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Abstract—The achievable rate of a wideband Multi-lnput general problem is then how to design an optimal codebook (in
Single-Output channel with multi-carrier transmission is studied ggme sense) to represent thicbeams, and how to characterize
with limited feedback of Channel State Information (CSI). The the associated performance. As in most prior work, we will

set of sub-channel vectors are assumed to be jointly quantized . .
and relayed back to the transmitter. Given a fixed feedback rate assume that the CSl is perfectly known at the receiver, and

the performance of an optimal joint quantization scheme can @ nhoiseless, limited-rate, zero-delay feedback link elthe
be characterized by the rate-distortion bound. The distortion CSI back to the transmitter.

metric is the average loss in capacity (forward rate) relative to tle To maximize the achievable forward rate given a fixed
capacity with perfect channel state information at the transmitter feedback rate, the set of sub-channel vectors shoujdiby

and receiver. The corresponding rate-distortion function give . . .
the forward capacity as a function of feedback rate, and is guantized. That is, each entry of the quantization codebook

determined explicitly by casting the minimization of mutual Should contain a complete set of vectors (eachV; x 1),
information as an optimal control problem. Numerical results as opposed to quantizing each of thesub-channel vectors
show that when the feedback rate is small, the rate-distortion separately. The asymptotic performance of an optimal joint
bound significantly outperforms separate vector quantizatio_n o_f quantization scheme ad becomes large (with fixedV,)
each sub-channel vector. Practical issues, such as quantizatio .” . . - .
codebook design and implementation, are also briefly discussed.'S 9ven by rate'd'Stort'or,] theory. The 39““36 is the set of
sub-channel vectors (equivalently, transmit beams a@ols
channels) and the distortion metric is the difference inveod
|. INTRODUCTION rates achieved with quantized and perfect beams, resplctiv
The performance of a multi-antenna communication systéie assume aim.i.d. block Rayleigh fading model, and take
can be substantially increased when Channel State Infammatthe achievable rate to be ergodic capacity.
(CSI) is made available at the transmitter. For a Multi-lnpu To calculate the rate-distortion function, the minimipati
Single-Output (MISO) channel this allows transmit beamfor of mutual information over the conditional density of the
ing, which can both increase the rate and potentially dsereaub-channel vector, given the quantized vector, is casihas a
interference to neighboring receivers. However, the aatet optimal control problem. We further simplify the problem
gains are compromised when the CSI is inaccurate due tdya quantizing only the sub-channel directions (ignoring th
limited-rate feedback channel. magnitudes), and applying a uniform power distributionrove
The design and analysis of limited feedback techniques fibre sub-channels, which is near-optimal at all but very low
beamforming has been extensively studied over the past f8MRs. The resulting problem can be solved, giving an explici
years (e.g., see [2]-[11] and the broad overview of work arharacterization of achievable forward rate versus fegdba
limited feedback for wireless systems in [1]). Most of theate. Numerical results show that joint quantization ofshb-
previous work on limited-feedback beamforming is based onchannel vectors can provide a significantly higher forwate r
narrow-band fading model. Optimal beamforming codebookisan separate quantization of each vector.
can be designed, in principle, by using the Lloyd algorithm. Related work on multi-carrier beamforming with correlated
This was first proposed for narrowband beamforming in [2§ub-channels is considered in [12]. There an interpolaion
and further analyzed in [7], [9]. Other approaches to codkboproach is used to extend quantization of single vectorsdor n
design have been proposed based on Grassmanian packingsoband channels to the wideband scenario. **do they assume
and Random Vector Quantization (RV@)][[6], [11]. uniform power also?** Here our focus is on demonstrating
Here we study the performance of limited-feedback bearthe benefits of optimal (joint) quantization relative to aegie
forming with a wideband fading channel. Specifically, wguantization of each vector. We considdrd. sub-channels
consider multi-carrier transmission over a wideband MIS@rimarily for tractability, and because the performancenga
channel where the MISO sub-channel gains are assumedshown here serve as a lower bound on the corresponding gains
be i.i.d. Given N, transmit antennas an@ sub-channels with correlated sub-channels. (Also, with.d. sub-channels
(assumed to be constant with frequency), the CSI then dsnsisterpolation cannot improve the performance of sepanaite s
of the set of NV i.i.d. sub-channel vectors (ead¥, x 1). The channel quantization.)



