)

**is this right? – please correct.** That is,lx is the derivative
of the surface area of the spherical capSx centered at the
reproduction point (̂v), containing points, which have angles

greater thanx with v̂. According to [3], |Sx| = 2πNt(1 −
x2)Nt−1/(Nt − 1)!, so that

lx =
4πNtx(1 − x2)Nt−2

(Nt − 2)!
. (20)

and (17) can be rewritten as

h(v|v̂) ≤ −

∫ 1

0

f(x) log2

(Nt − 2)!fX(x)

4πNtx(1 − x2)Nt−2
dx. (21)

Equality is achieved whenv is uniformly distributed given
X. Furthermore, equality can be achieved simultaneously in
(16) and (17). The test channel **what is a ”test” channel?**
that achieves these two equalities is defined as follows:v̂

is uniformly distributed on the surface of the complex unit
hyper-sphere, corresponding to a uniform source distribution,
X given v̂ has the same distributionfX , and v given X
is uniformly distributed. In addition, it is easy to see that
f(v̂|v) = f(v|v̂).

Combining (12-14) and (19), the rate-distortion problem in
(8)-(9) can be rewritten as

R(D) =min
f(x)

{log2

2πNt

(Nt − 1)!

+

∫ 1

0

f(x) log2

(Nt − 2)!f(x)

4πNtx(1 − x2)Nt−2
dx}

(22)

subject to:CEs,Nt
(1) −

∫ 1

0

CEs,Nt
(x)f(x)dx ≤ D, (23)

∫ 1

0

f(x)dx = 1, (24)

f(x) ≥ 0. (25)

We have transformed the original rate-distortion problem,
which requires optimizing a multivariate function, into ancon-
strained optimization problem over a single-variable function.
(Here we have replacedfX by f .) To solve this problem, we
apply results from optimal control [13], [14], which are an
extension of the calculus of variations.

D. Characterization of the Rate-Distortion Bound

It is obvious that the distortion constraint in (21) must be
binding, otherwise, the rate can be made arbitrarily small
by letting x distribute arbitrarily close to one. Therefore,
the inequality in (21) can be safely replaced by equality. In
addition, the last constraint (23) is redundant, sincef(x) is
inside the logarithm function and (23) is automatically satisfied
for any feasible solution.

In order to fit to the problem formulation of optimal control
theory, the PDFf(x) is replaced by the derivative of the
corresponding cumulative distribution functioṅF (x) (F (x) is
called the state variable in optimal control theory) and also
another variableu(x) is introduced as the control variable,



then the problem becomes

R(D) = min
u(x)

{log2

2πNt

(Nt − 1)!

+

∫ 1

0

u(x) log2

(Nt − 2)!u(x)

4πNtx(1 − x2)Nt−2
dx}

(26)

subject to:Ḟ (x) = u(x), (27)∫ 1

0

CEs,Nt
(x)u(x)dx = CEs,Nt

(1) − D, (28)

F (0) = 0, F (1) = 1. (29)

The next step to transform this problem into a standard optimal
control problem is to introduce another state variable

Ġ(x) = CEs,Nt
(x)u(x), (30)

with the boundary conditions

G(0) = 0, G(1) = CEs,Nt
(1) − D. (31)

To solve this standard optimal control problem, we can
apply Pontryagin’s Minimum Principle [13], [14] to its Hamil-
tonian, which is the dynamic equivalent to the Lagrangian
of a static optimization problem, to get necessary conditions
for optimal solution. When applying this principle, it requires
that the state variables belong to the space of piecewise
continuously differentiable functions and the control variable
belong to the space of piecewise continuous functions. We will
first put these preconditions aside, and verify them after we
get the specific solution to this problem.

For the above optimal control problem, the Hamiltonian can
be written as

H(x, F,G, p, q, u) = u(x) log2

(Nt − 2)!u(x)

4πNtx(1 − x2)Nt−2

+ pu(x) + qCEs,Nt
(x)u(x),

(32)

wherep is the costate variable associated with the first part of
the state equation(Ḟ (x) = u(x)) andq is the costate variable
associated with the second part(Ġ(x) = CEs,Nt

(x)u(x)).
Provided the set of solutions of this problem is not empty, by
minimizing H, the optimal controlu⋆ is obtained as

∂H

∂u
= 0, (33)

i.e.

log2 u⋆(x)+ log2

(Nt − 2)!e

4πNtx(1 − x2)Nt−2
+p+qCEs,Nt

(x) = 0.

