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Abstract—We study distributed algorithms for adjusting beam-
forming vectors and receiver filters in multiple-input multiple-
output (MIMO) interference networks, with the assumption that
each user uses a single beam and a linear filter at the receiver.
In such a setting there have been several distributed algorithms
studied for maximizing the sum-rate or sum-utility assuming
perfect channel state information (CSI) at the transmitters and
receivers. The focus of this paper is to study adaptive algorithms
for time-varying channels, without assuming any CSI at the
transmitters or receivers. Specifically, we consider an adaptive
version of the recent Max-SINR algorithm for a time-division
duplex system. This algorithm uses a period of bi-directional
training followed by a block of data transmission. Training in
the forward direction is sent using the current beam-formers
and used to adapt the receive filters. Training in the reverse
direction is sent using the current receive filters as beams and
used to adapt the transmit beamformers. The adaptation of
both receive filters and beamformers is done using a least-
squares objective for the current block. In order to improve
the performance when the training data is limited, we also
consider using exponentially weighted data from previous blocks.
Numerical results are presented that compare the performance
of the algorithms in different settings.

I. INTRODUCTION

The use of multiple antennas in wireless networks offers the
promise of mitigating interference and enabling high spectral
efficiencies. However achieving these benefits in a decentral-
ized network requires distributed algorithms for coordinating
the pre-coding matrices used by each transmitter with minimal
overhead. A number of such algorithms have been studied for
multiple-input multiple-output (MIMO) interference networks
including those in [1]–[3] under the assumption that transmit-
ters have perfect channel state information (CSI) for channel
matrices to all receivers. Our focus in this work is to relax
this assumption and develop adaptive algorithms for time-
varying channels without assuming any CSI at the transmitters
or receivers.

We consider a MIMO interference network with block
fading. Each transmitter uses a rank one pre-coding matrix,
i.e. a beamformer, and the receivers are assumed to be linear,
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with all interference treated as noise, so that the rate is
determined by the received signal-to-interference plus noise
ratio (SINR). Our objective is to design an adaptive dis-
tributed algorithm for updating the precoders and beamformers
to maximize the sum-rate while accounting for the needed
overhead. To accomplish this, we consider an algorithm for
a synchronous time-division duplex (TDD) system that uses
one or more bi-directional training periods at the beginning of
each block. Each period consists of a forward phase followed
by a reverse phase. During the forward phase, all transmitters
simultaneously send pilots using their current beamformers
and each receiver updates their receive filters. During the
backward phase, the receivers transmit pilots, using the current
receive filter as a beamformer and the transmitters update
their beamformers. The updates during each phase are used
to directly adapt the beamformers and receive filters based
on a standard least-squares criterion. For a given number
of channel users per coherence block, we consider the net
throughput achieved after subtracting the channel uses used for
training and via numerical results study the effect of varying
the training length on these metric. For short coherence blocks,
the optimal training length becomes small leading to imprecise
estimation and degraded performance. For such settings, we
also study a recursive variation of our algorithm based on using
exponentially weighted data from previous blocks.

The algorithms we study are inspired by the Max-SINR al-
gorithm in [1]. This algorithm also iterates between transmitter
and receiver updates assuming perfect CSI and static channels.
Though no convergence proof for this algorithm is given in
[1], numerical results show that it has good performance and
at high SNRs can achieve the optimal multiplexing gain by
successfully aligning the interference at each receiver [4].
Related iterative algorithms (also assuming perfect CSI) are
given in [2], [5]. The bi-directional training method presented
here is also related to schemes for two-way channel estimation
presented in [6]–[11]. The key difference here is that we are
directly estimating the optimal beamformer and receive filter
as opposed to estimating the CSI needed to compute those
coefficients.

II. SYSTEM MODEL

We consider a peer-to-peer wireless network with K
transmitter-receiver pairs (henceforth referred to as users)
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communicating through MIMO links, sharing the same spec-
trum. Each transmitter has NT antennas, each receiver has NR
antennas, and the channel from the k-th transmitter to the j-th
receiver is denoted by a complex matrix Hjk ∈ CNR×NT . The
channels are assumed to be block-fading, i.e., Hjk remains
constant for L symbol periods and jumps to another value for
the next L symbols, according to the update

H
(n)
jk = αH

(n−1)
jk +

√
1− α2W

(n)
jk (1)

where n is the block index and W
(n)
jk is a matrix with i.i.d

complex Gaussian entries having zero mean and the same
variance as Hjk. (The index n will sometimes be omitted if
no confusion results.) We assume that neither transmitters nor
receivers have a priori channel information.