Rate-distortion results for narrowband limited-feedback I1l. THE RATE-DISTORTIONBOUND
beamforming are presented in [2], [7], although the digtart A problem Formulation
metrics are different from that considered here. Also, the
previous approaches to codebook design rely on an exhaustiv
search of the quantization codebook. For the wideband Ml
channel model considered with a large numbei.iof. sub-
channels, this is clearly impractical even for relativetyad|

For simplicity, in what follows we drop the sub-carrier ixde
which appears in (1). The sub-channel vedwdrcan be

fitten as the product of two independent parts, the madaitu
|hf|| and the direction (or phase) = hf/||hf||, i.e.,

feedback rates. We therefore briefly discuss the posyilifit h = |[hf|vT, 3)

uging .graphical ba}sed codes, which can approach the raigere |hf||? has a chi-square distribution ang! is

distortion bound with reasonable complexity. isotropically distributed over theV, dimensional complex
I1. MULTI-CARRIER MISO MODEL unit hyper-sphere [8], [9]. We adopt a similar approach as

Consider a single-user MISO channel wifl, transmit fqr na_rrow-pand beamlform_mg, and only quanuzelthe Chapnel
rection without considering the channel magnitude. &inc

. . [
antennas §; > 2 is assumed) and one receive antenni‘-)d}i . ) . .
Suppose there ar®/ i.i.d. sub-channels and denote th¢h € ch:_;mnel mag_mtude is unavailable a_t the transml_tter, th
transmit power is assumed to be uniform over different

sub-channel vector ab! = [h;; hiy ... hin,], which is _

assumed to bei.d. complex Gaussian with unit variance pePUb'CamerS'

complex dimension, wherg)! denotes Hermitian transpose. . . L . .

For spub—channezl we assuriza that the transmitter arrayptrans— Thg distortion metnp is the average capacny loss_ with

mits a single symbolz;. Before transmission on antenia quantized peams r_elat_|ve to_ the capacity with perfect CSl at
i : " the transmitter, which is defined as

the symbol is weighted by a complex numhgg. Then the

vector v; = [0 9o ... tin,]T is the beamforming vector d(v,¥) = Ejni2[logy(1 + E|hf|?)] @

on sub-carrieri with power constraint|v;||? = 1, where(-)” — Btz [logy (1 + E,||nt|2[v9]?)].

denotes transpose aifd || denotes the vector two-norm. The

_ _ _ : L . fo )
received signal on sub-carriércan be written as The distortion metric depends only gm'v|, the angle be
tween the actual direction and the quantized direction. We

ri = hlx; + n,. (1) will use this observation to evaluate the rate-distortionr.

where n; is the noise term with zero mean and variance From fche |r.1dep_endence (.)f thg magmt@)dé” and the cp_r—
N. Without loss of generality, we assumé, — 1. Define responding directiow, the distortion metric can be simplified

def

E, = El|z;|%], whereE[-] stands for ensemble average. Froft> o def fa
(1), the received SNR on sub-carrieis given by E, |[h!v;|2. d(v,¥) = Cp,.x(1) = Cp, . (IV1V]), ©)
Given the number of feedback bits for each sub-carrier, dehere the functiorCg, n,(z),0 < z <1 is defined as

noted asB, the approach used for narrow-band beamforming def 2.2

can be directly applied here, which is to design a vector guan . Cp..n(7) = E“h“z[l_og?(l + Bs [0]|%27)]. ©6)
tization codebook) = {vi,...,v,s} that is known to both According to [8],Cg,,n, () is given by

the transmitter and the receiver. Using this codebook, &ohe Ni—1

sub-carrier the receiver then chooses the SNR-maximizing”z, n, (z) :logz(e)eﬁ Z / e‘ﬁy*’“*ldy. (7

beamforming vector, yielding the quantization rule k=0 71

@) Then, the rate-distortion function can be written as
R(D) = min I(v;¥V) (8)