(34)
The costate variables are given by Hamilton-Jacobi equations
[13], [14]:

ṗ = −
∂H

∂F
= 0, q̇ = −

∂H

∂G
= 0. (35)

Notice thatp andq are two constants by (33). Therefore (32)
can be solved as

Ḟ ⋆(x) = u⋆(x) =
4πNtx(1 − x2)Nt−2

(Nt − 2)!e
2−p⋆−q⋆CEs,Nt

(x).

(36)

The values ofp⋆ andq⋆ can be obtained by plugging (34) into
the boundary conditions (27) and (29) and we obtain thatq⋆

should satisfy the fixed point equation:

[CEs,Nt
(1) − D]

∫ 1

0

x(1 − x2)Nt−22−q⋆CEs,Nt
(x)dx

=

∫ 1

0

x(1 − x2)Nt−22−q⋆CEs,Nt
(x)CEs,Nt

(x)dx,

(37)

andp⋆ is given by

p⋆ = log2

∫ 1

0

4πNtx(1 − x2)Nt−2

(Nt − 2)!e
2−q⋆CEs,Nt

(x)dx. (38)

Finally, the minimum rateR(D) with respect to a given
distortionD is obtained by plugginġF ⋆ (or u⋆) back into (24).
SinceCEs,Nt

(x) is continuous inx, from (34) we know that
the solution can satisfy the preconditions to the state variables
and the control variable.

Sincep⋆ andq⋆ are two constants and it is easy to show that
H(x, F,G, p⋆, q⋆, u) is convex in(F,G, u). Thus, according
to Mangasarian’s sufficient condition [13], [14], the necessary
conditions in (31)-(33) are actually also sufficient conditions
for optimal solution. Thus, any solution to (35) and (36) is
globally optimal and we do not need to worry about the
number of roots of the fixed point equation (35).

It should be noted that the method we used to solve the
rate-distortion bound in this paper can be directly extended to
rate-distortion bounds with other distortion metrics, such as
SNR loss, etc.

IV. I MPLEMENTATION ISSUES

The rate-distortion bound evaluated in last section provides
a fundamental limit for the tradeoff between the achievablefor-
ward rate (distortion) and the required backward rate (feedback
bits) in a multi-carrier MISO beamforming system. Random
codes with typical set encoding suffice to achieve this bound
when the number of sub-carriersN goes to infinity. With finite
N , the Lloyd algorithm can be used to design a near-optimal
codebook for joint quantization.

Another constructive approach to design the codebook and
implement joint quantization is to use the sparse graphical
codes [15]–[17] and an associated set of message-passing
algorithms [18]. With this approach, the joint quantization of
beamforming vectors becomes similar to the iterative decoding
of graphical error control codes, which in general has linear
complexity with the length of the codes. Given the space
constraints of this article, we will not discuss the details
about sparse codes, how joint quantization can be represented
in terms of sparse graphs, and the use of message-passing
algorithms. For details please refer to the listed references.

V. NUMERICAL RESULTS

In Fig. 1, we plot the rate-distortion bounds in the same sys-
tem with different transmit symbol energy along with the rate-
distortion tradeoff for single vector based quantization using
RVQ codebook (its performance is obtained by simulation).
Note that to plot the curves with different parameters in one
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Fig. 1. Comparison of the rate-distortion bound and single vector
based RVQ,Nt = 4.

figure we change the distortion metric to be the distortion in
percentage, which is defined asDp

def
= D/CEs,Nt

(1). One sees
that there is a large gap between the rate-distortion bound and
the rate-distortion tradeoff of single vector based RVQ in the
range of low-rate feedback. For instance, to achieve a target
distortion of20% in the caseEs = 10, the required feedback
bits of joint quantization is only half of that with single vector
based RVQ. In addition, Fig. 1 indicates that to achieve the
same distortion (in percentage), the required rate decreases as
the transmit symbol energy increases. This can be explained
by the fact that the capacity function is a concave function,and
as the symbol energy increases, the capacity function becomes
more insensitive to the quantization errors.

VI. CONCLUSIONS

In this paper, we proposed a rate-distortion approach which
jointly quantizes the channel vectors on different sub-carriers
to improve the sum capacity in a multi-carrier MISO beam-
forming system with limited feedback. We exactly charac-
terized the associated rate-distortion bound by formulating
it as an optimal control problem. The optimal conditional
distribution of the reproduction points is determined by a
single variable function which determines the probability
distribution on the angle between the source point and the
reproduction point. Numerical results show that to achievea
certain moderate distortion the required feedback bits canbe
reduced in a large extent by jointly quantizing the beamform-
ing vectors on different sub-carriers. Of course, the results
in this paper correspond to the particular channel model (i.i.d.
sub-carriers). For future work, extending the channel model to
the more general case (correlated sub-carriers) and extending
beamforming to MIMO precoding should be more interesting.
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