For simplicity, we assume each transmitter transmits only
one beam to its desired receiver, i.e., the precoding matrix
has rank one. The beamforming vector for transmitter k is
vk ∈ CNT and satisfies the power constraint ‖vk‖2 ≤ Pmaxk .
The i-th received signal vector at the k-th receiver in the n-th
block is then given by

yk(i) = H
(n)
kk vkxk(i) +

∑
j 6=k

H
(n)
kj vjxj(i) + nk(i) (2)

where xk is the unit variance data symbol from transmit-
ter k and nk is the additive noise with covariance matrix
E[nkn

H
k ] = Rk.

We assume linear receivers, so that the estimated symbol
for user k is

x̂k = gH
k yk (3)

where gk is the corresponding receive filter. Given a set
of beamformers vk’s and receive filters gk’s, the Signal-to-
Interference-plus-Noise Ratio (SINR) for user k can be written
as

γk =
|gH
kH

(n)
kk vk|2∑

j 6=k|gH
kH

(n)
kj vj |2 + |gH

kRkgk|
. (4)

Ideally, we would like to choose the set of beamforming
vectors {vk} and set of receive filters {gk} to maximize the
sum rate

∑K
k=1 log(1 + γk) within each block. This is com-

plicated by the assumption that the channels are time-varying,
and initially unknown at all nodes. Estimating the channels
requires overhead, which reduces the rate, and furthermore,
if the channels vary too quickly, then the channel estimates
are likely to be inaccurate. Therefore we desire an estimation
scheme with minimal overhead, and which adapts to the time-
variations of the channel.

III. BI-DIRECTIONAL OPTIMIZATION: MAX-SINR
ALGORITHM

The adaptive bi-directional training scheme to be described
is based on the Max-SINR algorithm presented in [1]. That
algorithm iteratively optimizes the transmit precoders and
receivers, assuming the transmitters/receivers each know their
direct- and cross-channel matrices. It consists of the following
steps: (i) Fix the precoders and optimize the receivers; (ii)

Reverse the direction of transmission, so that the roles of the
receiver filters and precoders are swapped, and optimize the
precoders (now the receivers).

The optimization criterion in each step is the associated
SINR, i.e., in step (i) the receiver for user k is obtained by
solving

max
gk

|gH
kHkkvk|2∑

j 6=k|gH
kHkjvj |2 + |gH

kRkgk|
(5)

s.t. ‖gk‖2 = Pmaxk (6)

and in step (ii) the beamformer for user k is updated by solving

max
vk

|vH
kH

H
kkgk|2∑

j 6=k|vH
kH

H
jkgj |2 + |vH

kRkvk|
(7)

s.t. ‖vk‖2 = Pmaxk . (8)

Although inspired by a duality type of argument, which
applies to the uplink/downlink, the max-SINR method does not
appear to maximize a particular objective. Hence so far, there
is no proof that the algorithm converges. Nevertheless, nu-
merical results show that for the scenario considered (i.e., one
beam per user) the Max-SINR algorithm essentially achieves
the maximum sum rate over a wide range of SNRs [2].

IV. BI-DIRECTIONAL TRAINING

Maximizing the received SINR in (5) and (7) is equivalent to
minimizing the Mean Squared Error (MSE) at the output of the
corresponding filter. This leads to an adaptive version in which
the MSE is replaced by a Least Squares (LS) cost function.
Here we assume that in each step the set of transmitters or the
set of receivers synchronously transmit training sequences in
each direction.