The set of indices are represented by a totalNok B bits, @)

which are conveyed to the transmitter through a noiseleds an subject to:E, ¢[d(v, V)] < D, 9)

zero-delay feedback link from the receiver to the trangmitt whereI(v;¥) denotes the mutual information betweerand

_ o-lrhe p(;eceldlng apr)]prqach”q_u?jntlzes eacfh sub-charnilrﬁve(%,tpf(ﬂv) is the conditional probability density function (PDF)
Independently, so that it will induce a performance 100, pe oniimized,D denotes the distortion constraint, and the
the optimal (joint) vector quantizer. Specificaljgint vector expectation is with respect to the joint probability distrion
guantization refers to a codebook with’*Z entries, where on v and ¢. Note that the reproduction point are also
each element in the codebook is a complex vector of Ien%gnfined to be on the surface of thé-dimensional complex

N x N, and is composed by stack_lng the beamformlngnit hyper-sphere since only the channel direction is uedt
vectors across sub-channels. For a given channel realizati |y, 'note that the range d{v, ¢) implies thatD must lie in

ideally the entry in the codebook is gelected, which maxe®iz , intervall0, s, x, (1)]. A narrower range fob is observed
the sum capacity over all sup-carrlers. The large number 5{} noting that without any feedback the MISO beamforming
degrees of freedom (sub-carriers, antennas) naturallyestly ), 4e| reduces to a scalar (Single-Input Single-Output)ehod

the application of rate-distortion theory, which providas |, capacityCi. 1(1), so that the range ab is given by
fundamental tradeoff between the number of feedback bids an

the distortion (loss in achievable rate). 0<D<Cpgn(1)—Cpa(1). (10)

¥; = arg max \hjvk\z.
viEVY



B. Evaluation of the Average Distortion greater thanr with ¥. According to [3],]S,| = 2™ (1 —

It appears to be difficult to optimize the conditional PDR*)"* ™" /(N: — 1)}, so that
f(¥]v) directly, since giverw, it is a function mapping from N SN2
the surface of theV,-dimensional unit complex hyper-sphere il (20)
to real numbers. However, the problem can be simplified by ‘ (Ny —2)!
observing that the distortion metric only depends on thdeang
between the actual direction and the quantized direction. and (17) can be rewritten as
The average distortion therefore depends only on the proba-
bility distribution of the scalar random variabk =<' |vi+]. h(v|9) < / fx (Ve = fx(2) 1)
. . . g2 — .
Assuming that the corresponding POk (z) exists, we have ArNep(l — 22)Nem2

1
Epvio[d(v,¥)] = / d(v,¥) fx(x)dz. (11) Equality is achieved whew is uniformly distributed given
0 X. Furthermore, equality can be achieved simultaneously in
and combining (5) and (11) gives (16) and (17). The test channel **what is a "test” channel?**

1 that achieves these two equalities is defined as follows:
E, 5[d(v,¥)] = Cg, n,(1) —/ Cg, n,(2) fx(z)dz. (12) is uniformly distributed on the surface of the complex unit
0 hyper-sphere, corresponding to a uniform source distahut
The average distortion in (9) is therefore expressed in plsim X given v has the same distributiofix, and v given X
form than in (12), i.e., as the integral ovg¢ (z), a function of is uniformly distributed. In addition, it is easy to see that
a single variable. In the next section, we rewrite the object f(v|v) = f(v|¥).
(8) as an integral over the same function. Combining (12-14) and (19), the rate-distortion problem in

C. Evaluation of the Mutual Information (8)-(9) can be rewritten as

The mutual information in (8) can be written as 9 Ne
R(D) =min{logy ————
I(v;¥) = h(v) — h(v]¥), (13) L) e { 82N, — 1)! 22)
whereh(-) denotes the differential entropy andg-|-) denotes / f(x)log, NNt —2)! J;(N) Sdz}
the conditional differential entropy. Since is isotropically ArNea (1 — 22)Nem

distributed, its differential entropy is given by subject t0:C (1) / c (2)f(x)dz < D, (23)
“E N - Es,N¢ = )
0

Ve
/ F(v)logy f(V)dv = log, ——— (14) 1
(N — 1)! z)dz = 24
/0 f@)de =1, (24)

where 27Vt /(N; — 1)! is the surface area of theV;-

dimensional complex unit hyper-sphere evaluated in [3].
To evaluate the conditional differential entropy, we ndiatt o ) )

for any distributionfy (z) satisfying the distortion constraint Ve have transformed the original rate-distortion problem,

(25)

(9), we have which requires optimizing a multivariate function, into eon-
1 strained optimization problem over a single-variable fiorc
Wv¥) = | fx@h(v | ¥, Vi =2)de (15) (Here we have replacefly by f.) To solve this problem, we
0 apply results from optimal control [13], [14], which are an
< fX(x)h(v | V19| = 2)da (16) extension of the calculus of variations.
/ Fx(a ( ) dz, (17) D. Characterization of the Rate-Distortion Bound

It is obvious that the distortion constraint in (21) must be

entropy and (17) follows from the fact that given the suppo nding, otherwise, the rate can be made arbitrarily small

of a random variable, the uniform distribution maximizes it>Y Igttmg r d!str|bute arbitrarily close to one. Therefore,
the inequality in (21) can be safely replaced by equality. In

d addition, the last constraint (23) is redundant, sirf¢e) is
d$| o (18) inside the logarithm function and (23) is automaticallyisfad
for any feasible solution.

In order to fit to the problem formulation of optimal control
theory, the PDFf(z) is replaced by the derivative of the
**js this right? — please correct.** That i$, is the derivative corresponding cumulative distribution functid(z) (F(z) is
of the surface area of the spherical c8p centered at the called the state variable in optimal control theory) andals
reproduction point¥), containing points, which have anglesanother variableu(z) is introduced as the control variable,

where (16) follows from that fact that conditioning reduceg

entropy, where

ly =—

and
Se={vIlvl=1 [¥[=1 X >z} (19)



then the problem becomes The values op* andg* can be obtained by plugging (34) into
the boundary conditions (27) and (29) and we obtain tHat

N
R(D) :H%il)l{logz % should satisfy the fixed point equation:
u(x t — .
(26) 1
1 *
(N, — 2)lu(a) (Com (V)= D] [ (1 =)0 Crnn g
5 1 ’ EsyNt x( x ) €T
fl;wﬂ(g“thﬂ—x%M2dﬂ ) 0 37)
subject to:F(z) = u(zx), (27) :t/)141-x2yW-22—Q*CEwNA$H7E&N,@gdx,
1 0
| Com@ute)is = Co (1) =D, @8) andy is given by
F(0)=0, F(1) =1. (29) . YarNeg(1— 2N Lo
pF = 10g2/0 N, —2)ie 2 ; dr. (38)

The next step to transform this problem into a standard @itim
control problem is to introduce another state variable Finally, the minimum rateR(D) with respect to a given
distortion D is obtained by pluggind™ (or «*) back into (24).