Specifically, in the n-th block, we assume that the trans-
mitters synchronously transmit the sequence of M training
symbols given by the matrix BH where B = [bH

1 , · · · ,bH
K ]

and bk is the 1×M row vector containing the training symbols
bk(1), · · · , bk(M). The received signal at receiver k is then
given by (2) where xk(i) = bk(i). At receiver k the estimated
symbol at time i is then b̂k(i) = gH

k yk(i). The corresponding
sequence of estimated symbols is b̂k = gH

kYk, where

Yk =
[
yk(1), · · · ,yk(M)

]
(9)

The filter gk is then selected to

min
gk

‖bk − gH
kYk‖2

which gives
gk = (YkY

H
k )
−1Ykb

H
k . (10)

This is referred to as forward training. The beamformers
v1, · · · ,vK are similarly updated via backward training ex-
ploiting channel reciprocity. Specifically, the reverse channel
from receiver k to transmitter j is

←−
Hjk = HT

kj . Fixing the set
of (original) receive filters {gk}, receiver k then applies g∗k
as the beamformer, and all receivers synchronously transmit
training sequences in the reverse direction. Let

←−
b k denote the



training sequence from receiver k. Then the observed signal
at transmitter k is given by

←−
Yk = H

(n) T
kk g∗k

←−
b k +

∑
j 6=k

H
(n) T
jk g∗j

←−
b j +

←−
Nk (11)

where
←−
Nk =

[←−n 1
k, · · · ,

←−nM
k

]
is the vector of M independent

noise samples.
Note that

←−
Y∗k corresponds to the reverse signal used to

compute the SINR in the Max-SINR algorithm, where the
transmitted symbol xk =

←−
b ∗k. Hence replacing the corre-

sponding MSE by the LS cost function, we wish to select
vk to

min
vk

‖
←−
b ∗k − vH

k

←−
Y∗k‖2 = ‖

←−
b k − vT

k

←−
Yk‖2 (12)

giving the solution

vk =
(
(
←−
Yk
←−
YH
k )
−1←−Yk

←−
b H
k

)∗
. (13)

We must normalize the beamformer/receive filter after each
update to satisfy the power constraint. This does not change
the SINR of the corresponding reverse/forward link. However,
it does influence the results in subsequent updates. (This
normalization is also included in the Max-SINR algorithm and
has been empirically observed to improve performance relative
to unnormalized updates.)

The bi-directional LS algorithm therefore consists of the
following steps:

1) Backward training: The receivers synchronously trans-
mit M training symbols given by the backward training
matrix

←−
B . Receiver k uses the current estimate g∗k as

the beamformer, and each transmitter k updates the
beamformer vk according to (13).

2) Forward training: The transmitters synchronously trans-
mit M training symbols given by the training matrix B,
and each receiver k updates the filter gk according to
(10) with a normalization to satisfy a power constraint.

3) Iterate the preceding steps up to a maximum number of
iterations.

4) Transmit data in the forward direction.
The algorithm repeats each block. The training sequences

must be linearly independent across transmitters/receivers in
order to distinguish all sources, and ideally should have
low cross-correlation to improve the estimation accuracy. As
the training length M becomes large, the solution given by
(10) and (13) approaches the corresponding Minimum MSE
solution, or equivalently, the update in the Max-SINR algo-
rithm. Hence by running sufficiently many forward-backward
cycles within each block, each with sufficiently long training
sequences, the performance should approach that of the Max-
SINR algorithm.

For a fixed amount of training data there is generally an
optimal number of forward-backward iterations. With too few
iterations the transmit beam and receiver filter do not converge
to the appropriate fixed point, whereas with too many iterations
each segment contains insufficient training symbols to obtain

accurate filter estimates. This is illustrated in the next section.
For high SNRs, the trade-off generally favors more iterations
since the number of iterations needed to achieve the optimal
fixed point increases with SNR.

When consecutive blocks are highly correlated, i.e., α in
(1) is close to one, and with a fixed set of users, the optimal
number of iterations per block is close to one in steady-
state (i.e., once the beams and receivers start to track the
channel variations). For this scenario the numerical results in
the next section assume that each block starts with forward
training using beams estimated from the preceding block.
Here we do not account for the possibility that the receivers
continue to train during the data phase. If the receivers are
able to track the channel variations during the block, then
further improvements are possible by starting each block with
backward training using the optimized (updated) receivers as
beams. (This also reduces the number of switches between
forward and backward training.)

With new users (or channels) the algorithm can be initialized
with either the forward or backward training phase. Initializing
with the backward phase may be best if the receivers have
a priori CSI (e.g., from previous transmissions). Otherwise,
the transmitters may initialize by transmitting pilots through
random beams.