G(2) = Cp..v. (2)ul@), (30) SinceCjp, , (x) is continuous inz, from (34) we know that
with the boundary conditions the solution can satisfy the preconditions to the statealses
and the control variable.
G(0) =0, G(1) = Cg, N,(1) = D. (1) Sincep* andg* are two constants and it is easy to show that

To solve this standard optimal control problem, we caf (¢: .G, p",q", u) is convex in(F, G, u). Thus, according
apply Pontryagin’s Minimum Principle [13], [14] to its Hami {0 Mangasarian’s sufficient condition [13], [14], the neszy
tonian, which is the dynamic equivalent to the LagrangigfPnditions in (31)-(33) are actually also sufficient coruiis
of a static optimization problem, to get necessary conuitio0r optimal solution. Thus, any solution to (35) and (36) is
for optimal solution. When applying this principle, it reges 9lobally optimal and we do not need to worry about the
that the state variables belong to the space of piecewlgmber of roots of the fixed point equation (35).
continuously differentiable functions and the controligale !t should be noted that the method we used to solve the
belong to the space of piecewise continuous functions. We wigte-distortion bound in this paper can be directly extenibe
first put these preconditions aside, and verify them after Wate-distortion bounds with other distortion metrics, Isus

get the specific solution to this problem. SNR loss, etc.
For the above optimal control problem, the Hamiltonian can IV. | MPLEMENTATION ISSUES

be written as . . . . .
The rate-distortion bound evaluated in last section prewid

H(z,F,G,p,q,u) = u(z) log, (Ne — 2)lu(z) a fundamental limit for the tradeoff between the achievédule
ArNeg(1 —22)Ne=2 (32)  ward rate (distortion) and the required backward rate @aek
+ pu(z) + ¢Cg, N, (x)u(x), bits) in a multi-carrier MISO beamforming system. Random

wherep is the costate variable associated with the first part BPdeS with typical set encod'ing suffice tp (';\c'hieve' thi§ pound
the state equatiofi”(x) = u(z)) andq is the costate variable when the number of sub-carrieis goes to infinity. With finite

associated with the second parf(z) — Cp. n, (2)u(z)). N, the Lloyd algorithm can be used to design a near-optimal

Provided the set of solutions of this problem is not empty, bcipdebor:)k for joint qyantization.h desi h debook and
minimizing H, the optimal controk.* is obtained as Another constructive approach to design the codebook an

implement joint quantization is to use the sparse graphical

on -0 (33) codes [15]-{17] and an associated set of message-passing
Ou ’ algorithms [18]. With this approach, the joint quantizatiof
ie. beamforming vectors becomes similar to the iterative diegpd
(N, —2)le of graphical error control codes, which in general has linea

logy u* () +log, TrVen(1 = 22)V 2 +p+qCe, N, (x) =0.  complexity with the length of the codes. Given the space
(34) constraints of this article, we will not discuss the details
The costate variables are given by Hamilton-Jacobi equsitic@bout sparse codes, how joint quantization can be repegbent

[13], [14]: in terms of sparse graphs, and the use of message-passing
OH oH algorithms. For details please refer to the listed refezsnc
)= ——— =0, §=——— =0. 35
b OF ¢ oG (35) V. NUMERICAL RESULTS
Notice thatp andg are two constants by (33). Therefore (32) |n Fig. 1, we plot the rate-distortion bounds in the same sys-
can be solved as tem with different transmit symbol energy along with theerat
- 4rlNep(1 — 22)Nem2 L distortion tradeoff for single vector based quantizatieing
F*(x) = u*((p) = "= Cgy Ny (7) . . . . 8
(N, — 2)le : RVQ codebook (its performance is obtained by simulation).

(36) Note that to plot the curves with different parameters in one
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Comparison of the rate-distortion bound and single vector

Selected Areas in Communications, IEEE Journal on, vol. 26, pp. 1341—
1365, October 2008.

[2] A. Narula, M. Lopez, M. Trott, and G. Wornell, “Efficientse of side
information in multiple-antenna data transmission over fgdinannels,”
Selected Areas in Communications, IEEE Journal on, vol. 16, pp. 1423—
1436, Oct 1998.

[3] K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, feamform-
ing with finite rate feedback in multiple-antenna systenhsformation
Theory, IEEE Transactions on, vol. 49, pp. 2562-2579, Oct. 2003.

[4] D. J. Love and R. W. Heath, Jr., “Grassmannian beamforming
multiple-input multiple-output wireless systemdyiformation Theory,
IEEE Transactions on, vol. 49, pp. 2735-2745, Oct. 2003.

[5] W. Santipach and M. L. Honig, “Asymptotic capacity of beamming
with limited feedback,” inProc. |IEEE Int. Symp. on Info. Theory (IST),
pp. 290, Chicago, IL, June 2004.
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[8] C. K. Au-Yeung and D. J. Love, “On the performance of randeeator
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Communications, | EEE Transactions on, vol. 6, pp. 458-462, Feb. 2007.

[9] J. C. Roh and B. D. Rao, “Transmit beamforming in multipleesma
systems with finite rate feedback: A VQ-based approaltigrmation
Theory, IEEE Transactions on, vol. 52, pp. 1101-1112, Mar. 2006.

figure we change the distortion metric to be the distortion iA0] V. Lau, Y. Liu, and T.-A. Chen, "Capacity of memoryless ohals and

def

percentage, which is defined &, = D/Cg, n,(1). One sees
that there is a large gap between the rate-distortion boadd a

block-fading channels with designable cardinality-coaisied channel
state feedback,information Theory, |IEEE Transactions on, vol. 50,
pp. 2038-2049, Sept. 2004,

the rate-distortion tradeoff of single vector based RVQha t [11] A. Dabbagh and D. Love, “Feedback rate-capacity losdetoff for lim-

range of low-rate feedback. For instance, to achieve attarge

ited feedback MIMO systems|hformation Theory, |[EEE Transactions
on, vol. 52, pp. 2190-2202, May 2006.

distortion 0f20% in the casel’; = 10, the required feedback [12] J. Choi and J. R. W. Heath, “Interpolation based trangreémforming

bits of joint quantization is only half of that with single ater

for MIMO-OFDM with limited feedback,” Sgnal Processing, |EEE

based RVQ. In addition, Fig. 1 indicates that to achieve the, Transactions on, pp. 4125-4135, Nov. 2005.

same distortion (in percentage), the required rate deeseas

D. P. BertsekasPynamic Programming and Optimal Control, vol. 1.
Athena Scientific, May 2005.

the transmit symbol energy increases. This can be explairiéd W. H. Fleming and R. W. RisheDeterministic and Stochastic Optimal

by the fact that the capacity function is a concave functiom
as the symbol energy increases, the capacity function besom

more insensitive to the quantization errors.

VI. CONCLUSIONS

Control. Springer-Verlag Berlin-Heidelberg, Feb. 1998.

LDPC codes,” inThird International Symposium On Turbo Codes and
Related Topics, Brest, France, Sept. 2003.

[16] E. Martinian and M. Wainwright, “Low density codes aeté the rate-

distortion bound,”Data Compression Conference, 2006. DCC 2006.
Proceedings, pp. 153-162, March 2006.

In this paper, we proposed a rate-distortion approach whiffi] M. Wainwright, “Sparse graph codes for side informatérd binning,”

jointly quantizes the channel vectors on different subriess
to improve the sum capacity in a multi-carrier MISO bea
forming system with limited feedback. We exactly charac-
terized the associated rate-distortion bound by fornmudgati

it as an optimal control problem. The optimal conditional

Sgnal Processing Magazine, |EEE, vol. 24, pp. 47-57, Sept. 2007.

n’{lB] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Facgraphs and

the sum-product algorithm[hformation Theory, |EEE Transactions on,
vol. 47, pp. 498-519, Feb. 2001.

distribution of the reproduction points is determined by a
single variable function which determines the probability
distribution on the angle between the source point and the

reproduction point. Numerical results show that to achiave
certain moderate distortion the required feedback bitshean

reduced in a large extent by jointly quantizing the beamform

ing vectors on different sub-carriers. Of course, the tesul
in this paper correspond to the particular channel moded.(i.
sub-carriers). For future work, extending the channel rmtale
the more general case (correlated sub-carriers) and emtend

beamforming to MIMO precoding should be more interesting.
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