As we noted previously, our bi-direction LS algorithm
differs from other schemes for two-way channel estimation as
in [6]–[11] in that we directly estimate the filter coefficients
as opposed to estimating the CSI needed to compute those
coefficients. The main advantages of direct filter estimation
are that it automatically accounts for varying interference
levels and filter estimation error. That is, pilots from distant
transmitters/receivers have little effect on the filter estimate,
so are automatically ignored. In contrast, channel estimation
schemes must determine what CSI needs to be estimated.1

Obtaining accurate CSI via two-way training may also pre-
clude all users from training simultaneously, which extends
the training period. Finally, the filter estimation criterion
(e.g., least squares) provides the best filter estimate at the
transmit/receive side given the current set of filters/beams at
the opposite side. In contrast, filter estimates must be modified
to account for inaccurate CSI [8]. The main disadvantage
of the bi-directional filter estimation scheme proposed here,
relative to channel estimation, is that it takes multiple iterations
to converge.

A. Short Coherence Blocks: Recursive Block Least Squares

For a given coherence block length L there is an optimal
amount of training per block; more training gives better filter
estimates, but takes away symbols for data transmission. As
the length of the coherence block decreases, the optimal
training length decreases. One way to effectively increase the
amount of training for small L is to include training data from
previous blocks. Because the channels, beams, and filters are

1This is straightforward in a single-cell context where CSI for all users in
the cell is needed. However, deciding on what CSI is important becomes an
issue with multi-cell cooperation.



assumed to vary over successive blocks, it is also important
to discount the data from past blocks when computing the
current estimates. One possibility is to modify the least squares
cost function by including exponentially weighted data from
previous blocks, namely,

e
(n)
k =

n∑
l=1

λ(n−l)
( M∑
i=1

|b(l)k (i)− gH
k y

(l)
k (i)|2

)
(14)

where n is the current block index, b(l)k (i) and y
(l)
k (i) are,

respectively, the i-th training symbol and the corresponding
received signal vector for user k in block l, the summation
in the parentheses is the sum error square for the l-th block,
and λ ∈ (0, 1] is the exponential weighting factor. Roughly
speaking, the memory of the algorithm spans 1/(1 − λ)
coherence blocks. Taking λ = 1 corresponds to infinite
memory.

We also add a regularization term δλn‖gk‖, where δ is a
small positive constant. This helps to stabilize the solution
when n is small, since the amount of training may be insuf-
ficient to estimate the filters. Similar to the LS algorithm in
the preceding subsection, for the receive filter update in the
original direction, given the training sequence b

(l)
k and the

received signals Y
(l)
k for block l = 1, · · · , n, the receive filter

of user k is updated by solving

min
gk

n∑
l=1

λn−l‖b(l)
k − gH

kY
(l)
k ‖

2 + δλn‖gk‖2. (15)

The solution to this minimization problem can be computed
for each block n. However, it is not necessary to store all of the
past data to update the solution. A block recursive algorithm
for updating gk is shown in Table I, and consists of updating
the state variables P

(n)
k (NR × NR matrix), and calculating

K
(n)
k (NR×M matrix) at each block using the current training

data.

TABLE I
BLOCK RECURSIVE LS ALGORITHM

Initialization
g
(0)
k = 0

P
(0)
k = δ−1INR×NR

For each block n, compute

K
(n)
k = λ−1P

(n−1)
k Y

(n)
k

(
IM×M+

λ−1Y
(n) H
k P

(n−1)
k Y

(n)
k

)−1
g
(n)
k = g

(n−1)
k −K

(n)
k (b

(n) H
k −Y

(n) H
k g

(n−1)
k )

P
(n)
k = λ−1P

(n−1)
k − λ−1K(n)

k Y
(n) H
k P

(n−1)
k

Similarly, in the backward direction, we update the beam-
former vk using the analogous exponentially weighted LS
objective, i.e.,

min
vk

n∑
l=1

λn−l‖
←−
b

(l)
k − vT

k

←−
Y

(l)
k ‖

2 + δλn‖vk‖2. (16)

The recursive method in Table I is again applicable where each
transmitter updates the matrix Q

(n)
k as the counterpart of P(n)

k .
The Bi-Directional Recursive Least Squares (RLS) algorithm
is then given by the following steps:

1) Initialization: The first training phase can be through
an arbitrary set of beamformers/receive filters, although
the updates in Table 1 are initialized by setting g

(0)
k to

the all-zero vector, P
(0)
k = δ−1INR×NR

, and Q
(0)
k =

δ−1INT×NT
.

2) Backward training: The receivers synchronously trans-
mit M training symbols using the current normalized
receivers as beams, i.e., receiver k sends the training
symbols

←−
b

(n)
k to its associated transmitter with the

normalized version of the beam g
(n−1)∗
k . Each receiver

k then updates v(n)
k according to Table I substituting v∗k

and Qk for gk and Pk.
3) Forward training: The transmitters synchronously trans-

mit M training symbols using the current normalized
beams, i.e., transmitter k transmits the M training sym-
bols b

(n)
k using the normalized version of the beam

v
(n)
k . Each receiver k then updates g(n)

k , K(n)
k , and P

(n)
k

according to the algorithm in Table I.
4) The transmitters synchronously transmit data in the for-

ward direction using the updated beams for the duration
of the coherence block.

In contrast with the (unweighted) LS algorithm, here we
assume that there is only one iteration per block. This is
because the training length is assumed to be relatively short,
so that multiple iterations would likely perform worse.

V. NUMERICAL RESULTS

In this section, we present numerical results for a network
of three users with 2×2 MIMO channels2. In each simulation
run, all channel matrices (direct and cross) are independently
generated following the block-fading model in (1) with unit
variance and a given choice of α. White Gaussian additive
noise is assumed with variance σ2

0 so that the SNR is then
1/σ2

0 . All results shown are averaged over multiple channel
realizations. Next, we present results for the bi-directional LS
algorithm. We then consider the bi-directional RLS algorithm.
All training schemes presented in this section also include an
additional receive filter update during the data transmission.
Specifically, each receiver applies the current filter to estimate
the transmitted binary symbols, and at the end of each block,
updates the receive filter again to minimize the sum error
square of those estimated symbols, similar to the forward
training in the bi-directional LS algorithm. However, the sum
rate is still evaluated at the beginning of the data transmission
period for each block.

A. Bi-directional Least Squares Algorithm

We first consider the bi-directional LS algorithm for con-
stant channels (α = 1) with a SNR of 30 db. In this case, as the

2As shown in [4], interference alignment is achievable in this setting.
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Fig. 1. Performance of the bi-directional LS algorithm and the forward
training only scheme for constant channels.

training length goes to infinity, the sum-rate achieved by the
algorithm should approach that achieved by the Max-SINR
algorithm with perfect CSI. This is illustrated in Figure 1,
which shows the sum-rate achieved with bi-directional training
and that achieved by the Max-SINR algorithm as a function
of the training length (2M ) normalized by L, which is 1000
symbols here. The figure also shows the throughput achieved
the bi-directional scheme, where throughput is given by the
rate per channel use after subtracting off the overhead for
training. After accounting for this overhead, it can be seen
that the optimal normalized training length is around 0.02. A
single iteration of bi-directional training per block is applied in
this example. For comparison, we also show the sum-rate and
throughput achieved by a “forward training only” scheme in
which the initial beamformer of each user is fixed and only the
receiver filters are updated using by the same training method.
Clearly the two-way training significantly improves over only
one-way training.

Next, to illustrate the effect of varying the number of
iterations per coherence block, we consider a network with
i.i.d. block fading channels (i,e, α = 0). Figure 2 shows the
sum-rate versus the total training length for a SNR of 20 dB.
Each curve corresponds to a different number of iterations
(cycles) per block, where the total amount of training is evenly
divided among each iteration. For example, with 128 training
symbols and 4 bi-directional iterations, the training alternates
between the forward and reverse directions every 16 symbols.
As in the previous case, we also show the performance of
the Max-SINR algorithm and that of forward training only.
Again for this case, the bi-directional training scheme can
provide a substantial benefit relative to forward training only.
However, the results also indicate that significant training is
needed to approach the sum rate possible with perfect channel
knowledge. It can also be seen that given a fixed training length
there is an optimal number of bi-directional iterations; with
too few iterations the transmit beam and receiver filter do not
converge to the appropriate fixed point, whereas with too many
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Fig. 2. Sum-rate versus training length with bi-directional training and i.i.d.
block fading channels. Plots are shown for different numbers of forward-
backward iterations (cycles).

iterations each segment contains insufficient training symbols
to obtain accurate filter estimates. For high SNRs, the tradeoff
generally favors more iterations since the number of iterations
needed to achieve the optimal fixed point increases with SNR.

Next, to gain insight into the performance of the bi-
directional LS algorithm as a function of the SNR, we consider
a limiting model in which their is a single iteration per block
and the training data per iteration goes to infinity. In this
case, each update will be equivalent to the corresponding
update in the Max-SINR algorithm. Fig. 3 shows the sum
rate yielded by this limiting scheme above versus the SNR
for channels with correlated fading corresponding to different
choices of α. We also show the performance of two schemes in
which only two of the three users are allowed to transmit and
the two users either update their beams using bi-directional
training or forward training only, still assuming an infinite
number of training bits per update. First consider the scheme
corresponding to three users with α = 1. In this case the
channel is not changing from one iteration to the next and thus
the algorithm is the same as the Max-SINR algorithm, which
appears to be achieving the optimal high-SNR slope here.
When the channel is not constant (α < 1), the beamformers
and receive filters are always mismatched due to the channel
fading; this mismatch eventually limits the growth of the sum-
rate for the three user schemes as the SNR increases. The
two schemes in which only two user transmit have nearly
identical performance and both appear to achieve the optimal
high-SNR slope for two users with rank 1 codebooks.3 This
is because for a two-user 2 × 2 MIMO system, it is much
easier to orthogonalize the two users and indeed this can be
done by only adapting the receive filters, while for a three-
user system, both the beamformers and receive filters need to
be chosen to achieve alignment. This suggests that for a high
enough SNR in a time-varying channel, it may be better to

3Fig. 3 only shows the curves for the two-user schemes corresponding to
the case of α = 0; the performance for other choices of α is very similar.



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

SNR (in dB)

su
m

 r
at

e 
(b

its
 p

er
 c

ha
nn

el
 u

se
)

 

 
three users − α = 0.9
three users − α = 0.99
three users − α = 0.999
three users − α = 1
two users − forward training only
two users − forward/backward training

Fig. 3. Sum rate performance of the bi-directional LS algorithm with
one iteration and infinite training data per block under different channel
correlations.

only allow two-users to transmit in this way.

B. Bi-directional Recursive Least Squares Algorithm

Now we turn to the performance of the bi-directional RLS
algorithm. Recall, that this algorithm was motivated for cases
where the number of channel uses per block is small and
there is significant correlation between blocks. Figures 4 and 5
show the performance of the bi-directional RLS with different
choices of λ and LS algorithms as a function of the training
length in a channels with correlated fading corresponding
to α = 0.99 and α = 0.999, respectively. Both the sum-
rate (solid lines) and the throughput (dashed lines) of each
algorithm is shown as well as for forward-training only. For
all the algorithms, a single iteration of training is used per
block and the SNR is 10db. It can be seen that when the
total training length is limited the bi-directional RLS algorithm
with an appropriate λ gives a higher sum-rate than the LS
algorithm, while if training bits are sufficient the LS algorithm
gives the high rate. The gains of the bi-directional RLS
algorithm are more significant when α is closer to 1, i.e.,
the channel is varying more slowly. When we consider the
throughput accounting for training overhead, the gains of the
bi-directional RLS algorithm diminish, and for α = 0.99
become insignificant for most ranges of training. Of course
this comparison depends on the block-length L, which here
we assume is given by L = 1

1−α . In other simulations, we
have also observed that the performance benefits of the RLS
algorithm are greater at lower SNRs, i.e. when estimation
becomes more difficult.

VI. CONCLUSIONS

We have presented a distributed algorithm for iteratively
adapting beamformers and receive filters in MIMO inter-
ference networks without CSI. The algorithm is based on
using bi-directional training in a synchronous TDD system.
This algorithm approaches the performance of the Max-SINR
algorithm with full CSI as the amount of training and the
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Fig. 4. Comparison between the LS algorithm and the RLS algorithm with
λ = 0.5 (α = 0.99).
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Fig. 5. Comparison between the LS algorithm and the RLS algorithm with
λ = 0.7 (α = 0.999).

number of training cycles increase. A recursive modification
of the algorithm that uses exponentially weighted data from
previous blocks was also given and shown to offer better
performance when the channels are highly correlated and the
training length very small. Here we mainly demonstrated the
performance of these algorithms via simulations; analyzing the
performance is an interesting direction for future work.
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